Merge remote-tracking branch 'origin/2.4' into merge-2.4

Conflicts:
	modules/gpuwarping/src/cuda/resize.cu
	modules/gpuwarping/src/resize.cpp
	modules/gpuwarping/test/test_resize.cpp
	modules/ocl/perf/main.cpp
	modules/ocl/perf/perf_calib3d.cpp
	modules/ocl/perf/perf_canny.cpp
	modules/ocl/perf/perf_color.cpp
	modules/ocl/perf/perf_haar.cpp
	modules/ocl/perf/perf_match_template.cpp
	modules/ocl/perf/perf_precomp.cpp
	modules/ocl/perf/perf_precomp.hpp
This commit is contained in:
Roman Donchenko 2013-08-27 19:15:47 +04:00
commit 2d6f35d6ed
45 changed files with 2854 additions and 4252 deletions

View File

@ -460,6 +460,8 @@ include(cmake/OpenCVGenAndroidMK.cmake)
# Generate OpenCVСonfig.cmake and OpenCVConfig-version.cmake for cmake projects
include(cmake/OpenCVGenConfig.cmake)
# Generate Info.plist for the IOS framework
include(cmake/OpenCVGenInfoPlist.cmake)
# ----------------------------------------------------------------------------
# Summary:

View File

@ -26,8 +26,8 @@ else()
set(HAVE_MSVC2012 TRUE)
endif()
TRY_COMPILE(HAVE_WINRT_SDK
"${OPENCV_BINARY_DIR}/CMakeFiles/CMakeTmp"
try_compile(HAVE_WINRT_SDK
"${OpenCV_BINARY_DIR}"
"${OpenCV_SOURCE_DIR}/cmake/checks/winrttest.cpp")
if (ENABLE_WINRT_MODE AND HAVE_WINRT_SDK AND HAVE_MSVC2012 AND HAVE_MSPDK)

View File

@ -233,6 +233,10 @@ if(MSVC)
set(OPENCV_EXTRA_FLAGS "${OPENCV_EXTRA_FLAGS} /fp:fast") # !! important - be on the same wave with x64 compilers
endif()
endif()
if(OPENCV_WARNINGS_ARE_ERRORS)
set(OPENCV_EXTRA_FLAGS "${OPENCV_EXTRA_FLAGS} /WX")
endif()
endif()
# Extra link libs if the user selects building static libs:

View File

@ -5,12 +5,11 @@
#--- Win32 UI ---
ocv_clear_vars(HAVE_WIN32UI)
if(WITH_WIN32UI)
TRY_COMPILE(HAVE_WIN32UI
"${OPENCV_BINARY_DIR}/CMakeFiles/CMakeTmp"
try_compile(HAVE_WIN32UI
"${OpenCV_BINARY_DIR}"
"${OpenCV_SOURCE_DIR}/cmake/checks/win32uitest.cpp"
CMAKE_FLAGS "\"user32.lib\" \"gdi32.lib\""
OUTPUT_VARIABLE OUTPUT)
endif(WITH_WIN32UI)
CMAKE_FLAGS "-DLINK_LIBRARIES:STRING=user32;gdi32")
endif()
# --- QT4 ---
ocv_clear_vars(HAVE_QT HAVE_QT5)

View File

@ -149,7 +149,7 @@ if(WITH_JASPER)
endif()
# --- libpng (optional, should be searched after zlib) ---
if(WITH_PNG AND NOT IOS)
if(WITH_PNG)
if(BUILD_PNG)
ocv_clear_vars(PNG_FOUND)
else()

View File

@ -3,13 +3,12 @@
# ----------------------------------------------------------------------------
ocv_clear_vars(HAVE_VFW)
if (WITH_VFW)
TRY_COMPILE(HAVE_VFW
"${OPENCV_BINARY_DIR}/CMakeFiles/CMakeTmp"
if(WITH_VFW)
try_compile(HAVE_VFW
"${OpenCV_BINARY_DIR}"
"${OpenCV_SOURCE_DIR}/cmake/checks/vfwtest.cpp"
CMAKE_FLAGS "-DLINK_LIBRARIES:STRING=vfw32"
OUTPUT_VARIABLE OUTPUT)
endif(WITH_VFW)
CMAKE_FLAGS "-DLINK_LIBRARIES:STRING=vfw32")
endif(WITH_VFW)
# --- GStreamer ---
ocv_clear_vars(HAVE_GSTREAMER)
@ -271,8 +270,10 @@ if(WITH_AVFOUNDATION)
endif()
# --- QuickTime ---
if(WITH_QUICKTIME)
set(HAVE_QUICKTIME YES)
elseif(APPLE)
set(HAVE_QTKIT YES)
if (NOT IOS)
if(WITH_QUICKTIME)
set(HAVE_QUICKTIME YES)
elseif(APPLE)
set(HAVE_QTKIT YES)
endif()
endif()

View File

@ -0,0 +1,4 @@
if(IOS)
configure_file("${OpenCV_SOURCE_DIR}/platforms/ios/Info.plist.in"
"${CMAKE_BINARY_DIR}/ios/Info.plist")
endif()

View File

@ -77,7 +77,7 @@ MACRO(ocv_check_compiler_flag LANG FLAG RESULT)
if(_fname)
MESSAGE(STATUS "Performing Test ${RESULT}")
TRY_COMPILE(${RESULT}
${CMAKE_BINARY_DIR}
"${CMAKE_BINARY_DIR}"
"${_fname}"
COMPILE_DEFINITIONS "${FLAG}"
OUTPUT_VARIABLE OUTPUT)

View File

@ -136,7 +136,7 @@ namespace cv
char* fname;
#ifdef HAVE_WINRT
char fname_tmp[MAX_PATH];
size_t copied = wcstombs(fname, FindFileData.cFileName, MAX_PATH);
size_t copied = wcstombs(fname_tmp, FindFileData.cFileName, MAX_PATH);
CV_Assert((copied != MAX_PATH) && (copied != (size_t)-1));
fname = fname_tmp;
#else

View File

@ -1369,7 +1369,7 @@ The method makes a new header for the specified row span of the matrix. Similarl
Mat::colRange
-------------
Creates a matrix header for the specified row span.
Creates a matrix header for the specified column span.
.. ocv:function:: Mat Mat::colRange(int startcol, int endcol) const

View File

@ -144,9 +144,9 @@ namespace
{
cv::Range r;
r.start = (int)(wholeRange.start +
((size_t)sr.start*(wholeRange.end - wholeRange.start) + nstripes/2)/nstripes);
((uint64)sr.start*(wholeRange.end - wholeRange.start) + nstripes/2)/nstripes);
r.end = sr.end >= nstripes ? wholeRange.end : (int)(wholeRange.start +
((size_t)sr.end*(wholeRange.end - wholeRange.start) + nstripes/2)/nstripes);
((uint64)sr.end*(wholeRange.end - wholeRange.start) + nstripes/2)/nstripes);
(*body)(r);
}
cv::Range stripeRange() const { return cv::Range(0, nstripes); }

View File

@ -222,7 +222,8 @@ void cv::gpu::OpticalFlowDual_TVL1_GPU::procOneScale(const GpuMat& I0, const Gpu
{
estimateU(I1wx, I1wy, grad, rho_c, p11, p12, p21, p22, u1, u2, diff, l_t, static_cast<float>(theta));
error = gpu::sum(diff, norm_buf)[0];
if (epsilon > 0)
error = gpu::sum(diff, norm_buf)[0];
estimateDualVariables(u1, u2, p11, p12, p21, p22, taut);
}

View File

@ -49,254 +49,434 @@
#include "opencv2/core/cuda/vec_math.hpp"
#include "opencv2/core/cuda/saturate_cast.hpp"
#include "opencv2/core/cuda/filters.hpp"
#include "opencv2/core/cuda/scan.hpp"
namespace cv { namespace gpu { namespace cudev
{
namespace imgproc
// kernels
template <typename T> __global__ void resize_nearest(const PtrStep<T> src, PtrStepSz<T> dst, const float fy, const float fx)
{
template <typename Ptr2D, typename T> __global__ void resize(const Ptr2D src, float fx, float fy, PtrStepSz<T> dst)
const int dst_x = blockDim.x * blockIdx.x + threadIdx.x;
const int dst_y = blockDim.y * blockIdx.y + threadIdx.y;
if (dst_x < dst.cols && dst_y < dst.rows)
{
const int x = blockDim.x * blockIdx.x + threadIdx.x;
const int y = blockDim.y * blockIdx.y + threadIdx.y;
const float src_x = dst_x * fx;
const float src_y = dst_y * fy;
if (x < dst.cols && y < dst.rows)
{
const float xcoo = x * fx;
const float ycoo = y * fy;
dst(y, x) = saturate_cast<T>(src(ycoo, xcoo));
}
dst(dst_y, dst_x) = src(__float2int_rz(src_y), __float2int_rz(src_x));
}
}
template <typename Ptr2D, typename T> __global__ void resize_area(const Ptr2D src, float fx, float fy, PtrStepSz<T> dst)
template <typename T> __global__ void resize_linear(const PtrStepSz<T> src, PtrStepSz<T> dst, const float fy, const float fx)
{
typedef typename TypeVec<float, VecTraits<T>::cn>::vec_type work_type;
const int dst_x = blockDim.x * blockIdx.x + threadIdx.x;
const int dst_y = blockDim.y * blockIdx.y + threadIdx.y;
if (dst_x < dst.cols && dst_y < dst.rows)
{
const int x = blockDim.x * blockIdx.x + threadIdx.x;
const int y = blockDim.y * blockIdx.y + threadIdx.y;
const float src_x = dst_x * fx;
const float src_y = dst_y * fy;
if (x < dst.cols && y < dst.rows)
{
dst(y, x) = saturate_cast<T>(src(y, x));
}
work_type out = VecTraits<work_type>::all(0);
const int x1 = __float2int_rd(src_x);
const int y1 = __float2int_rd(src_y);
const int x2 = x1 + 1;
const int y2 = y1 + 1;
const int x2_read = ::min(x2, src.cols - 1);
const int y2_read = ::min(y2, src.rows - 1);
T src_reg = src(y1, x1);
out = out + src_reg * ((x2 - src_x) * (y2 - src_y));
src_reg = src(y1, x2_read);
out = out + src_reg * ((src_x - x1) * (y2 - src_y));
src_reg = src(y2_read, x1);
out = out + src_reg * ((x2 - src_x) * (src_y - y1));
src_reg = src(y2_read, x2_read);
out = out + src_reg * ((src_x - x1) * (src_y - y1));
dst(dst_y, dst_x) = saturate_cast<T>(out);
}
}
template <template <typename> class Filter, typename T> struct ResizeDispatcherStream
template <class Ptr2D, typename T> __global__ void resize(const Ptr2D src, PtrStepSz<T> dst, const float fy, const float fx)
{
const int dst_x = blockDim.x * blockIdx.x + threadIdx.x;
const int dst_y = blockDim.y * blockIdx.y + threadIdx.y;
if (dst_x < dst.cols && dst_y < dst.rows)
{
static void call(PtrStepSz<T> src, float fx, float fy, PtrStepSz<T> dst, cudaStream_t stream)
{
dim3 block(32, 8);
dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y));
const float src_x = dst_x * fx;
const float src_y = dst_y * fy;
BrdReplicate<T> brd(src.rows, src.cols);
BorderReader< PtrStep<T>, BrdReplicate<T> > brdSrc(src, brd);
Filter< BorderReader< PtrStep<T>, BrdReplicate<T> > > filteredSrc(brdSrc, fx, fy);
dst(dst_y, dst_x) = src(src_y, src_x);
}
}
resize<<<grid, block, 0, stream>>>(filteredSrc, fx, fy, dst);
cudaSafeCall( cudaGetLastError() );
}
template <typename Ptr2D, typename T> __global__ void resize_area(const Ptr2D src, PtrStepSz<T> dst)
{
const int x = blockDim.x * blockIdx.x + threadIdx.x;
const int y = blockDim.y * blockIdx.y + threadIdx.y;
if (x < dst.cols && y < dst.rows)
{
dst(y, x) = src(y, x);
}
}
// textures
template <typename T> struct TextureAccessor;
#define OPENCV_GPU_IMPLEMENT_RESIZE_TEX(type) \
texture<type, cudaTextureType2D, cudaReadModeElementType> tex_resize_##type (0, cudaFilterModePoint, cudaAddressModeClamp); \
template <> struct TextureAccessor<type> \
{ \
typedef type elem_type; \
typedef int index_type; \
int xoff; \
int yoff; \
__device__ __forceinline__ elem_type operator ()(index_type y, index_type x) const \
{ \
return tex2D(tex_resize_##type, x + xoff, y + yoff); \
} \
__host__ static void bind(const PtrStepSz<type>& mat) \
{ \
bindTexture(&tex_resize_##type, mat); \
} \
};
template <typename T> struct ResizeDispatcherStream<AreaFilter, T>
{
static void call(PtrStepSz<T> src, float fx, float fy, PtrStepSz<T> dst, cudaStream_t stream)
{
dim3 block(32, 8);
dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y));
OPENCV_GPU_IMPLEMENT_RESIZE_TEX(uchar)
OPENCV_GPU_IMPLEMENT_RESIZE_TEX(uchar4)
BrdConstant<T> brd(src.rows, src.cols);
BorderReader< PtrStep<T>, BrdConstant<T> > brdSrc(src, brd);
AreaFilter< BorderReader< PtrStep<T>, BrdConstant<T> > > filteredSrc(brdSrc, fx, fy);
resize_area<<<grid, block, 0, stream>>>(filteredSrc, fx, fy, dst);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
OPENCV_GPU_IMPLEMENT_RESIZE_TEX(ushort)
OPENCV_GPU_IMPLEMENT_RESIZE_TEX(ushort4)
OPENCV_GPU_IMPLEMENT_RESIZE_TEX(short)
OPENCV_GPU_IMPLEMENT_RESIZE_TEX(short4)
OPENCV_GPU_IMPLEMENT_RESIZE_TEX(float)
OPENCV_GPU_IMPLEMENT_RESIZE_TEX(float4)
#undef OPENCV_GPU_IMPLEMENT_RESIZE_TEX
template <typename T>
TextureAccessor<T> texAccessor(const PtrStepSz<T>& mat, int yoff, int xoff)
{
TextureAccessor<T>::bind(mat);
TextureAccessor<T> t;
t.xoff = xoff;
t.yoff = yoff;
return t;
}
// callers for nearest interpolation
template <typename T>
void call_resize_nearest_glob(const PtrStepSz<T>& src, const PtrStepSz<T>& dst, float fy, float fx, cudaStream_t stream)
{
const dim3 block(32, 8);
const dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y));
resize_nearest<<<grid, block, 0, stream>>>(src, dst, fy, fx);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
template <typename T>
void call_resize_nearest_tex(const PtrStepSz<T>& src, const PtrStepSz<T>& srcWhole, int yoff, int xoff, const PtrStepSz<T>& dst, float fy, float fx)
{
const dim3 block(32, 8);
const dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y));
resize<<<grid, block>>>(texAccessor(srcWhole, yoff, xoff), dst, fy, fx);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
// callers for linear interpolation
template <typename T>
void call_resize_linear_glob(const PtrStepSz<T>& src, const PtrStepSz<T>& dst, float fy, float fx, cudaStream_t stream)
{
const dim3 block(32, 8);
const dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y));
resize_linear<<<grid, block>>>(src, dst, fy, fx);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
template <typename T>
void call_resize_linear_tex(const PtrStepSz<T>& src, const PtrStepSz<T>& srcWhole, int yoff, int xoff, const PtrStepSz<T>& dst, float fy, float fx)
{
const dim3 block(32, 8);
const dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y));
if (srcWhole.data == src.data)
{
TextureAccessor<T> texSrc = texAccessor(src, 0, 0);
LinearFilter< TextureAccessor<T> > filteredSrc(texSrc);
resize<<<grid, block>>>(filteredSrc, dst, fy, fx);
}
else
{
TextureAccessor<T> texSrc = texAccessor(srcWhole, yoff, xoff);
BrdReplicate<T> brd(src.rows, src.cols);
BorderReader<TextureAccessor<T>, BrdReplicate<T> > brdSrc(texSrc, brd);
LinearFilter< BorderReader<TextureAccessor<T>, BrdReplicate<T> > > filteredSrc(brdSrc);
resize<<<grid, block>>>(filteredSrc, dst, fy, fx);
}
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
// callers for cubic interpolation
template <typename T>
void call_resize_cubic_glob(const PtrStepSz<T>& src, const PtrStepSz<T>& dst, float fy, float fx, cudaStream_t stream)
{
const dim3 block(32, 8);
const dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y));
BrdReplicate<T> brd(src.rows, src.cols);
BorderReader< PtrStep<T>, BrdReplicate<T> > brdSrc(src, brd);
CubicFilter< BorderReader< PtrStep<T>, BrdReplicate<T> > > filteredSrc(brdSrc);
resize<<<grid, block, 0, stream>>>(filteredSrc, dst, fy, fx);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
template <typename T>
void call_resize_cubic_tex(const PtrStepSz<T>& src, const PtrStepSz<T>& srcWhole, int yoff, int xoff, const PtrStepSz<T>& dst, float fy, float fx)
{
const dim3 block(32, 8);
const dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y));
if (srcWhole.data == src.data)
{
TextureAccessor<T> texSrc = texAccessor(src, 0, 0);
CubicFilter< TextureAccessor<T> > filteredSrc(texSrc);
resize<<<grid, block>>>(filteredSrc, dst, fy, fx);
}
else
{
TextureAccessor<T> texSrc = texAccessor(srcWhole, yoff, xoff);
BrdReplicate<T> brd(src.rows, src.cols);
BorderReader<TextureAccessor<T>, BrdReplicate<T> > brdSrc(texSrc, brd);
CubicFilter< BorderReader<TextureAccessor<T>, BrdReplicate<T> > > filteredSrc(brdSrc);
resize<<<grid, block>>>(filteredSrc, dst, fy, fx);
}
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
// ResizeNearestDispatcher
template <typename T> struct ResizeNearestDispatcher
{
static void call(const PtrStepSz<T>& src, const PtrStepSz<T>& srcWhole, int yoff, int xoff, const PtrStepSz<T>& dst, float fy, float fx, cudaStream_t stream)
{
call_resize_nearest_glob(src, dst, fy, fx, stream);
}
};
template <typename T> struct SelectImplForNearest
{
static void call(const PtrStepSz<T>& src, const PtrStepSz<T>& srcWhole, int yoff, int xoff, const PtrStepSz<T>& dst, float fy, float fx, cudaStream_t stream)
{
if (stream)
call_resize_nearest_glob(src, dst, fy, fx, stream);
else
{
if (fx > 1 || fy > 1)
call_resize_nearest_glob(src, dst, fy, fx, 0);
else
call_resize_nearest_tex(src, srcWhole, yoff, xoff, dst, fy, fx);
}
};
}
};
template <typename T> struct ResizeDispatcherStream<IntegerAreaFilter, T>
template <> struct ResizeNearestDispatcher<uchar> : SelectImplForNearest<uchar> {};
template <> struct ResizeNearestDispatcher<uchar4> : SelectImplForNearest<uchar4> {};
template <> struct ResizeNearestDispatcher<ushort> : SelectImplForNearest<ushort> {};
template <> struct ResizeNearestDispatcher<ushort4> : SelectImplForNearest<ushort4> {};
template <> struct ResizeNearestDispatcher<short> : SelectImplForNearest<short> {};
template <> struct ResizeNearestDispatcher<short4> : SelectImplForNearest<short4> {};
template <> struct ResizeNearestDispatcher<float> : SelectImplForNearest<float> {};
template <> struct ResizeNearestDispatcher<float4> : SelectImplForNearest<float4> {};
// ResizeLinearDispatcher
template <typename T> struct ResizeLinearDispatcher
{
static void call(const PtrStepSz<T>& src, const PtrStepSz<T>& srcWhole, int yoff, int xoff, const PtrStepSz<T>& dst, float fy, float fx, cudaStream_t stream)
{
static void call(PtrStepSz<T> src, float fx, float fy, PtrStepSz<T> dst, cudaStream_t stream)
call_resize_linear_glob(src, dst, fy, fx, stream);
}
};
template <typename T> struct SelectImplForLinear
{
static void call(const PtrStepSz<T>& src, const PtrStepSz<T>& srcWhole, int yoff, int xoff, const PtrStepSz<T>& dst, float fy, float fx, cudaStream_t stream)
{
if (stream)
call_resize_linear_glob(src, dst, fy, fx, stream);
else
{
if (fx > 1 || fy > 1)
call_resize_linear_glob(src, dst, fy, fx, 0);
else
call_resize_linear_tex(src, srcWhole, yoff, xoff, dst, fy, fx);
}
}
};
template <> struct ResizeLinearDispatcher<uchar> : SelectImplForLinear<uchar> {};
template <> struct ResizeLinearDispatcher<uchar4> : SelectImplForLinear<uchar4> {};
template <> struct ResizeLinearDispatcher<ushort> : SelectImplForLinear<ushort> {};
template <> struct ResizeLinearDispatcher<ushort4> : SelectImplForLinear<ushort4> {};
template <> struct ResizeLinearDispatcher<short> : SelectImplForLinear<short> {};
template <> struct ResizeLinearDispatcher<short4> : SelectImplForLinear<short4> {};
template <> struct ResizeLinearDispatcher<float> : SelectImplForLinear<float> {};
template <> struct ResizeLinearDispatcher<float4> : SelectImplForLinear<float4> {};
// ResizeCubicDispatcher
template <typename T> struct ResizeCubicDispatcher
{
static void call(const PtrStepSz<T>& src, const PtrStepSz<T>& srcWhole, int yoff, int xoff, const PtrStepSz<T>& dst, float fy, float fx, cudaStream_t stream)
{
call_resize_cubic_glob(src, dst, fy, fx, stream);
}
};
template <typename T> struct SelectImplForCubic
{
static void call(const PtrStepSz<T>& src, const PtrStepSz<T>& srcWhole, int yoff, int xoff, const PtrStepSz<T>& dst, float fy, float fx, cudaStream_t stream)
{
if (stream)
call_resize_cubic_glob(src, dst, fy, fx, stream);
else
call_resize_cubic_tex(src, srcWhole, yoff, xoff, dst, fy, fx);
}
};
template <> struct ResizeCubicDispatcher<uchar> : SelectImplForCubic<uchar> {};
template <> struct ResizeCubicDispatcher<uchar4> : SelectImplForCubic<uchar4> {};
template <> struct ResizeCubicDispatcher<ushort> : SelectImplForCubic<ushort> {};
template <> struct ResizeCubicDispatcher<ushort4> : SelectImplForCubic<ushort4> {};
template <> struct ResizeCubicDispatcher<short> : SelectImplForCubic<short> {};
template <> struct ResizeCubicDispatcher<short4> : SelectImplForCubic<short4> {};
template <> struct ResizeCubicDispatcher<float> : SelectImplForCubic<float> {};
template <> struct ResizeCubicDispatcher<float4> : SelectImplForCubic<float4> {};
// ResizeAreaDispatcher
template <typename T> struct ResizeAreaDispatcher
{
static void call(const PtrStepSz<T>& src, const PtrStepSz<T>&, int, int, const PtrStepSz<T>& dst, float fy, float fx, cudaStream_t stream)
{
const int iscale_x = (int) round(fx);
const int iscale_y = (int) round(fy);
const dim3 block(32, 8);
const dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y));
if (std::abs(fx - iscale_x) < FLT_MIN && std::abs(fy - iscale_y) < FLT_MIN)
{
dim3 block(32, 8);
dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y));
BrdConstant<T> brd(src.rows, src.cols);
BorderReader< PtrStep<T>, BrdConstant<T> > brdSrc(src, brd);
IntegerAreaFilter< BorderReader< PtrStep<T>, BrdConstant<T> > > filteredSrc(brdSrc, fx, fy);
resize_area<<<grid, block, 0, stream>>>(filteredSrc, fx, fy, dst);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
resize_area<<<grid, block, 0, stream>>>(filteredSrc, dst);
}
};
template <template <typename> class Filter, typename T> struct ResizeDispatcherNonStream
{
static void call(PtrStepSz<T> src, PtrStepSz<T> srcWhole, int xoff, int yoff, float fx, float fy, PtrStepSz<T> dst)
else
{
(void)srcWhole;
(void)xoff;
(void)yoff;
BrdConstant<T> brd(src.rows, src.cols);
BorderReader< PtrStep<T>, BrdConstant<T> > brdSrc(src, brd);
AreaFilter< BorderReader< PtrStep<T>, BrdConstant<T> > > filteredSrc(brdSrc, fx, fy);
dim3 block(32, 8);
dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y));
resize_area<<<grid, block, 0, stream>>>(filteredSrc, dst);
}
BrdReplicate<T> brd(src.rows, src.cols);
BorderReader< PtrStep<T>, BrdReplicate<T> > brdSrc(src, brd);
Filter< BorderReader< PtrStep<T>, BrdReplicate<T> > > filteredSrc(brdSrc);
resize<<<grid, block>>>(filteredSrc, fx, fy, dst);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
};
#define OPENCV_GPU_IMPLEMENT_RESIZE_TEX(type) \
texture< type , cudaTextureType2D> tex_resize_ ## type (0, cudaFilterModePoint, cudaAddressModeClamp); \
struct tex_resize_ ## type ## _reader \
{ \
typedef type elem_type; \
typedef int index_type; \
const int xoff; \
const int yoff; \
__host__ tex_resize_ ## type ## _reader(int xoff_, int yoff_) : xoff(xoff_), yoff(yoff_) {} \
__device__ __forceinline__ elem_type operator ()(index_type y, index_type x) const \
{ \
return tex2D(tex_resize_ ## type, x + xoff, y + yoff); \
} \
}; \
template <template <typename> class Filter> struct ResizeDispatcherNonStream<Filter, type > \
{ \
static void call(PtrStepSz< type > src, PtrStepSz< type > srcWhole, int xoff, int yoff, float fx, float fy, PtrStepSz< type > dst) \
{ \
dim3 block(32, 8); \
dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y)); \
bindTexture(&tex_resize_ ## type, srcWhole); \
tex_resize_ ## type ## _reader texSrc(xoff, yoff); \
if (srcWhole.cols == src.cols && srcWhole.rows == src.rows) \
{ \
Filter<tex_resize_ ## type ## _reader> filteredSrc(texSrc); \
resize<<<grid, block>>>(filteredSrc, fx, fy, dst); \
} \
else \
{ \
BrdReplicate< type > brd(src.rows, src.cols); \
BorderReader<tex_resize_ ## type ## _reader, BrdReplicate< type > > brdSrc(texSrc, brd); \
Filter< BorderReader<tex_resize_ ## type ## _reader, BrdReplicate< type > > > filteredSrc(brdSrc); \
resize<<<grid, block>>>(filteredSrc, fx, fy, dst); \
} \
cudaSafeCall( cudaGetLastError() ); \
cudaSafeCall( cudaDeviceSynchronize() ); \
} \
};
OPENCV_GPU_IMPLEMENT_RESIZE_TEX(uchar)
OPENCV_GPU_IMPLEMENT_RESIZE_TEX(uchar4)
//OPENCV_GPU_IMPLEMENT_RESIZE_TEX(schar)
//OPENCV_GPU_IMPLEMENT_RESIZE_TEX(char4)
OPENCV_GPU_IMPLEMENT_RESIZE_TEX(ushort)
OPENCV_GPU_IMPLEMENT_RESIZE_TEX(ushort4)
OPENCV_GPU_IMPLEMENT_RESIZE_TEX(short)
OPENCV_GPU_IMPLEMENT_RESIZE_TEX(short4)
//OPENCV_GPU_IMPLEMENT_RESIZE_TEX(int)
//OPENCV_GPU_IMPLEMENT_RESIZE_TEX(int4)
OPENCV_GPU_IMPLEMENT_RESIZE_TEX(float)
OPENCV_GPU_IMPLEMENT_RESIZE_TEX(float4)
#undef OPENCV_GPU_IMPLEMENT_RESIZE_TEX
template <template <typename> class Filter, typename T> struct ResizeDispatcher
{
static void call(PtrStepSz<T> src, PtrStepSz<T> srcWhole, int xoff, int yoff, float fx, float fy, PtrStepSz<T> dst, cudaStream_t stream)
{
if (stream == 0)
ResizeDispatcherNonStream<Filter, T>::call(src, srcWhole, xoff, yoff, fx, fy, dst);
else
ResizeDispatcherStream<Filter, T>::call(src, fx, fy, dst, stream);
}
};
template <typename T> struct ResizeDispatcher<AreaFilter, T>
{
static void call(PtrStepSz<T> src, PtrStepSz<T> srcWhole, int xoff, int yoff, float fx, float fy, PtrStepSz<T> dst, cudaStream_t stream)
{
(void)srcWhole;
(void)xoff;
(void)yoff;
int iscale_x = (int)round(fx);
int iscale_y = (int)round(fy);
if( std::abs(fx - iscale_x) < FLT_MIN && std::abs(fy - iscale_y) < FLT_MIN)
ResizeDispatcherStream<IntegerAreaFilter, T>::call(src, fx, fy, dst, stream);
else
ResizeDispatcherStream<AreaFilter, T>::call(src, fx, fy, dst, stream);
}
};
template <typename T> void resize_gpu(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float fx, float fy,
PtrStepSzb dst, int interpolation, cudaStream_t stream)
{
typedef void (*caller_t)(PtrStepSz<T> src, PtrStepSz<T> srcWhole, int xoff, int yoff, float fx, float fy, PtrStepSz<T> dst, cudaStream_t stream);
static const caller_t callers[4] =
{
ResizeDispatcher<PointFilter, T>::call,
ResizeDispatcher<LinearFilter, T>::call,
ResizeDispatcher<CubicFilter, T>::call,
ResizeDispatcher<AreaFilter, T>::call
};
// chenge to linear if area interpolation upscaling
if (interpolation == 3 && (fx <= 1.f || fy <= 1.f))
interpolation = 1;
callers[interpolation](static_cast< PtrStepSz<T> >(src), static_cast< PtrStepSz<T> >(srcWhole), xoff, yoff, fx, fy,
static_cast< PtrStepSz<T> >(dst), stream);
}
};
template void resize_gpu<uchar >(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float fx, float fy, PtrStepSzb dst, int interpolation, cudaStream_t stream);
//template void resize_gpu<uchar2>(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float fx, float fy, PtrStepSzb dst, int interpolation, cudaStream_t stream);
template void resize_gpu<uchar3>(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float fx, float fy, PtrStepSzb dst, int interpolation, cudaStream_t stream);
template void resize_gpu<uchar4>(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float fx, float fy, PtrStepSzb dst, int interpolation, cudaStream_t stream);
// resize
//template void resize_gpu<schar>(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float fx, float fy, PtrStepSzb dst, int interpolation, cudaStream_t stream);
//template void resize_gpu<char2>(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float fx, float fy, PtrStepSzb dst, int interpolation, cudaStream_t stream);
//template void resize_gpu<char3>(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float fx, float fy, PtrStepSzb dst, int interpolation, cudaStream_t stream);
//template void resize_gpu<char4>(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float fx, float fy, PtrStepSzb dst, int interpolation, cudaStream_t stream);
template void resize_gpu<ushort >(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float fx, float fy, PtrStepSzb dst, int interpolation, cudaStream_t stream);
//template void resize_gpu<ushort2>(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float fx, float fy, PtrStepSzb dst, int interpolation, cudaStream_t stream);
template void resize_gpu<ushort3>(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float fx, float fy, PtrStepSzb dst, int interpolation, cudaStream_t stream);
template void resize_gpu<ushort4>(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float fx, float fy, PtrStepSzb dst, int interpolation, cudaStream_t stream);
template void resize_gpu<short >(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float fx, float fy, PtrStepSzb dst, int interpolation, cudaStream_t stream);
//template void resize_gpu<short2>(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float fx, float fy, PtrStepSzb dst, int interpolation, cudaStream_t stream);
template void resize_gpu<short3>(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float fx, float fy, PtrStepSzb dst, int interpolation, cudaStream_t stream);
template void resize_gpu<short4>(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float fx, float fy, PtrStepSzb dst, int interpolation, cudaStream_t stream);
//template void resize_gpu<int >(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float fx, float fy, PtrStepSzb dst, int interpolation, cudaStream_t stream);
//template void resize_gpu<int2>(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float fx, float fy, PtrStepSzb dst, int interpolation, cudaStream_t stream);
//template void resize_gpu<int3>(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float fx, float fy, PtrStepSzb dst, int interpolation, cudaStream_t stream);
//template void resize_gpu<int4>(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float fx, float fy, PtrStepSzb dst, int interpolation, cudaStream_t stream);
template void resize_gpu<float >(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float fx, float fy, PtrStepSzb dst, int interpolation, cudaStream_t stream);
//template void resize_gpu<float2>(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float fx, float fy, PtrStepSzb dst, int interpolation, cudaStream_t stream);
template void resize_gpu<float3>(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float fx, float fy, PtrStepSzb dst, int interpolation, cudaStream_t stream);
template void resize_gpu<float4>(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float fx, float fy, PtrStepSzb dst, int interpolation, cudaStream_t stream);
template<typename T> struct scan_traits{};
template<> struct scan_traits<uchar>
template <typename T> void resize(const PtrStepSzb& src, const PtrStepSzb& srcWhole, int yoff, int xoff, const PtrStepSzb& dst, float fy, float fx, int interpolation, cudaStream_t stream)
{
typedef void (*func_t)(const PtrStepSz<T>& src, const PtrStepSz<T>& srcWhole, int yoff, int xoff, const PtrStepSz<T>& dst, float fy, float fx, cudaStream_t stream);
static const func_t funcs[4] =
{
typedef float scan_line_type;
ResizeNearestDispatcher<T>::call,
ResizeLinearDispatcher<T>::call,
ResizeCubicDispatcher<T>::call,
ResizeAreaDispatcher<T>::call
};
} // namespace imgproc
}}} // namespace cv { namespace gpu { namespace cudev
// change to linear if area interpolation upscaling
if (interpolation == 3 && (fx <= 1.f || fy <= 1.f))
interpolation = 1;
funcs[interpolation](static_cast< PtrStepSz<T> >(src), static_cast< PtrStepSz<T> >(srcWhole), yoff, xoff, static_cast< PtrStepSz<T> >(dst), fy, fx, stream);
}
template void resize<uchar >(const PtrStepSzb& src, const PtrStepSzb& srcWhole, int yoff, int xoff, const PtrStepSzb& dst, float fy, float fx, int interpolation, cudaStream_t stream);
template void resize<uchar3>(const PtrStepSzb& src, const PtrStepSzb& srcWhole, int yoff, int xoff, const PtrStepSzb& dst, float fy, float fx, int interpolation, cudaStream_t stream);
template void resize<uchar4>(const PtrStepSzb& src, const PtrStepSzb& srcWhole, int yoff, int xoff, const PtrStepSzb& dst, float fy, float fx, int interpolation, cudaStream_t stream);
template void resize<ushort >(const PtrStepSzb& src, const PtrStepSzb& srcWhole, int yoff, int xoff, const PtrStepSzb& dst, float fy, float fx, int interpolation, cudaStream_t stream);
template void resize<ushort3>(const PtrStepSzb& src, const PtrStepSzb& srcWhole, int yoff, int xoff, const PtrStepSzb& dst, float fy, float fx, int interpolation, cudaStream_t stream);
template void resize<ushort4>(const PtrStepSzb& src, const PtrStepSzb& srcWhole, int yoff, int xoff, const PtrStepSzb& dst, float fy, float fx, int interpolation, cudaStream_t stream);
template void resize<short >(const PtrStepSzb& src, const PtrStepSzb& srcWhole, int yoff, int xoff, const PtrStepSzb& dst, float fy, float fx, int interpolation, cudaStream_t stream);
template void resize<short3>(const PtrStepSzb& src, const PtrStepSzb& srcWhole, int yoff, int xoff, const PtrStepSzb& dst, float fy, float fx, int interpolation, cudaStream_t stream);
template void resize<short4>(const PtrStepSzb& src, const PtrStepSzb& srcWhole, int yoff, int xoff, const PtrStepSzb& dst, float fy, float fx, int interpolation, cudaStream_t stream);
template void resize<float >(const PtrStepSzb& src, const PtrStepSzb& srcWhole, int yoff, int xoff, const PtrStepSzb& dst, float fy, float fx, int interpolation, cudaStream_t stream);
template void resize<float3>(const PtrStepSzb& src, const PtrStepSzb& srcWhole, int yoff, int xoff, const PtrStepSzb& dst, float fy, float fx, int interpolation, cudaStream_t stream);
template void resize<float4>(const PtrStepSzb& src, const PtrStepSzb& srcWhole, int yoff, int xoff, const PtrStepSzb& dst, float fy, float fx, int interpolation, cudaStream_t stream);
}}}
#endif /* CUDA_DISABLER */

View File

@ -50,18 +50,25 @@ void cv::gpu::resize(InputArray, OutputArray, Size, double, double, int, Stream&
namespace cv { namespace gpu { namespace cudev
{
namespace imgproc
{
template <typename T>
void resize_gpu(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float fx, float fy,
PtrStepSzb dst, int interpolation, cudaStream_t stream);
}
template <typename T>
void resize(const PtrStepSzb& src, const PtrStepSzb& srcWhole, int yoff, int xoff, const PtrStepSzb& dst, float fy, float fx, int interpolation, cudaStream_t stream);
}}}
void cv::gpu::resize(InputArray _src, OutputArray _dst, Size dsize, double fx, double fy, int interpolation, Stream& _stream)
void cv::gpu::resize(InputArray _src, OutputArray _dst, Size dsize, double fx, double fy, int interpolation, Stream& stream)
{
GpuMat src = _src.getGpuMat();
typedef void (*func_t)(const PtrStepSzb& src, const PtrStepSzb& srcWhole, int yoff, int xoff, const PtrStepSzb& dst, float fy, float fx, int interpolation, cudaStream_t stream);
static const func_t funcs[6][4] =
{
{cudev::resize<uchar> , 0 /*cudev::resize<uchar2>*/ , cudev::resize<uchar3> , cudev::resize<uchar4> },
{0 /*cudev::resize<schar>*/, 0 /*cudev::resize<char2>*/ , 0 /*cudev::resize<char3>*/, 0 /*cudev::resize<char4>*/},
{cudev::resize<ushort> , 0 /*cudev::resize<ushort2>*/, cudev::resize<ushort3> , cudev::resize<ushort4> },
{cudev::resize<short> , 0 /*cudev::resize<short2>*/ , cudev::resize<short3> , cudev::resize<short4> },
{0 /*cudev::resize<int>*/ , 0 /*cudev::resize<int2>*/ , 0 /*cudev::resize<int3>*/ , 0 /*cudev::resize<int4>*/ },
{cudev::resize<float> , 0 /*cudev::resize<float2>*/ , cudev::resize<float3> , cudev::resize<float4> }
};
CV_Assert( src.depth() <= CV_32F && src.channels() <= 4 );
CV_Assert( interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC || interpolation == INTER_AREA );
CV_Assert( !(dsize == Size()) || (fx > 0 && fy > 0) );
@ -81,72 +88,21 @@ void cv::gpu::resize(InputArray _src, OutputArray _dst, Size dsize, double fx, d
if (dsize == src.size())
{
src.copyTo(dst, _stream);
src.copyTo(dst, stream);
return;
}
cudaStream_t stream = StreamAccessor::getStream(_stream);
const func_t func = funcs[src.depth()][src.channels() - 1];
if (!func)
CV_Error(Error::StsUnsupportedFormat, "Unsupported combination of source and destination types");
Size wholeSize;
Point ofs;
src.locateROI(wholeSize, ofs);
PtrStepSzb wholeSrc(wholeSize.height, wholeSize.width, src.datastart, src.step);
bool useNpp = (src.type() == CV_8UC1 || src.type() == CV_8UC4);
useNpp = useNpp && (interpolation == INTER_NEAREST || interpolation == INTER_LINEAR);
if (useNpp)
{
typedef NppStatus (*func_t)(const Npp8u * pSrc, NppiSize oSrcSize, int nSrcStep, NppiRect oSrcROI, Npp8u * pDst, int nDstStep, NppiSize dstROISize,
double xFactor, double yFactor, int eInterpolation);
const func_t funcs[4] = { nppiResize_8u_C1R, 0, 0, nppiResize_8u_C4R };
static const int npp_inter[] = {NPPI_INTER_NN, NPPI_INTER_LINEAR, NPPI_INTER_CUBIC, 0, NPPI_INTER_LANCZOS};
NppiSize srcsz;
srcsz.width = wholeSize.width;
srcsz.height = wholeSize.height;
NppiRect srcrect;
srcrect.x = ofs.x;
srcrect.y = ofs.y;
srcrect.width = src.cols;
srcrect.height = src.rows;
NppiSize dstsz;
dstsz.width = dst.cols;
dstsz.height = dst.rows;
NppStreamHandler h(stream);
nppSafeCall( funcs[src.channels() - 1](src.datastart, srcsz, static_cast<int>(src.step), srcrect,
dst.ptr<Npp8u>(), static_cast<int>(dst.step), dstsz, fx, fy, npp_inter[interpolation]) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
else
{
using namespace ::cv::gpu::cudev::imgproc;
typedef void (*func_t)(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float fx, float fy, PtrStepSzb dst, int interpolation, cudaStream_t stream);
static const func_t funcs[6][4] =
{
{resize_gpu<uchar> , 0 /*resize_gpu<uchar2>*/ , resize_gpu<uchar3> , resize_gpu<uchar4> },
{0 /*resize_gpu<schar>*/, 0 /*resize_gpu<char2>*/ , 0 /*resize_gpu<char3>*/, 0 /*resize_gpu<char4>*/},
{resize_gpu<ushort> , 0 /*resize_gpu<ushort2>*/, resize_gpu<ushort3> , resize_gpu<ushort4> },
{resize_gpu<short> , 0 /*resize_gpu<short2>*/ , resize_gpu<short3> , resize_gpu<short4> },
{0 /*resize_gpu<int>*/ , 0 /*resize_gpu<int2>*/ , 0 /*resize_gpu<int3>*/ , 0 /*resize_gpu<int4>*/ },
{resize_gpu<float> , 0 /*resize_gpu<float2>*/ , resize_gpu<float3> , resize_gpu<float4> }
};
const func_t func = funcs[src.depth()][src.channels() - 1];
CV_Assert(func != 0);
func(src, PtrStepSzb(wholeSize.height, wholeSize.width, src.datastart, src.step), ofs.x, ofs.y,
static_cast<float>(1.0 / fx), static_cast<float>(1.0 / fy), dst, interpolation, stream);
}
func(src, wholeSrc, ofs.y, ofs.x, dst, static_cast<float>(1.0 / fy), static_cast<float>(1.0 / fx), interpolation, StreamAccessor::getStream(stream));
}
#endif // HAVE_CUDA

View File

@ -155,7 +155,7 @@ GPU_TEST_P(Resize, Accuracy)
INSTANTIATE_TEST_CASE_P(GPU_Warping, Resize, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Values(MatType(CV_8UC3), MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4), MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)),
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4), MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)),
testing::Values(0.3, 0.5, 1.5, 2.0),
testing::Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC)),
WHOLE_SUBMAT));
@ -201,50 +201,9 @@ GPU_TEST_P(ResizeSameAsHost, Accuracy)
INSTANTIATE_TEST_CASE_P(GPU_Warping, ResizeSameAsHost, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Values(MatType(CV_8UC3), MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4), MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)),
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4), MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)),
testing::Values(0.3, 0.5),
testing::Values(Interpolation(cv::INTER_AREA), Interpolation(cv::INTER_NEAREST)), //, Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC)
testing::Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_AREA)),
WHOLE_SUBMAT));
///////////////////////////////////////////////////////////////////
// Test NPP
PARAM_TEST_CASE(ResizeNPP, cv::gpu::DeviceInfo, MatType, double, Interpolation)
{
cv::gpu::DeviceInfo devInfo;
double coeff;
int interpolation;
int type;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
type = GET_PARAM(1);
coeff = GET_PARAM(2);
interpolation = GET_PARAM(3);
cv::gpu::setDevice(devInfo.deviceID());
}
};
GPU_TEST_P(ResizeNPP, Accuracy)
{
cv::Mat src = readImageType("stereobp/aloe-L.png", type);
ASSERT_FALSE(src.empty());
cv::gpu::GpuMat dst;
cv::gpu::resize(loadMat(src), dst, cv::Size(), coeff, coeff, interpolation);
cv::Mat dst_gold;
resizeGold(src, dst_gold, coeff, coeff, interpolation);
EXPECT_MAT_SIMILAR(dst_gold, dst, 1e-1);
}
INSTANTIATE_TEST_CASE_P(GPU_Warping, ResizeNPP, testing::Combine(
ALL_DEVICES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4)),
testing::Values(0.3, 0.5, 1.5, 2.0),
testing::Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR))));
#endif // HAVE_CUDA

View File

@ -171,7 +171,9 @@ bool PngDecoder::readHeader()
if( !m_buf.empty() || m_f )
{
png_uint_32 wdth, hght;
int bit_depth, color_type;
int bit_depth, color_type, num_trans=0;
png_bytep trans;
png_color_16p trans_values;
png_read_info( png_ptr, info_ptr );
@ -187,15 +189,22 @@ bool PngDecoder::readHeader()
{
switch(color_type)
{
case PNG_COLOR_TYPE_RGB:
case PNG_COLOR_TYPE_PALETTE:
m_type = CV_8UC3;
break;
case PNG_COLOR_TYPE_RGB_ALPHA:
m_type = CV_8UC4;
break;
default:
m_type = CV_8UC1;
case PNG_COLOR_TYPE_RGB:
m_type = CV_8UC3;
break;
case PNG_COLOR_TYPE_PALETTE:
png_get_tRNS( png_ptr, info_ptr, &trans, &num_trans, &trans_values);
//Check if there is a transparency value in the palette
if ( num_trans > 0 )
m_type = CV_8UC4;
else
m_type = CV_8UC3;
break;
case PNG_COLOR_TYPE_RGB_ALPHA:
m_type = CV_8UC4;
break;
default:
m_type = CV_8UC1;
}
if( bit_depth == 16 )
m_type = CV_MAKETYPE(CV_16U, CV_MAT_CN(m_type));

View File

@ -284,6 +284,98 @@ TEST(Highgui_ImreadVSCvtColor, regression)
EXPECT_LT(actual_avg_diff, MAX_MEAN_DIFF);
EXPECT_LT(actual_maxval, MAX_ABS_DIFF);
}
//Test OpenCV issue 3075 is solved
class CV_GrfmtReadPNGColorPaletteWithAlphaTest : public cvtest::BaseTest
{
public:
void run(int)
{
try
{
// First Test : Read PNG with alpha, imread flag -1
Mat img = imread(string(ts->get_data_path()) + "readwrite/color_palette_alpha.png",-1);
if (img.empty()) ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
ASSERT_TRUE(img.channels() == 4);
unsigned char* img_data = (unsigned char*)img.data;
// Verification first pixel is red in BGRA
ASSERT_TRUE(img_data[0] == 0x00);
ASSERT_TRUE(img_data[1] == 0x00);
ASSERT_TRUE(img_data[2] == 0xFF);
ASSERT_TRUE(img_data[3] == 0xFF);
// Verification second pixel is red in BGRA
ASSERT_TRUE(img_data[4] == 0x00);
ASSERT_TRUE(img_data[5] == 0x00);
ASSERT_TRUE(img_data[6] == 0xFF);
ASSERT_TRUE(img_data[7] == 0xFF);
// Second Test : Read PNG without alpha, imread flag -1
img = imread(string(ts->get_data_path()) + "readwrite/color_palette_no_alpha.png",-1);
if (img.empty()) ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
ASSERT_TRUE(img.channels() == 3);
img_data = (unsigned char*)img.data;
// Verification first pixel is red in BGR
ASSERT_TRUE(img_data[0] == 0x00);
ASSERT_TRUE(img_data[1] == 0x00);
ASSERT_TRUE(img_data[2] == 0xFF);
// Verification second pixel is red in BGR
ASSERT_TRUE(img_data[3] == 0x00);
ASSERT_TRUE(img_data[4] == 0x00);
ASSERT_TRUE(img_data[5] == 0xFF);
// Third Test : Read PNG with alpha, imread flag 1
img = imread(string(ts->get_data_path()) + "readwrite/color_palette_alpha.png",1);
if (img.empty()) ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
ASSERT_TRUE(img.channels() == 3);
img_data = (unsigned char*)img.data;
// Verification first pixel is red in BGR
ASSERT_TRUE(img_data[0] == 0x00);
ASSERT_TRUE(img_data[1] == 0x00);
ASSERT_TRUE(img_data[2] == 0xFF);
// Verification second pixel is red in BGR
ASSERT_TRUE(img_data[3] == 0x00);
ASSERT_TRUE(img_data[4] == 0x00);
ASSERT_TRUE(img_data[5] == 0xFF);
// Fourth Test : Read PNG without alpha, imread flag 1
img = imread(string(ts->get_data_path()) + "readwrite/color_palette_no_alpha.png",1);
if (img.empty()) ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
ASSERT_TRUE(img.channels() == 3);
img_data = (unsigned char*)img.data;
// Verification first pixel is red in BGR
ASSERT_TRUE(img_data[0] == 0x00);
ASSERT_TRUE(img_data[1] == 0x00);
ASSERT_TRUE(img_data[2] == 0xFF);
// Verification second pixel is red in BGR
ASSERT_TRUE(img_data[3] == 0x00);
ASSERT_TRUE(img_data[4] == 0x00);
ASSERT_TRUE(img_data[5] == 0xFF);
}
catch(...)
{
ts->set_failed_test_info(cvtest::TS::FAIL_EXCEPTION);
}
ts->set_failed_test_info(cvtest::TS::OK);
}
};
TEST(Highgui_Image, read_png_color_palette_with_alpha) { CV_GrfmtReadPNGColorPaletteWithAlphaTest test; test.safe_run(); }
#endif
#ifdef HAVE_JPEG

View File

@ -42,131 +42,54 @@
#include "perf_precomp.hpp"
static int cvErrorCallback(int /*status*/, const char * /*func_name*/,
const char *err_msg, const char * /*file_name*/,
int /*line*/, void * /*userdata*/)
const char * impls[] =
{
TestSystem::instance().printError(err_msg);
return 0;
}
IMPL_OCL,
IMPL_PLAIN,
#ifdef HAVE_OPENCV_GPU
IMPL_GPU
#endif
};
int main(int argc, const char *argv[])
int main(int argc, char ** argv)
{
const char *keys =
"{ h help | false | print help message }"
"{ f filter | | filter for test }"
"{ w workdir | | set working directory }"
"{ l list | false | show all tests }"
"{ d device | 0 | device id }"
"{ c cpu_ocl | false | use cpu as ocl device}"
"{ i iters | 10 | iteration count }"
"{ m warmup | 1 | gpu warm up iteration count}"
"{ t xtop | 1.1 | xfactor top boundary}"
"{ b xbottom | 0.9 | xfactor bottom boundary}"
"{ v verify | false | only run gpu once to verify if problems occur}";
const char * keys =
"{ h help | false | print help message }"
"{ t type | gpu | set device type:cpu or gpu}"
"{ p platform | 0 | set platform id }"
"{ d device | 0 | set device id }";
redirectError(cvErrorCallback);
CommandLineParser cmd(argc, argv, keys);
if (cmd.has("help"))
{
cout << "Avaible options:" << endl;
cout << "Available options besides google test option:" << endl;
cmd.printMessage();
return 0;
}
// get ocl devices
bool use_cpu = cmd.get<bool>("c");
vector<ocl::Info> oclinfo;
int num_devices = 0;
if(use_cpu)
num_devices = getDevice(oclinfo, ocl::CVCL_DEVICE_TYPE_CPU);
else
num_devices = getDevice(oclinfo);
if (num_devices < 1)
{
cerr << "no device found\n";
return -1;
}
// show device info
int devidx = 0;
for (size_t i = 0; i < oclinfo.size(); i++)
{
for (size_t j = 0; j < oclinfo[i].DeviceName.size(); j++)
{
cout << "device " << devidx++ << ": " << oclinfo[i].DeviceName[j] << endl;
}
}
string type = cmd.get<string>("type");
unsigned int pid = cmd.get<unsigned int>("platform");
int device = cmd.get<int>("device");
if (device < 0 || device >= num_devices)
int flag = type == "cpu" ? cv::ocl::CVCL_DEVICE_TYPE_CPU :
cv::ocl::CVCL_DEVICE_TYPE_GPU;
std::vector<cv::ocl::Info> oclinfo;
int devnums = cv::ocl::getDevice(oclinfo, flag);
if (devnums <= device || device < 0)
{
cerr << "Invalid device ID" << endl;
std::cout << "device invalid\n";
return -1;
}
// set this to overwrite binary cache every time the test starts
ocl::setBinaryDiskCache(ocl::CACHE_UPDATE);
if (cmd.get<bool>("verify"))
if (pid >= oclinfo.size())
{
TestSystem::instance().setNumIters(1);
TestSystem::instance().setGPUWarmupIters(0);
TestSystem::instance().setCPUIters(0);
std::cout << "platform invalid\n";
return -1;
}
devidx = 0;
for (size_t i = 0; i < oclinfo.size(); i++)
{
for (size_t j = 0; j < oclinfo[i].DeviceName.size(); j++, devidx++)
{
if (device == devidx)
{
ocl::setDevice(oclinfo[i], (int)j);
TestSystem::instance().setRecordName(oclinfo[i].DeviceName[j]);
cout << "use " << devidx << ": " <<oclinfo[i].DeviceName[j] << endl;
goto END_DEV;
}
}
}
cv::ocl::setDevice(oclinfo[pid], device);
cv::ocl::setBinaryDiskCache(cv::ocl::CACHE_UPDATE);
END_DEV:
string filter = cmd.get<string>("filter");
string workdir = cmd.get<string>("workdir");
bool list = cmd.has("list");
int iters = cmd.get<int>("iters");
int wu_iters = cmd.get<int>("warmup");
double x_top = cmd.get<double>("xtop");
double x_bottom = cmd.get<double>("xbottom");
TestSystem::instance().setTopThreshold(x_top);
TestSystem::instance().setBottomThreshold(x_bottom);
if (!filter.empty())
{
TestSystem::instance().setTestFilter(filter);
}
if (!workdir.empty())
{
if (workdir[workdir.size() - 1] != '/' && workdir[workdir.size() - 1] != '\\')
{
workdir += '/';
}
TestSystem::instance().setWorkingDir(workdir);
}
if (list)
{
TestSystem::instance().setListMode(true);
}
TestSystem::instance().setNumIters(iters);
TestSystem::instance().setGPUWarmupIters(wu_iters);
TestSystem::instance().run();
return 0;
CV_PERF_TEST_MAIN_INTERNALS(ocl, impls)
}

File diff suppressed because it is too large Load Diff

View File

@ -45,9 +45,15 @@
//M*/
#include "perf_precomp.hpp"
using namespace perf;
///////////// blend ////////////////////////
template <typename T>
void blendLinearGold(const cv::Mat &img1, const cv::Mat &img2, const cv::Mat &weights1, const cv::Mat &weights2, cv::Mat &result_gold)
static void blendLinearGold(const cv::Mat &img1, const cv::Mat &img2,
const cv::Mat &weights1, const cv::Mat &weights2,
cv::Mat &result_gold)
{
result_gold.create(img1.size(), img1.type());
@ -63,60 +69,46 @@ void blendLinearGold(const cv::Mat &img1, const cv::Mat &img2, const cv::Mat &we
for (int x = 0; x < img1.cols * cn; ++x)
{
float w1 = weights1_row[x / cn];
float w2 = weights2_row[x / cn];
result_gold_row[x] = static_cast<T>((img1_row[x] * w1 + img2_row[x] * w2) / (w1 + w2 + 1e-5f));
int x1 = x * cn;
float w1 = weights1_row[x];
float w2 = weights2_row[x];
result_gold_row[x] = static_cast<T>((img1_row[x1] * w1
+ img2_row[x1] * w2) / (w1 + w2 + 1e-5f));
}
}
}
PERFTEST(blend)
typedef TestBaseWithParam<Size> blendLinearFixture;
PERF_TEST_P(blendLinearFixture, blendLinear, OCL_TYPICAL_MAT_SIZES)
{
Mat src1, src2, weights1, weights2, dst, ocl_dst;
ocl::oclMat d_src1, d_src2, d_weights1, d_weights2, d_dst;
const Size srcSize = GetParam();
const int type = CV_8UC1;
int all_type[] = {CV_8UC1, CV_8UC4};
std::string type_name[] = {"CV_8UC1", "CV_8UC4"};
Mat src1(srcSize, type), src2(srcSize, CV_8UC1), dst;
Mat weights1(srcSize, CV_32FC1), weights2(srcSize, CV_32FC1);
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
declare.in(src1, src2, WARMUP_RNG);
randu(weights1, 0.0f, 1.0f);
randu(weights2, 0.0f, 1.0f);
if (RUN_OCL_IMPL)
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j] << " and CV_32FC1";
ocl::oclMat oclSrc1(src1), oclSrc2(src2), oclDst;
ocl::oclMat oclWeights1(weights1), oclWeights2(weights2);
gen(src1, size, size, all_type[j], 0, 256);
gen(src2, size, size, all_type[j], 0, 256);
gen(weights1, size, size, CV_32FC1, 0, 1);
gen(weights2, size, size, CV_32FC1, 0, 1);
TEST_CYCLE() cv::ocl::blendLinear(oclSrc1, oclSrc2, oclWeights1, oclWeights2, oclDst);
blendLinearGold<uchar>(src1, src2, weights1, weights2, dst);
oclDst.download(dst);
CPU_ON;
blendLinearGold<uchar>(src1, src2, weights1, weights2, dst);
CPU_OFF;
d_src1.upload(src1);
d_src2.upload(src2);
d_weights1.upload(weights1);
d_weights2.upload(weights2);
WARMUP_ON;
ocl::blendLinear(d_src1, d_src2, d_weights1, d_weights2, d_dst);
WARMUP_OFF;
GPU_ON;
ocl::blendLinear(d_src1, d_src2, d_weights1, d_weights2, d_dst);
GPU_OFF;
GPU_FULL_ON;
d_src1.upload(src1);
d_src2.upload(src2);
d_weights1.upload(weights1);
d_weights2.upload(weights2);
ocl::blendLinear(d_src1, d_src2, d_weights1, d_weights2, d_dst);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
TestSystem::instance().ExpectedMatNear(dst, ocl_dst, 1.f);
}
SANITY_CHECK(dst);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() blendLinearGold<uchar>(src1, src2, weights1, weights2, dst);
SANITY_CHECK(dst);
}
else
OCL_PERF_ELSE
}

View File

@ -45,123 +45,119 @@
//M*/
#include "perf_precomp.hpp"
using namespace perf;
#define OCL_BFMATCHER_TYPICAL_MAT_SIZES ::testing::Values(cv::Size(128, 500), cv::Size(128, 1000), cv::Size(128, 2000))
//////////////////// BruteForceMatch /////////////////
PERFTEST(BruteForceMatcher)
typedef TestBaseWithParam<Size> BruteForceMatcherFixture;
PERF_TEST_P(BruteForceMatcherFixture, DISABLED_match,
OCL_BFMATCHER_TYPICAL_MAT_SIZES) // TODO too big difference between implementations
{
Mat trainIdx_cpu;
Mat distance_cpu;
Mat allDist_cpu;
Mat nMatches_cpu;
const Size srcSize = GetParam();
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
vector<DMatch> matches;
Mat query(srcSize, CV_32F), train(srcSize, CV_32F);
declare.in(query, train).time(srcSize.height == 2000 ? 8 : 4 );
randu(query, 0.0f, 1.0f);
randu(train, 0.0f, 1.0f);
if (RUN_PLAIN_IMPL)
{
// Init CPU matcher
int desc_len = 64;
BFMatcher matcher(NORM_L2);
TEST_CYCLE() matcher.match(query, train, matches);
Mat query;
gen(query, size, desc_len, CV_32F, 0, 1);
Mat train;
gen(train, size, desc_len, CV_32F, 0, 1);
// Output
vector< vector<DMatch> > matches(2);
vector< vector<DMatch> > d_matches(2);
// Init GPU matcher
ocl::BruteForceMatcher_OCL_base d_matcher(ocl::BruteForceMatcher_OCL_base::L2Dist);
ocl::oclMat d_query(query);
ocl::oclMat d_train(train);
ocl::oclMat d_trainIdx, d_distance, d_allDist, d_nMatches;
SUBTEST << size << "; match";
matcher.match(query, train, matches[0]);
CPU_ON;
matcher.match(query, train, matches[0]);
CPU_OFF;
WARMUP_ON;
d_matcher.matchSingle(d_query, d_train, d_trainIdx, d_distance);
WARMUP_OFF;
GPU_ON;
d_matcher.matchSingle(d_query, d_train, d_trainIdx, d_distance);
GPU_OFF;
GPU_FULL_ON;
d_query.upload(query);
d_train.upload(train);
d_matcher.match(d_query, d_train, d_matches[0]);
GPU_FULL_OFF;
int diff = abs((int)d_matches[0].size() - (int)matches[0].size());
if(diff == 0)
TestSystem::instance().setAccurate(1, 0);
else
TestSystem::instance().setAccurate(0, diff);
SUBTEST << size << "; knnMatch";
matcher.knnMatch(query, train, matches, 2);
CPU_ON;
matcher.knnMatch(query, train, matches, 2);
CPU_OFF;
WARMUP_ON;
d_matcher.knnMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_allDist, 2);
WARMUP_OFF;
GPU_ON;
d_matcher.knnMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_allDist, 2);
GPU_OFF;
GPU_FULL_ON;
d_query.upload(query);
d_train.upload(train);
d_matcher.knnMatch(d_query, d_train, d_matches, 2);
GPU_FULL_OFF;
diff = abs((int)d_matches[0].size() - (int)matches[0].size());
if(diff == 0)
TestSystem::instance().setAccurate(1, 0);
else
TestSystem::instance().setAccurate(0, diff);
SUBTEST << size << "; radiusMatch";
float max_distance = 2.0f;
matcher.radiusMatch(query, train, matches, max_distance);
CPU_ON;
matcher.radiusMatch(query, train, matches, max_distance);
CPU_OFF;
d_trainIdx.release();
WARMUP_ON;
d_matcher.radiusMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_nMatches, max_distance);
WARMUP_OFF;
GPU_ON;
d_matcher.radiusMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_nMatches, max_distance);
GPU_OFF;
GPU_FULL_ON;
d_query.upload(query);
d_train.upload(train);
d_matcher.radiusMatch(d_query, d_train, d_matches, max_distance);
GPU_FULL_OFF;
diff = abs((int)d_matches[0].size() - (int)matches[0].size());
if(diff == 0)
TestSystem::instance().setAccurate(1, 0);
else
TestSystem::instance().setAccurate(0, diff);
SANITY_CHECK_MATCHES(matches);
}
else if (RUN_OCL_IMPL)
{
ocl::BruteForceMatcher_OCL_base oclMatcher(ocl::BruteForceMatcher_OCL_base::L2Dist);
ocl::oclMat oclQuery(query), oclTrain(train);
TEST_CYCLE() oclMatcher.match(oclQuery, oclTrain, matches);
SANITY_CHECK_MATCHES(matches);
}
else
OCL_PERF_ELSE
}
PERF_TEST_P(BruteForceMatcherFixture, DISABLED_knnMatch,
OCL_BFMATCHER_TYPICAL_MAT_SIZES) // TODO too many outliers
{
const Size srcSize = GetParam();
vector<vector<DMatch> > matches(2);
Mat query(srcSize, CV_32F), train(srcSize, CV_32F);
randu(query, 0.0f, 1.0f);
randu(train, 0.0f, 1.0f);
declare.in(query, train);
if (srcSize.height == 2000)
declare.time(8);
if (RUN_PLAIN_IMPL)
{
BFMatcher matcher (NORM_L2);
TEST_CYCLE() matcher.knnMatch(query, train, matches, 2);
std::vector<DMatch> & matches0 = matches[0], & matches1 = matches[1];
SANITY_CHECK_MATCHES(matches0);
SANITY_CHECK_MATCHES(matches1);
}
else if (RUN_OCL_IMPL)
{
ocl::BruteForceMatcher_OCL_base oclMatcher(ocl::BruteForceMatcher_OCL_base::L2Dist);
ocl::oclMat oclQuery(query), oclTrain(train);
TEST_CYCLE() oclMatcher.knnMatch(oclQuery, oclTrain, matches, 2);
std::vector<DMatch> & matches0 = matches[0], & matches1 = matches[1];
SANITY_CHECK_MATCHES(matches0);
SANITY_CHECK_MATCHES(matches1);
}
else
OCL_PERF_ELSE
}
PERF_TEST_P(BruteForceMatcherFixture, DISABLED_radiusMatch,
OCL_BFMATCHER_TYPICAL_MAT_SIZES) // TODO too many outliers
{
const Size srcSize = GetParam();
const float max_distance = 2.0f;
vector<vector<DMatch> > matches(2);
Mat query(srcSize, CV_32F), train(srcSize, CV_32F);
declare.in(query, train);
Mat trainIdx, distance, allDist;
randu(query, 0.0f, 1.0f);
randu(train, 0.0f, 1.0f);
if (RUN_PLAIN_IMPL)
{
BFMatcher matcher (NORM_L2);
TEST_CYCLE() matcher.radiusMatch(query, matches, max_distance);
std::vector<DMatch> & matches0 = matches[0], & matches1 = matches[1];
SANITY_CHECK_MATCHES(matches0);
SANITY_CHECK_MATCHES(matches1);
}
else if (RUN_OCL_IMPL)
{
ocl::oclMat oclQuery(query), oclTrain(train);
ocl::BruteForceMatcher_OCL_base oclMatcher(ocl::BruteForceMatcher_OCL_base::L2Dist);
TEST_CYCLE() oclMatcher.radiusMatch(oclQuery, oclTrain, matches, max_distance);
std::vector<DMatch> & matches0 = matches[0], & matches1 = matches[1];
SANITY_CHECK_MATCHES(matches0);
SANITY_CHECK_MATCHES(matches1);
}
else
OCL_PERF_ELSE
}
#undef OCL_BFMATCHER_TYPICAL_MAT_SIZES

View File

@ -45,48 +45,44 @@
//M*/
#include "perf_precomp.hpp"
///////////// StereoMatchBM ////////////////////////
PERFTEST(StereoMatchBM)
PERF_TEST(StereoMatchBMFixture, DISABLED_StereoMatchBM) // TODO doesn't work properly
{
Mat left_image = imread(abspath("aloeL.jpg"), cv::IMREAD_GRAYSCALE);
Mat right_image = imread(abspath("aloeR.jpg"), cv::IMREAD_GRAYSCALE);
Mat disp,dst;
ocl::oclMat d_left, d_right,d_disp;
int n_disp= 128;
int winSize =19;
Mat left_image = imread(getDataPath("gpu/stereobm/aloe-L.png"), cv::IMREAD_GRAYSCALE);
Mat right_image = imread(getDataPath("gpu/stereobm/aloe-R.png"), cv::IMREAD_GRAYSCALE);
SUBTEST << left_image.cols << 'x' << left_image.rows << "; aloeL.jpg ;"<< right_image.cols << 'x' << right_image.rows << "; aloeR.jpg ";
ASSERT_TRUE(!left_image.empty()) << "no input image";
ASSERT_TRUE(!right_image.empty()) << "no input image";
ASSERT_TRUE(right_image.size() == left_image.size());
ASSERT_TRUE(right_image.size() == left_image.size());
Ptr<StereoBM> bm = createStereoBM(n_disp, winSize);
bm->compute(left_image, right_image, dst);
const int n_disp = 128, winSize = 19;
Mat disp(left_image.size(), CV_16SC1);
CPU_ON;
bm->compute(left_image, right_image, dst);
CPU_OFF;
declare.in(left_image, right_image).out(disp);
d_left.upload(left_image);
d_right.upload(right_image);
if (RUN_OCL_IMPL)
{
ocl::oclMat oclLeft(left_image), oclRight(right_image),
oclDisp(left_image.size(), CV_16SC1);
ocl::StereoBM_OCL oclBM(0, n_disp, winSize);
ocl::StereoBM_OCL d_bm(0, n_disp, winSize);
TEST_CYCLE() oclBM(oclLeft, oclRight, oclDisp);
WARMUP_ON;
d_bm(d_left, d_right, d_disp);
WARMUP_OFF;
oclDisp.download(disp);
cv::Mat ocl_mat;
d_disp.download(ocl_mat);
ocl_mat.convertTo(ocl_mat, dst.type());
SANITY_CHECK(disp);
}
else if (RUN_PLAIN_IMPL)
{
Ptr<StereoBM> bm = createStereoBM(n_disp, winSize);
GPU_ON;
d_bm(d_left, d_right, d_disp);
GPU_OFF;
TEST_CYCLE() bm->compute(left_image, right_image, disp);
GPU_FULL_ON;
d_left.upload(left_image);
d_right.upload(right_image);
d_bm(d_left, d_right, d_disp);
d_disp.download(disp);
GPU_FULL_OFF;
TestSystem::instance().setAccurate(-1, 0.);
SANITY_CHECK(disp);
}
else
OCL_PERF_ELSE
}

View File

@ -45,41 +45,33 @@
//M*/
#include "perf_precomp.hpp"
using namespace perf;
///////////// Canny ////////////////////////
PERFTEST(Canny)
PERF_TEST(CannyFixture, DISABLED_Canny) // TODO difference between implmentations
{
Mat img = imread(abspath("aloeL.jpg"), IMREAD_GRAYSCALE);
Mat img = imread(getDataPath("gpu/stereobm/aloe-L.png"), cv::IMREAD_GRAYSCALE),
edges(img.size(), CV_8UC1);
ASSERT_TRUE(!img.empty()) << "can't open aloe-L.png";
if (img.empty())
declare.in(img).out(edges);
if (RUN_OCL_IMPL)
{
throw runtime_error("can't open aloeL.jpg");
ocl::oclMat oclImg(img), oclEdges(img.size(), CV_8UC1);
TEST_CYCLE() ocl::Canny(oclImg, oclEdges, 50.0, 100.0);
oclEdges.download(edges);
SANITY_CHECK(edges);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() Canny(img, edges, 50.0, 100.0);
SUBTEST << img.cols << 'x' << img.rows << "; aloeL.jpg" << "; edges" << "; CV_8UC1";
Mat edges(img.size(), CV_8UC1), ocl_edges;
CPU_ON;
Canny(img, edges, 50.0, 100.0);
CPU_OFF;
ocl::oclMat d_img(img);
ocl::oclMat d_edges;
ocl::CannyBuf d_buf;
WARMUP_ON;
ocl::Canny(d_img, d_buf, d_edges, 50.0, 100.0);
WARMUP_OFF;
GPU_ON;
ocl::Canny(d_img, d_buf, d_edges, 50.0, 100.0);
GPU_OFF;
GPU_FULL_ON;
d_img.upload(img);
ocl::Canny(d_img, d_buf, d_edges, 50.0, 100.0);
d_edges.download(ocl_edges);
GPU_FULL_OFF;
TestSystem::instance().ExceptedMatSimilar(edges, ocl_edges, 2e-2);
SANITY_CHECK(edges);
}
else
OCL_PERF_ELSE
}

View File

@ -45,49 +45,34 @@
//M*/
#include "perf_precomp.hpp"
using namespace perf;
///////////// cvtColor////////////////////////
PERFTEST(cvtColor)
typedef TestBaseWithParam<Size> cvtColorFixture;
PERF_TEST_P(cvtColorFixture, cvtColor, OCL_TYPICAL_MAT_SIZES)
{
Mat src, dst, ocl_dst;
ocl::oclMat d_src, d_dst;
const Size srcSize = GetParam();
int all_type[] = {CV_8UC4};
std::string type_name[] = {"CV_8UC4"};
Mat src(srcSize, CV_8UC4), dst(srcSize, CV_8UC4);
declare.in(src, WARMUP_RNG).out(dst);
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
if (RUN_OCL_IMPL)
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
gen(src, size, size, all_type[j], 0, 256);
SUBTEST << size << "x" << size << "; " << type_name[j] << " ; CV_RGBA2GRAY";
cvtColor(src, dst, COLOR_RGBA2GRAY, 4);
CPU_ON;
cvtColor(src, dst, COLOR_RGBA2GRAY, 4);
CPU_OFF;
d_src.upload(src);
WARMUP_ON;
ocl::cvtColor(d_src, d_dst, COLOR_RGBA2GRAY, 4);
WARMUP_OFF;
GPU_ON;
ocl::cvtColor(d_src, d_dst, COLOR_RGBA2GRAY, 4);
GPU_OFF;
GPU_FULL_ON;
d_src.upload(src);
ocl::cvtColor(d_src, d_dst, COLOR_RGBA2GRAY, 4);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
TestSystem::instance().ExceptedMatSimilar(dst, ocl_dst, 1e-5);
}
ocl::oclMat oclSrc(src), oclDst(src.size(), CV_8UC4);
TEST_CYCLE() ocl::cvtColor(oclSrc, oclDst, COLOR_RGBA2GRAY, 4);
oclDst.download(dst);
SANITY_CHECK(dst);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() cv::cvtColor(src, dst, COLOR_RGBA2GRAY, 4);
SANITY_CHECK(dst);
}
else
OCL_PERF_ELSE
}

View File

@ -45,47 +45,39 @@
//M*/
#include "perf_precomp.hpp"
using namespace perf;
///////////// dft ////////////////////////
PERFTEST(dft)
typedef TestBaseWithParam<Size> dftFixture;
PERF_TEST_P(dftFixture, DISABLED_dft, OCL_TYPICAL_MAT_SIZES) // TODO not implemented
{
Mat src, dst, ocl_dst;
ocl::oclMat d_src, d_dst;
const Size srcSize = GetParam();
int all_type[] = {CV_32FC2};
std::string type_name[] = {"CV_32FC2"};
Mat src(srcSize, CV_32FC2), dst;
randu(src, 0.0f, 1.0f);
declare.in(src);
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
if (srcSize == OCL_SIZE_4000)
declare.time(7.4);
if (RUN_OCL_IMPL)
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j] << " ; complex-to-complex";
ocl::oclMat oclSrc(src), oclDst;
gen(src, size, size, all_type[j], Scalar::all(0), Scalar::all(1));
TEST_CYCLE() cv::ocl::dft(oclSrc, oclDst);
dft(src, dst);
CPU_ON;
dft(src, dst);
CPU_OFF;
d_src.upload(src);
WARMUP_ON;
ocl::dft(d_src, d_dst, Size(size, size));
WARMUP_OFF;
GPU_ON;
ocl::dft(d_src, d_dst, Size(size, size));
GPU_OFF;
GPU_FULL_ON;
d_src.upload(src);
ocl::dft(d_src, d_dst, Size(size, size));
d_dst.download(ocl_dst);
GPU_FULL_OFF;
TestSystem::instance().ExpectedMatNear(dst, ocl_dst, src.size().area() * 1e-4);
}
oclDst.download(dst);
SANITY_CHECK(dst);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() cv::dft(src, dst);
SANITY_CHECK(dst);
}
else
OCL_PERF_ELSE
}

View File

@ -45,333 +45,279 @@
//M*/
#include "perf_precomp.hpp"
using namespace perf;
using std::tr1::get;
using std::tr1::tuple;
///////////// Blur////////////////////////
PERFTEST(Blur)
typedef Size_MatType BlurFixture;
PERF_TEST_P(BlurFixture, Blur,
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
OCL_PERF_ENUM(CV_8UC1, CV_8UC4)))
{
Mat src1, dst, ocl_dst;
ocl::oclMat d_src1, d_dst;
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params), ksize(3, 3);
const int type = get<1>(params), bordertype = BORDER_CONSTANT;
Size ksize = Size(3, 3);
int bordertype = BORDER_CONSTANT;
int all_type[] = {CV_8UC1, CV_8UC4};
std::string type_name[] = {"CV_8UC1", "CV_8UC4"};
Mat src(srcSize, type), dst(srcSize, type);
declare.in(src, WARMUP_RNG).out(dst);
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
if (srcSize == OCL_SIZE_4000 && type == CV_8UC4)
declare.time(5);
if (RUN_OCL_IMPL)
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j] ;
ocl::oclMat oclSrc(src), oclDst(srcSize, type);
gen(src1, size, size, all_type[j], 0, 256);
gen(dst, size, size, all_type[j], 0, 256);
TEST_CYCLE() cv::ocl::blur(oclSrc, oclDst, ksize, Point(-1, -1), bordertype);
blur(src1, dst, ksize, Point(-1, -1), bordertype);
CPU_ON;
blur(src1, dst, ksize, Point(-1, -1), bordertype);
CPU_OFF;
d_src1.upload(src1);
WARMUP_ON;
ocl::blur(d_src1, d_dst, ksize, Point(-1, -1), bordertype);
WARMUP_OFF;
GPU_ON;
ocl::blur(d_src1, d_dst, ksize, Point(-1, -1), bordertype);
GPU_OFF;
GPU_FULL_ON;
d_src1.upload(src1);
ocl::blur(d_src1, d_dst, ksize, Point(-1, -1), bordertype);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
TestSystem::instance().ExpectedMatNear(ocl_dst, dst, 1.0);
}
oclDst.download(dst);
SANITY_CHECK(dst, 1 + DBL_EPSILON);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() cv::blur(src, dst, ksize, Point(-1, -1), bordertype);
SANITY_CHECK(dst, 1 + DBL_EPSILON);
}
else
OCL_PERF_ELSE
}
///////////// Laplacian////////////////////////
PERFTEST(Laplacian)
typedef Size_MatType LaplacianFixture;
PERF_TEST_P(LaplacianFixture, Laplacian,
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
OCL_PERF_ENUM(CV_8UC1, CV_8UC4)))
{
Mat src1, dst, ocl_dst;
ocl::oclMat d_src1, d_dst;
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params), ksize = 3;
int ksize = 3;
int all_type[] = {CV_8UC1, CV_8UC4};
std::string type_name[] = {"CV_8UC1", "CV_8UC4"};
Mat src(srcSize, type), dst(srcSize, type);
declare.in(src, WARMUP_RNG).out(dst);
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
if (srcSize == OCL_SIZE_4000 && type == CV_8UC4)
declare.time(6);
if (RUN_OCL_IMPL)
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j] ;
ocl::oclMat oclSrc(src), oclDst(srcSize, type);
gen(src1, size, size, all_type[j], 0, 256);
gen(dst, size, size, all_type[j], 0, 256);
TEST_CYCLE() cv::ocl::Laplacian(oclSrc, oclDst, -1, ksize, 1);
Laplacian(src1, dst, -1, ksize, 1);
CPU_ON;
Laplacian(src1, dst, -1, ksize, 1);
CPU_OFF;
d_src1.upload(src1);
WARMUP_ON;
ocl::Laplacian(d_src1, d_dst, -1, ksize, 1);
WARMUP_OFF;
GPU_ON;
ocl::Laplacian(d_src1, d_dst, -1, ksize, 1);
GPU_OFF;
GPU_FULL_ON;
d_src1.upload(src1);
ocl::Laplacian(d_src1, d_dst, -1, ksize, 1);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
TestSystem::instance().ExpectedMatNear(ocl_dst, dst, 1e-5);
}
oclDst.download(dst);
SANITY_CHECK(dst);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() cv::Laplacian(src, dst, -1, ksize, 1);
SANITY_CHECK(dst);
}
else
OCL_PERF_ELSE
}
///////////// Erode ////////////////////
PERFTEST(Erode)
typedef Size_MatType ErodeFixture;
PERF_TEST_P(ErodeFixture, Erode,
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
OCL_PERF_ENUM(CV_8UC1, CV_8UC4, CV_32FC1, CV_32FC4)))
{
Mat src, dst, ker, ocl_dst;
ocl::oclMat d_src, d_dst;
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params), ksize = 3;
const Mat ker = getStructuringElement(MORPH_RECT, Size(ksize, ksize));
int all_type[] = {CV_8UC1, CV_8UC4, CV_32FC1, CV_32FC4};
std::string type_name[] = {"CV_8UC1", "CV_8UC4", "CV_32FC1", "CV_32FC4"};
Mat src(srcSize, type), dst(srcSize, type);
declare.in(src, WARMUP_RNG).out(dst).in(ker);
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
if (srcSize == OCL_SIZE_4000 && type == CV_8UC4)
declare.time(5);
if (RUN_OCL_IMPL)
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j] ;
ocl::oclMat oclSrc(src), oclDst(srcSize, type), oclKer(ker);
gen(src, size, size, all_type[j], Scalar::all(0), Scalar::all(256));
ker = getStructuringElement(MORPH_RECT, Size(3, 3));
TEST_CYCLE() cv::ocl::erode(oclSrc, oclDst, oclKer);
erode(src, dst, ker);
CPU_ON;
erode(src, dst, ker);
CPU_OFF;
d_src.upload(src);
WARMUP_ON;
ocl::erode(d_src, d_dst, ker);
WARMUP_OFF;
GPU_ON;
ocl::erode(d_src, d_dst, ker);
GPU_OFF;
GPU_FULL_ON;
d_src.upload(src);
ocl::erode(d_src, d_dst, ker);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
TestSystem::instance().ExpectedMatNear(ocl_dst, dst, 1e-5);
}
oclDst.download(dst);
SANITY_CHECK(dst);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() cv::erode(src, dst, ker);
SANITY_CHECK(dst);
}
else
OCL_PERF_ELSE
}
///////////// Sobel ////////////////////////
PERFTEST(Sobel)
typedef Size_MatType SobelFixture;
PERF_TEST_P(SobelFixture, Sobel,
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
OCL_PERF_ENUM(CV_8UC1, CV_8UC4)))
{
Mat src, dst, ocl_dst;
ocl::oclMat d_src, d_dst;
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params), dx = 1, dy = 1;
int dx = 1;
int dy = 1;
int all_type[] = {CV_8UC1, CV_8UC4};
std::string type_name[] = {"CV_8UC1", "CV_8UC4"};
Mat src(srcSize, type), dst(srcSize, type);
declare.in(src, WARMUP_RNG).out(dst);
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
if ((srcSize == OCL_SIZE_2000 && type == CV_8UC4) ||
(srcSize == OCL_SIZE_4000 && type == CV_8UC1))
declare.time(5.5);
else if (srcSize == OCL_SIZE_4000 && type == CV_8UC4)
declare.time(20);
if (RUN_OCL_IMPL)
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j] ;
ocl::oclMat oclSrc(src), oclDst(srcSize, type);
gen(src, size, size, all_type[j], 0, 256);
TEST_CYCLE() cv::ocl::Sobel(oclSrc, oclDst, -1, dx, dy);
Sobel(src, dst, -1, dx, dy);
CPU_ON;
Sobel(src, dst, -1, dx, dy);
CPU_OFF;
d_src.upload(src);
WARMUP_ON;
ocl::Sobel(d_src, d_dst, -1, dx, dy);
WARMUP_OFF;
GPU_ON;
ocl::Sobel(d_src, d_dst, -1, dx, dy);
GPU_OFF;
GPU_FULL_ON;
d_src.upload(src);
ocl::Sobel(d_src, d_dst, -1, dx, dy);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
TestSystem::instance().ExpectedMatNear(ocl_dst, dst, 1);
}
oclDst.download(dst);
SANITY_CHECK(dst);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() cv::Sobel(src, dst, -1, dx, dy);
SANITY_CHECK(dst);
}
else
OCL_PERF_ELSE
}
///////////// Scharr ////////////////////////
PERFTEST(Scharr)
typedef Size_MatType ScharrFixture;
PERF_TEST_P(ScharrFixture, Scharr,
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
OCL_PERF_ENUM(CV_8UC1, CV_8UC4)))
{
Mat src, dst, ocl_dst;
ocl::oclMat d_src, d_dst;
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params), dx = 1, dy = 0;
int dx = 1;
int dy = 0;
int all_type[] = {CV_8UC1, CV_8UC4};
std::string type_name[] = {"CV_8UC1", "CV_8UC4"};
Mat src(srcSize, type), dst(srcSize, type);
declare.in(src, WARMUP_RNG).out(dst);
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
if ((srcSize == OCL_SIZE_2000 && type == CV_8UC4) ||
(srcSize == OCL_SIZE_4000 && type == CV_8UC1))
declare.time(5.5);
else if (srcSize == OCL_SIZE_4000 && type == CV_8UC4)
declare.time(21);
if (RUN_OCL_IMPL)
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j] ;
ocl::oclMat oclSrc(src), oclDst(srcSize, type);
gen(src, size, size, all_type[j], 0, 256);
TEST_CYCLE() cv::ocl::Scharr(oclSrc, oclDst, -1, dx, dy);
Scharr(src, dst, -1, dx, dy);
CPU_ON;
Scharr(src, dst, -1, dx, dy);
CPU_OFF;
d_src.upload(src);
WARMUP_ON;
ocl::Scharr(d_src, d_dst, -1, dx, dy);
WARMUP_OFF;
GPU_ON;
ocl::Scharr(d_src, d_dst, -1, dx, dy);
GPU_OFF;
GPU_FULL_ON;
d_src.upload(src);
ocl::Scharr(d_src, d_dst, -1, dx, dy);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
TestSystem::instance().ExpectedMatNear(ocl_dst, dst, 1);
}
oclDst.download(dst);
SANITY_CHECK(dst);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() cv::Scharr(src, dst, -1, dx, dy);
SANITY_CHECK(dst);
}
else
OCL_PERF_ELSE
}
///////////// GaussianBlur ////////////////////////
PERFTEST(GaussianBlur)
typedef Size_MatType GaussianBlurFixture;
PERF_TEST_P(GaussianBlurFixture, GaussianBlur,
::testing::Combine(::testing::Values(OCL_SIZE_1000, OCL_SIZE_2000),
OCL_PERF_ENUM(CV_8UC1, CV_8UC4, CV_32FC1, CV_32FC4)))
{
Mat src, dst, ocl_dst;
int all_type[] = {CV_8UC1, CV_8UC4, CV_32FC1, CV_32FC4};
std::string type_name[] = {"CV_8UC1", "CV_8UC4", "CV_32FC1", "CV_32FC4"};
const int ksize = 7;
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params), ksize = 7;
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
Mat src(srcSize, type), dst(srcSize, type);
declare.in(src, WARMUP_RNG).out(dst);
const double eps = src.depth() == CV_8U ? 1 + DBL_EPSILON : 3e-4;
if (RUN_OCL_IMPL)
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j] ;
ocl::oclMat oclSrc(src), oclDst(srcSize, type);
gen(src, size, size, all_type[j], 0, 256);
TEST_CYCLE() cv::ocl::GaussianBlur(oclSrc, oclDst, Size(ksize, ksize), 0);
GaussianBlur(src, dst, Size(ksize, ksize), 0);
CPU_ON;
GaussianBlur(src, dst, Size(ksize, ksize), 0);
CPU_OFF;
ocl::oclMat d_src(src);
ocl::oclMat d_dst;
WARMUP_ON;
ocl::GaussianBlur(d_src, d_dst, Size(ksize, ksize), 0);
WARMUP_OFF;
GPU_ON;
ocl::GaussianBlur(d_src, d_dst, Size(ksize, ksize), 0);
GPU_OFF;
GPU_FULL_ON;
d_src.upload(src);
ocl::GaussianBlur(d_src, d_dst, Size(ksize, ksize), 0);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
TestSystem::instance().ExpectedMatNear(ocl_dst, dst, 1.0);
}
oclDst.download(dst);
SANITY_CHECK(dst, eps);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() cv::GaussianBlur(src, dst, Size(ksize, ksize), 0);
SANITY_CHECK(dst, eps);
}
else
OCL_PERF_ELSE
}
///////////// filter2D////////////////////////
PERFTEST(filter2D)
typedef Size_MatType filter2DFixture;
PERF_TEST_P(filter2DFixture, filter2D,
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
OCL_PERF_ENUM(CV_8UC1, CV_8UC4)))
{
Mat src;
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params), ksize = 3;
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
Mat src(srcSize, type), dst(srcSize, type), kernel(ksize, ksize, CV_32SC1);
declare.in(src, WARMUP_RNG).in(kernel).out(dst);
randu(kernel, -3.0, 3.0);
if (srcSize == OCL_SIZE_4000 && type == CV_8UC4)
declare.time(8);
if (RUN_OCL_IMPL)
{
int all_type[] = {CV_8UC1, CV_8UC4};
std::string type_name[] = {"CV_8UC1", "CV_8UC4"};
ocl::oclMat oclSrc(src), oclDst(srcSize, type), oclKernel(kernel);
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
gen(src, size, size, all_type[j], 0, 256);
const int ksize = 3;
SUBTEST << "ksize = " << ksize << "; " << size << 'x' << size << "; " << type_name[j] ;
Mat kernel;
gen(kernel, ksize, ksize, CV_32SC1, -3.0, 3.0);
Mat dst, ocl_dst;
cv::filter2D(src, dst, -1, kernel);
CPU_ON;
cv::filter2D(src, dst, -1, kernel);
CPU_OFF;
ocl::oclMat d_src(src), d_dst;
WARMUP_ON;
ocl::filter2D(d_src, d_dst, -1, kernel);
WARMUP_OFF;
GPU_ON;
ocl::filter2D(d_src, d_dst, -1, kernel);
GPU_OFF;
GPU_FULL_ON;
d_src.upload(src);
ocl::filter2D(d_src, d_dst, -1, kernel);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
TestSystem::instance().ExpectedMatNear(ocl_dst, dst, 1e-5);
}
TEST_CYCLE() cv::ocl::filter2D(oclSrc, oclDst, -1, oclKernel);
oclDst.download(dst);
SANITY_CHECK(dst);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() cv::filter2D(src, dst, -1, kernel);
SANITY_CHECK(dst);
}
else
OCL_PERF_ELSE
}

View File

@ -45,46 +45,40 @@
//M*/
#include "perf_precomp.hpp"
using namespace perf;
///////////// gemm ////////////////////////
PERFTEST(gemm)
typedef TestBaseWithParam<Size> gemmFixture;
PERF_TEST_P(gemmFixture, DISABLED_gemm, OCL_TYPICAL_MAT_SIZES) // TODO not implemented
{
Mat src1, src2, src3, dst, ocl_dst;
ocl::oclMat d_src1, d_src2, d_src3, d_dst;
const Size srcSize = GetParam();
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
Mat src1(srcSize, CV_32FC1), src2(srcSize, CV_32FC1),
src3(srcSize, CV_32FC1), dst(srcSize, CV_32FC1);
declare.in(src1, src2, src3).out(dst);
randu(src1, -10.0f, 10.0f);
randu(src2, -10.0f, 10.0f);
randu(src3, -10.0f, 10.0f);
if (RUN_OCL_IMPL)
{
SUBTEST << size << 'x' << size;
ocl::oclMat oclSrc1(src1), oclSrc2(src2),
oclSrc3(src3), oclDst(srcSize, CV_32FC1);
gen(src1, size, size, CV_32FC1, Scalar::all(-10), Scalar::all(10));
gen(src2, size, size, CV_32FC1, Scalar::all(-10), Scalar::all(10));
gen(src3, size, size, CV_32FC1, Scalar::all(-10), Scalar::all(10));
TEST_CYCLE() cv::ocl::gemm(oclSrc1, oclSrc2, 1.0, oclSrc3, 1.0, oclDst);
gemm(src1, src2, 1.0, src3, 1.0, dst);
oclDst.download(dst);
CPU_ON;
gemm(src1, src2, 1.0, src3, 1.0, dst);
CPU_OFF;
d_src1.upload(src1);
d_src2.upload(src2);
d_src3.upload(src3);
WARMUP_ON;
ocl::gemm(d_src1, d_src2, 1.0, d_src3, 1.0, d_dst);
WARMUP_OFF;
GPU_ON;
ocl::gemm(d_src1, d_src2, 1.0, d_src3, 1.0, d_dst);
GPU_OFF;
GPU_FULL_ON;
d_src1.upload(src1);
d_src2.upload(src2);
d_src3.upload(src3);
ocl::gemm(d_src1, d_src2, 1.0, d_src3, 1.0, d_dst);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
TestSystem::instance().ExpectedMatNear(ocl_dst, dst, src1.cols * src1.rows * 1e-4);
SANITY_CHECK(dst);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() cv::gemm(src1, src2, 1.0, src3, 1.0, dst);
SANITY_CHECK(dst);
}
else
OCL_PERF_ELSE
}

View File

@ -46,56 +46,50 @@
#include "perf_precomp.hpp"
using namespace perf;
using std::tr1::tuple;
using std::tr1::get;
///////////// GoodFeaturesToTrack ////////////////////////
PERFTEST(GoodFeaturesToTrack)
typedef tuple<string, double> GoodFeaturesToTrackParams;
typedef TestBaseWithParam<GoodFeaturesToTrackParams> GoodFeaturesToTrackFixture;
PERF_TEST_P(GoodFeaturesToTrackFixture, GoodFeaturesToTrack,
::testing::Combine(::testing::Values(string("gpu/opticalflow/rubberwhale1.png"),
string("gpu/stereobm/aloe-L.png")),
::testing::Range(0.0, 4.0, 3.0)))
{
using namespace cv;
int maxCorners = 2000;
double qualityLevel = 0.01;
const GoodFeaturesToTrackParams param = GetParam();
const string fileName = getDataPath(get<0>(param));
const int maxCorners = 2000;
const double qualityLevel = 0.01, minDistance = get<1>(param);
std::string images[] = { "rubberwhale1.png", "aloeL.jpg" };
Mat frame = imread(fileName, IMREAD_GRAYSCALE);
ASSERT_TRUE(!frame.empty()) << "no input image";
std::vector<cv::Point2f> pts_gold, pts_ocl;
vector<Point2f> pts_gold;
declare.in(frame);
for(size_t imgIdx = 0; imgIdx < (sizeof(images)/sizeof(std::string)); ++imgIdx)
if (RUN_OCL_IMPL)
{
Mat frame = imread(abspath(images[imgIdx]), IMREAD_GRAYSCALE);
CV_Assert(!frame.empty());
ocl::oclMat oclFrame(frame), pts_oclmat;
ocl::GoodFeaturesToTrackDetector_OCL detector(maxCorners, qualityLevel, minDistance);
for(float minDistance = 0; minDistance < 4; minDistance += 3.0)
{
SUBTEST << "image = " << images[imgIdx] << "; ";
SUBTEST << "minDistance = " << minDistance << "; ";
TEST_CYCLE() detector(oclFrame, pts_oclmat);
cv::goodFeaturesToTrack(frame, pts_gold, maxCorners, qualityLevel, minDistance);
detector.downloadPoints(pts_oclmat, pts_gold);
CPU_ON;
cv::goodFeaturesToTrack(frame, pts_gold, maxCorners, qualityLevel, minDistance);
CPU_OFF;
cv::ocl::GoodFeaturesToTrackDetector_OCL detector(maxCorners, qualityLevel, minDistance);
ocl::oclMat frame_ocl(frame), pts_oclmat;
WARMUP_ON;
detector(frame_ocl, pts_oclmat);
WARMUP_OFF;
detector.downloadPoints(pts_oclmat, pts_ocl);
double diff = abs(static_cast<float>(pts_gold.size() - pts_ocl.size()));
TestSystem::instance().setAccurate(diff == 0.0, diff);
GPU_ON;
detector(frame_ocl, pts_oclmat);
GPU_OFF;
GPU_FULL_ON;
frame_ocl.upload(frame);
detector(frame_ocl, pts_oclmat);
detector.downloadPoints(pts_oclmat, pts_ocl);
GPU_FULL_OFF;
}
SANITY_CHECK(pts_gold);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() cv::goodFeaturesToTrack(frame, pts_gold,
maxCorners, qualityLevel, minDistance);
SANITY_CHECK(pts_gold);
}
else
OCL_PERF_ELSE
}

View File

@ -45,63 +45,44 @@
//M*/
#include "perf_precomp.hpp"
#include "opencv2/objdetect/objdetect_c.h"
using namespace perf;
///////////// Haar ////////////////////////
PERFTEST(Haar)
PERF_TEST(HaarFixture, Haar)
{
Mat img = imread(abspath("basketball1.png"), IMREAD_GRAYSCALE);
if (img.empty())
{
throw runtime_error("can't open basketball1.png");
}
CascadeClassifier faceCascadeCPU;
if (!faceCascadeCPU.load(abspath("haarcascade_frontalface_alt.xml")))
{
throw runtime_error("can't load haarcascade_frontalface_alt.xml");
}
vector<Rect> faces;
SUBTEST << img.cols << "x" << img.rows << "; scale image";
CPU_ON;
faceCascadeCPU.detectMultiScale(img, faces,
1.1, 2, 0 | CASCADE_SCALE_IMAGE, Size(30, 30));
CPU_OFF;
Mat img = imread(getDataPath("gpu/haarcascade/basketball1.png"), IMREAD_GRAYSCALE);
ASSERT_TRUE(!img.empty()) << "can't open basketball1.png";
declare.in(img);
vector<Rect> oclfaces;
ocl::OclCascadeClassifier faceCascade;
if (!faceCascade.load(abspath("haarcascade_frontalface_alt.xml")))
if (RUN_PLAIN_IMPL)
{
throw runtime_error("can't load haarcascade_frontalface_alt.xml");
CascadeClassifier faceCascade;
ASSERT_TRUE(faceCascade.load(getDataPath("gpu/haarcascade/haarcascade_frontalface_alt.xml")))
<< "can't load haarcascade_frontalface_alt.xml";
TEST_CYCLE() faceCascade.detectMultiScale(img, faces,
1.1, 2, 0 | CV_HAAR_SCALE_IMAGE, Size(30, 30));
SANITY_CHECK(faces, 4 + 1e-4);
}
else if (RUN_OCL_IMPL)
{
ocl::OclCascadeClassifier faceCascade;
ocl::oclMat oclImg(img);
ocl::oclMat d_img(img);
ASSERT_TRUE(faceCascade.load(getDataPath("gpu/haarcascade/haarcascade_frontalface_alt.xml")))
<< "can't load haarcascade_frontalface_alt.xml";
WARMUP_ON;
faceCascade.detectMultiScale(d_img, oclfaces,
1.1, 2, 0 | CASCADE_SCALE_IMAGE, Size(30, 30));
WARMUP_OFF;
TEST_CYCLE() faceCascade.detectMultiScale(oclImg, faces,
1.1, 2, 0 | CV_HAAR_SCALE_IMAGE, Size(30, 30));
if(faces.size() == oclfaces.size())
TestSystem::instance().setAccurate(1, 0);
SANITY_CHECK(faces, 4 + 1e-4);
}
else
TestSystem::instance().setAccurate(0, abs((int)faces.size() - (int)oclfaces.size()));
faces.clear();
GPU_ON;
faceCascade.detectMultiScale(d_img, oclfaces,
1.1, 2, 0 | CASCADE_SCALE_IMAGE, Size(30, 30));
GPU_OFF;
GPU_FULL_ON;
d_img.upload(img);
faceCascade.detectMultiScale(d_img, oclfaces,
1.1, 2, 0 | CASCADE_SCALE_IMAGE, Size(30, 30));
GPU_FULL_OFF;
OCL_PERF_ELSE
}

View File

@ -45,50 +45,37 @@
//M*/
#include "perf_precomp.hpp"
using namespace perf;
///////////// HOG////////////////////////
PERFTEST(HOG)
PERF_TEST(HOGFixture, HOG)
{
Mat src = imread(abspath("road.png"), cv::IMREAD_GRAYSCALE);
Mat src = imread(getDataPath("gpu/hog/road.png"), cv::IMREAD_GRAYSCALE);
ASSERT_TRUE(!src.empty()) << "can't open input image road.png";
if (src.empty())
vector<cv::Rect> found_locations;
declare.in(src).time(5);
if (RUN_PLAIN_IMPL)
{
throw runtime_error("can't open road.png");
HOGDescriptor hog;
hog.setSVMDetector(hog.getDefaultPeopleDetector());
TEST_CYCLE() hog.detectMultiScale(src, found_locations);
SANITY_CHECK(found_locations, 1 + DBL_EPSILON);
}
else if (RUN_OCL_IMPL)
{
ocl::HOGDescriptor ocl_hog;
ocl_hog.setSVMDetector(ocl_hog.getDefaultPeopleDetector());
ocl::oclMat oclSrc(src);
cv::HOGDescriptor hog;
hog.setSVMDetector(hog.getDefaultPeopleDetector());
std::vector<cv::Rect> found_locations;
std::vector<cv::Rect> d_found_locations;
TEST_CYCLE() ocl_hog.detectMultiScale(oclSrc, found_locations);
SUBTEST << src.cols << 'x' << src.rows << "; road.png";
hog.detectMultiScale(src, found_locations);
CPU_ON;
hog.detectMultiScale(src, found_locations);
CPU_OFF;
cv::ocl::HOGDescriptor ocl_hog;
ocl_hog.setSVMDetector(ocl_hog.getDefaultPeopleDetector());
ocl::oclMat d_src;
d_src.upload(src);
WARMUP_ON;
ocl_hog.detectMultiScale(d_src, d_found_locations);
WARMUP_OFF;
if(d_found_locations.size() == found_locations.size())
TestSystem::instance().setAccurate(1, 0);
SANITY_CHECK(found_locations, 1 + DBL_EPSILON);
}
else
TestSystem::instance().setAccurate(0, abs((int)found_locations.size() - (int)d_found_locations.size()));
GPU_ON;
ocl_hog.detectMultiScale(d_src, found_locations);
GPU_OFF;
GPU_FULL_ON;
d_src.upload(src);
ocl_hog.detectMultiScale(d_src, found_locations);
GPU_FULL_OFF;
OCL_PERF_ELSE
}

File diff suppressed because it is too large Load Diff

View File

@ -45,101 +45,77 @@
//M*/
#include "perf_precomp.hpp"
using namespace perf;
using std::tr1::tuple;
using std::tr1::get;
/////////// matchTemplate ////////////////////////
//void InitMatchTemplate()
//{
// Mat src; gen(src, 500, 500, CV_32F, 0, 1);
// Mat templ; gen(templ, 500, 500, CV_32F, 0, 1);
// ocl::oclMat d_src(src), d_templ(templ), d_dst;
// ocl::matchTemplate(d_src, d_templ, d_dst, CV_TM_CCORR);
//}
PERFTEST(matchTemplate)
typedef Size_MatType CV_TM_CCORRFixture;
PERF_TEST_P(CV_TM_CCORRFixture, matchTemplate,
::testing::Combine(::testing::Values(OCL_SIZE_1000, OCL_SIZE_2000),
OCL_PERF_ENUM(CV_32FC1, CV_32FC4)))
{
//InitMatchTemplate();
Mat src, templ, dst, ocl_dst;
int templ_size = 5;
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params), templSize(5, 5);
const int type = get<1>(params);
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
Mat src(srcSize, type), templ(templSize, type);
const Size dstSize(src.cols - templ.cols + 1, src.rows - templ.rows + 1);
Mat dst(dstSize, CV_32F);
randu(src, 0.0f, 1.0f);
randu(templ, 0.0f, 1.0f);
declare.time(srcSize == OCL_SIZE_2000 ? 20 : 6).in(src, templ).out(dst);
if (RUN_OCL_IMPL)
{
int all_type[] = {CV_32FC1, CV_32FC4};
std::string type_name[] = {"CV_32FC1", "CV_32FC4"};
ocl::oclMat oclSrc(src), oclTempl(templ), oclDst(dstSize, CV_32F);
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
for(templ_size = 5; templ_size <= 5; templ_size *= 5)
{
gen(src, size, size, all_type[j], 0, 1);
TEST_CYCLE() cv::ocl::matchTemplate(oclSrc, oclTempl, oclDst, TM_CCORR);
SUBTEST << src.cols << 'x' << src.rows << "; " << type_name[j] << "; templ " << templ_size << 'x' << templ_size << "; CCORR";
oclDst.download(dst);
gen(templ, templ_size, templ_size, all_type[j], 0, 1);
matchTemplate(src, templ, dst, TM_CCORR);
CPU_ON;
matchTemplate(src, templ, dst, TM_CCORR);
CPU_OFF;
ocl::oclMat d_src(src), d_templ(templ), d_dst;
WARMUP_ON;
ocl::matchTemplate(d_src, d_templ, d_dst, TM_CCORR);
WARMUP_OFF;
GPU_ON;
ocl::matchTemplate(d_src, d_templ, d_dst, TM_CCORR);
GPU_OFF;
GPU_FULL_ON;
d_src.upload(src);
d_templ.upload(templ);
ocl::matchTemplate(d_src, d_templ, d_dst, TM_CCORR);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
TestSystem::instance().ExpectedMatNear(dst, ocl_dst, templ.rows * templ.cols * 1e-1);
}
}
int all_type_8U[] = {CV_8UC1};
std::string type_name_8U[] = {"CV_8UC1"};
for (size_t j = 0; j < sizeof(all_type_8U) / sizeof(int); j++)
{
for(templ_size = 5; templ_size <= 5; templ_size *= 5)
{
SUBTEST << src.cols << 'x' << src.rows << "; " << type_name_8U[j] << "; templ " << templ_size << 'x' << templ_size << "; CCORR_NORMED";
gen(src, size, size, all_type_8U[j], 0, 255);
gen(templ, templ_size, templ_size, all_type_8U[j], 0, 255);
matchTemplate(src, templ, dst, TM_CCORR_NORMED);
CPU_ON;
matchTemplate(src, templ, dst, TM_CCORR_NORMED);
CPU_OFF;
ocl::oclMat d_src(src);
ocl::oclMat d_templ(templ), d_dst;
WARMUP_ON;
ocl::matchTemplate(d_src, d_templ, d_dst, TM_CCORR_NORMED);
WARMUP_OFF;
GPU_ON;
ocl::matchTemplate(d_src, d_templ, d_dst, TM_CCORR_NORMED);
GPU_OFF;
GPU_FULL_ON;
d_src.upload(src);
d_templ.upload(templ);
ocl::matchTemplate(d_src, d_templ, d_dst, TM_CCORR_NORMED);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
TestSystem::instance().ExpectedMatNear(dst, ocl_dst, templ.rows * templ.cols * 1e-1);
}
}
SANITY_CHECK(dst, 1e-4);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() cv::matchTemplate(src, templ, dst, TM_CCORR);
SANITY_CHECK(dst, 1e-4);
}
else
OCL_PERF_ELSE
}
typedef TestBaseWithParam<Size> CV_TM_CCORR_NORMEDFixture;
PERF_TEST_P(CV_TM_CCORR_NORMEDFixture, matchTemplate, OCL_TYPICAL_MAT_SIZES)
{
const Size srcSize = GetParam(), templSize(5, 5);
Mat src(srcSize, CV_8UC1), templ(templSize, CV_8UC1), dst;
const Size dstSize(src.cols - templ.cols + 1, src.rows - templ.rows + 1);
dst.create(dstSize, CV_8UC1);
declare.in(src, templ, WARMUP_RNG).out(dst)
.time(srcSize == OCL_SIZE_2000 ? 10 : srcSize == OCL_SIZE_4000 ? 23 : 2);
if (RUN_OCL_IMPL)
{
ocl::oclMat oclSrc(src), oclTempl(templ), oclDst(dstSize, CV_8UC1);
TEST_CYCLE() cv::ocl::matchTemplate(oclSrc, oclTempl, oclDst, TM_CCORR_NORMED);
oclDst.download(dst);
SANITY_CHECK(dst, 2e-2);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() cv::matchTemplate(src, templ, dst, TM_CCORR_NORMED);
SANITY_CHECK(dst, 2e-2);
}
else
OCL_PERF_ELSE
}

View File

@ -45,142 +45,113 @@
//M*/
#include "perf_precomp.hpp"
using namespace perf;
using std::tr1::tuple;
using std::tr1::get;
///////////// ConvertTo////////////////////////
PERFTEST(ConvertTo)
typedef Size_MatType ConvertToFixture;
PERF_TEST_P(ConvertToFixture, ConvertTo,
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
OCL_PERF_ENUM(CV_8UC1, CV_8UC4)))
{
Mat src, dst, ocl_dst;
ocl::oclMat d_src, d_dst;
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
int all_type[] = {CV_8UC1, CV_8UC4};
std::string type_name[] = {"CV_8UC1", "CV_8UC4"};
Mat src(srcSize, type), dst;
const int dstType = CV_MAKE_TYPE(CV_32F, src.channels());
dst.create(srcSize, dstType);
declare.in(src, WARMUP_RNG).out(dst);
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
if (RUN_OCL_IMPL)
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j] << " to 32FC1";
ocl::oclMat oclSrc(src), oclDst(srcSize, dstType);
gen(src, size, size, all_type[j], 0, 256);
//gen(dst, size, size, all_type[j], 0, 256);
TEST_CYCLE() oclSrc.convertTo(oclDst, dstType);
//d_dst.upload(dst);
src.convertTo(dst, CV_32FC1);
CPU_ON;
src.convertTo(dst, CV_32FC1);
CPU_OFF;
d_src.upload(src);
WARMUP_ON;
d_src.convertTo(d_dst, CV_32FC1);
WARMUP_OFF;
GPU_ON;
d_src.convertTo(d_dst, CV_32FC1);
GPU_OFF;
GPU_FULL_ON;
d_src.upload(src);
d_src.convertTo(d_dst, CV_32FC1);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
TestSystem::instance().ExpectedMatNear(dst, ocl_dst, 0.0);
}
oclDst.download(dst);
SANITY_CHECK(dst);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() src.convertTo(dst, dstType);
SANITY_CHECK(dst);
}
else
OCL_PERF_ELSE
}
///////////// copyTo////////////////////////
PERFTEST(copyTo)
typedef Size_MatType copyToFixture;
PERF_TEST_P(copyToFixture, copyTo,
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
OCL_PERF_ENUM(CV_8UC1, CV_8UC4)))
{
Mat src, dst, ocl_dst;
ocl::oclMat d_src, d_dst;
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
int all_type[] = {CV_8UC1, CV_8UC4};
std::string type_name[] = {"CV_8UC1", "CV_8UC4"};
Mat src(srcSize, type), dst(srcSize, type);
declare.in(src, WARMUP_RNG).out(dst);
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
if (RUN_OCL_IMPL)
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j] ;
ocl::oclMat oclSrc(src), oclDst(srcSize, type);
gen(src, size, size, all_type[j], 0, 256);
//gen(dst, size, size, all_type[j], 0, 256);
TEST_CYCLE() oclSrc.copyTo(oclDst);
//d_dst.upload(dst);
src.copyTo(dst);
CPU_ON;
src.copyTo(dst);
CPU_OFF;
d_src.upload(src);
WARMUP_ON;
d_src.copyTo(d_dst);
WARMUP_OFF;
GPU_ON;
d_src.copyTo(d_dst);
GPU_OFF;
GPU_FULL_ON;
d_src.upload(src);
d_src.copyTo(d_dst);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
TestSystem::instance().ExpectedMatNear(dst, ocl_dst, 0.0);
}
oclDst.download(dst);
SANITY_CHECK(dst);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() src.copyTo(dst);
SANITY_CHECK(dst);
}
else
OCL_PERF_ELSE
}
///////////// setTo////////////////////////
PERFTEST(setTo)
typedef Size_MatType setToFixture;
PERF_TEST_P(setToFixture, setTo,
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
OCL_PERF_ENUM(CV_8UC1, CV_8UC4)))
{
Mat src, ocl_src;
Scalar val(1, 2, 3, 4);
ocl::oclMat d_src;
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
const Scalar val(1, 2, 3, 4);
int all_type[] = {CV_8UC1, CV_8UC4};
std::string type_name[] = {"CV_8UC1", "CV_8UC4"};
Mat src(srcSize, type);
declare.in(src);
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
if (RUN_OCL_IMPL)
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j] ;
ocl::oclMat oclSrc(srcSize, type);
gen(src, size, size, all_type[j], 0, 256);
src.setTo(val);
CPU_ON;
src.setTo(val);
CPU_OFF;
d_src.upload(src);
WARMUP_ON;
d_src.setTo(val);
WARMUP_OFF;
d_src.download(ocl_src);
TestSystem::instance().ExpectedMatNear(src, ocl_src, 1.0);
GPU_ON;;
d_src.setTo(val);
GPU_OFF;
GPU_FULL_ON;
d_src.upload(src);
d_src.setTo(val);
GPU_FULL_OFF;
}
TEST_CYCLE() oclSrc.setTo(val);
oclSrc.download(src);
SANITY_CHECK(src);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() src.setTo(val);
SANITY_CHECK(src);
}
else
OCL_PERF_ELSE
}

View File

@ -43,50 +43,47 @@
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "perf_precomp.hpp"
using namespace perf;
using std::tr1::tuple;
using std::tr1::get;
///////////// Moments ////////////////////////
PERFTEST(Moments)
typedef Size_MatType MomentsFixture;
PERF_TEST_P(MomentsFixture, DISABLED_Moments,
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
OCL_PERF_ENUM(CV_8UC1, CV_16SC1, CV_32FC1, CV_64FC1))) // TODO does not work properly (see below)
{
Mat src;
bool binaryImage = 0;
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
int all_type[] = {CV_8UC1, CV_16SC1, CV_32FC1, CV_64FC1};
std::string type_name[] = {"CV_8UC1", "CV_16SC1", "CV_32FC1", "CV_64FC1"};
Mat src(srcSize, type), dst(7, 1, CV_64F);
const bool binaryImage = false;
cv::Moments mom;
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
declare.in(src, WARMUP_RNG).out(dst);
if (RUN_OCL_IMPL)
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j];
ocl::oclMat oclSrc(src);
gen(src, size, size, all_type[j], 0, 256);
cv::Moments CvMom = moments(src, binaryImage);
CPU_ON;
moments(src, binaryImage);
CPU_OFF;
cv::Moments oclMom;
WARMUP_ON;
oclMom = ocl::ocl_moments(src, binaryImage);
WARMUP_OFF;
Mat gpu_dst, cpu_dst;
HuMoments(CvMom, cpu_dst);
HuMoments(oclMom, gpu_dst);
GPU_ON;
ocl::ocl_moments(src, binaryImage);
GPU_OFF;
GPU_FULL_ON;
ocl::ocl_moments(src, binaryImage);
GPU_FULL_OFF;
TestSystem::instance().ExpectedMatNear(gpu_dst, cpu_dst, .5);
}
TEST_CYCLE() mom = cv::ocl::ocl_moments(oclSrc, binaryImage); // TODO Use oclSrc
cv::HuMoments(mom, dst);
SANITY_CHECK(dst);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() mom = cv::moments(src, binaryImage);
cv::HuMoments(mom, dst);
SANITY_CHECK(dst);
}
else
OCL_PERF_ELSE
}

View File

@ -45,43 +45,39 @@
//M*/
#include "perf_precomp.hpp"
using namespace perf;
using std::tr1::tuple;
using std::tr1::get;
///////////// norm////////////////////////
PERFTEST(norm)
typedef TestBaseWithParam<Size> normFixture;
PERF_TEST_P(normFixture, DISABLED_norm, OCL_TYPICAL_MAT_SIZES) // TODO doesn't work properly
{
Mat src1, src2, ocl_src1;
ocl::oclMat d_src1, d_src2;
const Size srcSize = GetParam();
const std::string impl = getSelectedImpl();
double value = 0.0;
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
Mat src1(srcSize, CV_8UC1), src2(srcSize, CV_8UC1);
declare.in(src1, src2);
randu(src1, 0, 1);
randu(src2, 0, 1);
if (RUN_OCL_IMPL)
{
SUBTEST << size << 'x' << size << "; CV_8UC1; NORM_INF";
ocl::oclMat oclSrc1(src1), oclSrc2(src2);
gen(src1, size, size, CV_8UC1, Scalar::all(0), Scalar::all(1));
gen(src2, size, size, CV_8UC1, Scalar::all(0), Scalar::all(1));
TEST_CYCLE() value = cv::ocl::norm(oclSrc1, oclSrc2, NORM_INF);
norm(src1, src2, NORM_INF);
CPU_ON;
norm(src1, src2, NORM_INF);
CPU_OFF;
d_src1.upload(src1);
d_src2.upload(src2);
WARMUP_ON;
ocl::norm(d_src1, d_src2, NORM_INF);
WARMUP_OFF;
d_src1.download(ocl_src1);
TestSystem::instance().ExpectedMatNear(src1, ocl_src1, .5);
GPU_ON;
ocl::norm(d_src1, d_src2, NORM_INF);
GPU_OFF;
GPU_FULL_ON;
d_src1.upload(src1);
d_src2.upload(src2);
ocl::norm(d_src1, d_src2, NORM_INF);
GPU_FULL_OFF;
SANITY_CHECK(value);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() value = cv::norm(src1, src2, NORM_INF);
SANITY_CHECK(value);
}
else
OCL_PERF_ELSE
}

View File

@ -46,311 +46,228 @@
#include "perf_precomp.hpp"
///////////// PyrLKOpticalFlow ////////////////////////
PERFTEST(PyrLKOpticalFlow)
using namespace perf;
using std::tr1::get;
using std::tr1::tuple;
using std::tr1::make_tuple;
template <typename T>
static vector<T> & MatToVector(const ocl::oclMat & oclSrc, vector<T> & instance)
{
std::string images1[] = {"rubberwhale1.png", "aloeL.jpg"};
std::string images2[] = {"rubberwhale2.png", "aloeR.jpg"};
Mat src;
oclSrc.download(src);
for (size_t i = 0; i < sizeof(images1) / sizeof(std::string); i++)
{
Mat frame0 = imread(abspath(images1[i]), i == 0 ? IMREAD_COLOR : IMREAD_GRAYSCALE);
for (int i = 0; i < src.cols; ++i)
instance.push_back(src.at<T>(0, i));
if (frame0.empty())
{
std::string errstr = "can't open " + images1[i];
throw runtime_error(errstr);
}
Mat frame1 = imread(abspath(images2[i]), i == 0 ? IMREAD_COLOR : IMREAD_GRAYSCALE);
if (frame1.empty())
{
std::string errstr = "can't open " + images2[i];
throw runtime_error(errstr);
}
Mat gray_frame;
if (i == 0)
{
cvtColor(frame0, gray_frame, COLOR_BGR2GRAY);
}
for (int points = Min_Size; points <= Max_Size; points *= Multiple)
{
if (i == 0)
SUBTEST << frame0.cols << "x" << frame0.rows << "; color; " << points << " points";
else
SUBTEST << frame0.cols << "x" << frame0.rows << "; gray; " << points << " points";
Mat ocl_nextPts;
Mat ocl_status;
vector<Point2f> pts;
goodFeaturesToTrack(i == 0 ? gray_frame : frame0, pts, points, 0.01, 0.0);
vector<Point2f> nextPts;
vector<unsigned char> status;
vector<float> err;
calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts, status, err);
CPU_ON;
calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts, status, err);
CPU_OFF;
ocl::PyrLKOpticalFlow d_pyrLK;
ocl::oclMat d_frame0(frame0);
ocl::oclMat d_frame1(frame1);
ocl::oclMat d_pts;
Mat pts_mat(1, (int)pts.size(), CV_32FC2, (void *)&pts[0]);
d_pts.upload(pts_mat);
ocl::oclMat d_nextPts;
ocl::oclMat d_status;
ocl::oclMat d_err;
WARMUP_ON;
d_pyrLK.sparse(d_frame0, d_frame1, d_pts, d_nextPts, d_status, &d_err);
WARMUP_OFF;
GPU_ON;
d_pyrLK.sparse(d_frame0, d_frame1, d_pts, d_nextPts, d_status, &d_err);
GPU_OFF;
GPU_FULL_ON;
d_frame0.upload(frame0);
d_frame1.upload(frame1);
d_pts.upload(pts_mat);
d_pyrLK.sparse(d_frame0, d_frame1, d_pts, d_nextPts, d_status, &d_err);
if (!d_nextPts.empty())
d_nextPts.download(ocl_nextPts);
if (!d_status.empty())
d_status.download(ocl_status);
GPU_FULL_OFF;
size_t mismatch = 0;
for (int i = 0; i < (int)nextPts.size(); ++i)
{
if(status[i] != ocl_status.at<unsigned char>(0, i))
{
mismatch++;
continue;
}
if(status[i])
{
Point2f gpu_rst = ocl_nextPts.at<Point2f>(0, i);
Point2f cpu_rst = nextPts[i];
if(fabs(gpu_rst.x - cpu_rst.x) >= 1. || fabs(gpu_rst.y - cpu_rst.y) >= 1.)
mismatch++;
}
}
double ratio = (double)mismatch / (double)nextPts.size();
if(ratio < .02)
TestSystem::instance().setAccurate(1, ratio);
else
TestSystem::instance().setAccurate(0, ratio);
}
}
return instance;
}
CV_ENUM(LoadMode, IMREAD_GRAYSCALE, IMREAD_COLOR)
PERFTEST(tvl1flow)
typedef tuple<int, tuple<string, string, LoadMode> > PyrLKOpticalFlowParamType;
typedef TestBaseWithParam<PyrLKOpticalFlowParamType> PyrLKOpticalFlowFixture;
PERF_TEST_P(PyrLKOpticalFlowFixture,
DISABLED_PyrLKOpticalFlow,
::testing::Combine(
::testing::Values(1000, 2000, 4000),
::testing::Values(
make_tuple<string, string, LoadMode>
(
string("gpu/opticalflow/rubberwhale1.png"),
string("gpu/opticalflow/rubberwhale2.png"),
LoadMode(IMREAD_COLOR)
)
, make_tuple<string, string, LoadMode>
(
string("gpu/stereobm/aloe-L.png"),
string("gpu/stereobm/aloe-R.png"),
LoadMode(IMREAD_GRAYSCALE)
)
)
)
) // TODO to big difference between implementations
{
cv::Mat frame0 = imread("rubberwhale1.png", cv::IMREAD_GRAYSCALE);
assert(!frame0.empty());
PyrLKOpticalFlowParamType params = GetParam();
tuple<string, string, LoadMode> fileParam = get<1>(params);
const int pointsCount = get<0>(params);
const int openMode = static_cast<int>(get<2>(fileParam));
const string fileName0 = get<0>(fileParam), fileName1 = get<1>(fileParam);
Mat frame0 = imread(getDataPath(fileName0), openMode);
Mat frame1 = imread(getDataPath(fileName1), openMode);
cv::Mat frame1 = imread("rubberwhale2.png", cv::IMREAD_GRAYSCALE);
assert(!frame1.empty());
ASSERT_FALSE(frame0.empty()) << "can't load " << fileName0;
ASSERT_FALSE(frame1.empty()) << "can't load " << fileName1;
cv::ocl::OpticalFlowDual_TVL1_OCL d_alg;
cv::ocl::oclMat d_flowx(frame0.size(), CV_32FC1);
cv::ocl::oclMat d_flowy(frame1.size(), CV_32FC1);
Mat grayFrame;
if (openMode == IMREAD_COLOR)
cvtColor(frame0, grayFrame, COLOR_BGR2GRAY);
else
grayFrame = frame0;
cv::Ptr<cv::DenseOpticalFlow> alg = cv::createOptFlow_DualTVL1();
cv::Mat flow;
vector<Point2f> pts, nextPts;
vector<unsigned char> status;
vector<float> err;
goodFeaturesToTrack(grayFrame, pts, pointsCount, 0.01, 0.0);
if (RUN_PLAIN_IMPL)
{
TEST_CYCLE()
cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts, status, err);
SUBTEST << frame0.cols << 'x' << frame0.rows << "; rubberwhale1.png; "<<frame1.cols<<'x'<<frame1.rows<<"; rubberwhale2.png";
SANITY_CHECK(nextPts);
SANITY_CHECK(status);
SANITY_CHECK(err);
}
else if (RUN_OCL_IMPL)
{
ocl::PyrLKOpticalFlow oclPyrLK;
ocl::oclMat oclFrame0(frame0), oclFrame1(frame1);
ocl::oclMat oclPts(1, static_cast<int>(pts.size()), CV_32FC2, (void *)&pts[0]);
ocl::oclMat oclNextPts, oclStatus, oclErr;
alg->calc(frame0, frame1, flow);
TEST_CYCLE()
oclPyrLK.sparse(oclFrame0, oclFrame1, oclPts, oclNextPts, oclStatus, &oclErr);
CPU_ON;
alg->calc(frame0, frame1, flow);
CPU_OFF;
MatToVector(oclNextPts, nextPts);
MatToVector(oclStatus, status);
MatToVector(oclErr, err);
cv::Mat gold[2];
cv::split(flow, gold);
SANITY_CHECK(nextPts);
SANITY_CHECK(status);
SANITY_CHECK(err);
}
else
OCL_PERF_ELSE
}
cv::ocl::oclMat d0(frame0.size(), CV_32FC1);
d0.upload(frame0);
cv::ocl::oclMat d1(frame1.size(), CV_32FC1);
d1.upload(frame1);
PERF_TEST(tvl1flowFixture, tvl1flow)
{
Mat frame0 = imread(getDataPath("gpu/opticalflow/rubberwhale1.png"), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame0.empty()) << "can't load rubberwhale1.png";
WARMUP_ON;
d_alg(d0, d1, d_flowx, d_flowy);
WARMUP_OFF;
/*
double diff1 = 0.0, diff2 = 0.0;
if(ExceptedMatSimilar(gold[0], cv::Mat(d_flowx), 3e-3, diff1) == 1
&&ExceptedMatSimilar(gold[1], cv::Mat(d_flowy), 3e-3, diff2) == 1)
TestSystem::instance().setAccurate(1);
else
TestSystem::instance().setAccurate(0);
Mat frame1 = imread(getDataPath("gpu/opticalflow/rubberwhale2.png"), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame1.empty()) << "can't load rubberwhale2.png";
TestSystem::instance().setDiff(diff1);
TestSystem::instance().setDiff(diff2);
*/
const Size srcSize = frame0.size();
const double eps = 1.2;
Mat flow(srcSize, CV_32FC2), flow1(srcSize, CV_32FC1), flow2(srcSize, CV_32FC1);
declare.in(frame0, frame1).out(flow1, flow2).time(159);
if (RUN_PLAIN_IMPL)
{
Ptr<DenseOpticalFlow> alg = createOptFlow_DualTVL1();
GPU_ON;
d_alg(d0, d1, d_flowx, d_flowy);
d_alg.collectGarbage();
GPU_OFF;
TEST_CYCLE() alg->calc(frame0, frame1, flow);
alg->collectGarbage();
Mat flows[2] = { flow1, flow2 };
split(flow, flows);
cv::Mat flowx, flowy;
SANITY_CHECK(flow1, eps);
SANITY_CHECK(flow2, eps);
}
else if (RUN_OCL_IMPL)
{
ocl::OpticalFlowDual_TVL1_OCL oclAlg;
ocl::oclMat oclFrame0(frame0), oclFrame1(frame1), oclFlow1(srcSize, CV_32FC1),
oclFlow2(srcSize, CV_32FC1);
GPU_FULL_ON;
d0.upload(frame0);
d1.upload(frame1);
d_alg(d0, d1, d_flowx, d_flowy);
d_alg.collectGarbage();
d_flowx.download(flowx);
d_flowy.download(flowy);
GPU_FULL_OFF;
TEST_CYCLE() oclAlg(oclFrame0, oclFrame1, oclFlow1, oclFlow2);
TestSystem::instance().ExceptedMatSimilar(gold[0], flowx, 3e-3);
TestSystem::instance().ExceptedMatSimilar(gold[1], flowy, 3e-3);
oclAlg.collectGarbage();
oclFlow1.download(flow1);
oclFlow2.download(flow2);
SANITY_CHECK(flow1, eps);
SANITY_CHECK(flow2, eps);
}
else
OCL_PERF_ELSE
}
///////////// FarnebackOpticalFlow ////////////////////////
PERFTEST(FarnebackOpticalFlow)
CV_ENUM(farneFlagType, 0, OPTFLOW_FARNEBACK_GAUSSIAN)
typedef tuple<tuple<int, double>, farneFlagType, bool> FarnebackOpticalFlowParams;
typedef TestBaseWithParam<FarnebackOpticalFlowParams> FarnebackOpticalFlowFixture;
PERF_TEST_P(FarnebackOpticalFlowFixture, FarnebackOpticalFlow,
::testing::Combine(
::testing::Values(make_tuple<int, double>(5, 1.1),
make_tuple<int, double>(7, 1.5)),
farneFlagType::all(),
::testing::Bool()))
{
cv::Mat frame0 = imread("rubberwhale1.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame0.empty());
Mat frame0 = imread(getDataPath("gpu/opticalflow/rubberwhale1.png"), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame0.empty()) << "can't load rubberwhale1.png";
cv::Mat frame1 = imread("rubberwhale2.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame1.empty());
Mat frame1 = imread(getDataPath("gpu/opticalflow/rubberwhale2.png"), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame1.empty()) << "can't load rubberwhale2.png";
cv::ocl::oclMat d_frame0(frame0), d_frame1(frame1);
const Size srcSize = frame0.size();
int polyNs[2] = { 5, 7 };
double polySigmas[2] = { 1.1, 1.5 };
int farneFlags[2] = { 0, cv::OPTFLOW_FARNEBACK_GAUSSIAN };
bool UseInitFlows[2] = { false, true };
double pyrScale = 0.5;
const FarnebackOpticalFlowParams params = GetParam();
const tuple<int, double> polyParams = get<0>(params);
const int polyN = get<0>(polyParams), flags = get<1>(params);
const double polySigma = get<1>(polyParams), pyrScale = 0.5;
const bool useInitFlow = get<2>(params);
const double eps = 1.5;
string farneFlagStrs[2] = { "BoxFilter", "GaussianBlur" };
string useInitFlowStrs[2] = { "", "UseInitFlow" };
Mat flowx(srcSize, CV_32FC1), flowy(srcSize, CV_32FC1), flow(srcSize, CV_32FC2);
declare.in(frame0, frame1).out(flowx, flowy);
for ( int i = 0; i < 2; ++i)
ocl::FarnebackOpticalFlow farn;
farn.pyrScale = pyrScale;
farn.polyN = polyN;
farn.polySigma = polySigma;
farn.flags = flags;
if (RUN_PLAIN_IMPL)
{
int polyN = polyNs[i];
double polySigma = polySigmas[i];
for ( int j = 0; j < 2; ++j)
if (useInitFlow)
{
int flags = farneFlags[j];
calcOpticalFlowFarneback(
frame0, frame1, flow, farn.pyrScale, farn.numLevels, farn.winSize,
farn.numIters, farn.polyN, farn.polySigma, farn.flags);
farn.flags |= OPTFLOW_USE_INITIAL_FLOW;
}
for ( int k = 0; k < 2; ++k)
{
bool useInitFlow = UseInitFlows[k];
SUBTEST << "polyN(" << polyN << "); " << farneFlagStrs[j] << "; " << useInitFlowStrs[k];
cv::ocl::FarnebackOpticalFlow farn;
farn.pyrScale = pyrScale;
farn.polyN = polyN;
farn.polySigma = polySigma;
farn.flags = flags;
cv::ocl::oclMat d_flowx, d_flowy;
cv::Mat flow, flowBuf, flowxBuf, flowyBuf;
WARMUP_ON;
farn(d_frame0, d_frame1, d_flowx, d_flowy);
if (useInitFlow)
{
cv::Mat flowxy[] = {cv::Mat(d_flowx), cv::Mat(d_flowy)};
cv::merge(flowxy, 2, flow);
flow.copyTo(flowBuf);
flowxy[0].copyTo(flowxBuf);
flowxy[1].copyTo(flowyBuf);
farn.flags |= cv::OPTFLOW_USE_INITIAL_FLOW;
farn(d_frame0, d_frame1, d_flowx, d_flowy);
}
WARMUP_OFF;
cv::calcOpticalFlowFarneback(
TEST_CYCLE()
calcOpticalFlowFarneback(
frame0, frame1, flow, farn.pyrScale, farn.numLevels, farn.winSize,
farn.numIters, farn.polyN, farn.polySigma, farn.flags);
std::vector<cv::Mat> flowxy;
cv::split(flow, flowxy);
Mat flowxy[2] = { flowx, flowy };
split(flow, flowxy);
Mat md_flowx = cv::Mat(d_flowx);
Mat md_flowy = cv::Mat(d_flowy);
TestSystem::instance().ExceptedMatSimilar(flowxy[0], md_flowx, 0.1);
TestSystem::instance().ExceptedMatSimilar(flowxy[1], md_flowy, 0.1);
if (useInitFlow)
{
cv::Mat flowx, flowy;
farn.flags = (flags | cv::OPTFLOW_USE_INITIAL_FLOW);
CPU_ON;
cv::calcOpticalFlowFarneback(
frame0, frame1, flowBuf, farn.pyrScale, farn.numLevels, farn.winSize,
farn.numIters, farn.polyN, farn.polySigma, farn.flags);
CPU_OFF;
GPU_ON;
farn(d_frame0, d_frame1, d_flowx, d_flowy);
GPU_OFF;
GPU_FULL_ON;
d_frame0.upload(frame0);
d_frame1.upload(frame1);
d_flowx.upload(flowxBuf);
d_flowy.upload(flowyBuf);
farn(d_frame0, d_frame1, d_flowx, d_flowy);
d_flowx.download(flowx);
d_flowy.download(flowy);
GPU_FULL_OFF;
}
else
{
cv::Mat flow, flowx, flowy;
cv::ocl::oclMat d_flowx, d_flowy;
farn.flags = flags;
CPU_ON;
cv::calcOpticalFlowFarneback(
frame0, frame1, flow, farn.pyrScale, farn.numLevels, farn.winSize,
farn.numIters, farn.polyN, farn.polySigma, farn.flags);
CPU_OFF;
GPU_ON;
farn(d_frame0, d_frame1, d_flowx, d_flowy);
GPU_OFF;
GPU_FULL_ON;
d_frame0.upload(frame0);
d_frame1.upload(frame1);
farn(d_frame0, d_frame1, d_flowx, d_flowy);
d_flowx.download(flowx);
d_flowy.download(flowy);
GPU_FULL_OFF;
}
}
}
SANITY_CHECK(flowx, eps);
SANITY_CHECK(flowy, eps);
}
else if (RUN_OCL_IMPL)
{
ocl::oclMat oclFrame0(frame0), oclFrame1(frame1),
oclFlowx(srcSize, CV_32FC1), oclFlowy(srcSize, CV_32FC1);
if (useInitFlow)
{
farn(oclFrame0, oclFrame1, oclFlowx, oclFlowy);
farn.flags |= OPTFLOW_USE_INITIAL_FLOW;
}
TEST_CYCLE()
farn(oclFrame0, oclFrame1, oclFlowx, oclFlowy);
oclFlowx.download(flowx);
oclFlowy.download(flowy);
SANITY_CHECK(flowx, eps);
SANITY_CHECK(flowy, eps);
}
else
OCL_PERF_ELSE
}

View File

@ -41,443 +41,3 @@
//M*/
#include "perf_precomp.hpp"
#if GTEST_OS_WINDOWS
#ifndef NOMINMAX
#define NOMINMAX
#endif
# include <windows.h>
#endif
// This program test most of the functions in ocl module and generate data metrix of x-factor in .csv files
// All images needed in this test are in samples/gpu folder.
// For haar template, haarcascade_frontalface_alt.xml shouold be in working directory
void TestSystem::run()
{
if (is_list_mode_)
{
for (vector<Runnable *>::iterator it = tests_.begin(); it != tests_.end(); ++it)
{
cout << (*it)->name() << endl;
}
return;
}
// Run test initializers
for (vector<Runnable *>::iterator it = inits_.begin(); it != inits_.end(); ++it)
{
if ((*it)->name().find(test_filter_, 0) != string::npos)
{
(*it)->run();
}
}
printHeading();
writeHeading();
// Run tests
for (vector<Runnable *>::iterator it = tests_.begin(); it != tests_.end(); ++it)
{
try
{
if ((*it)->name().find(test_filter_, 0) != string::npos)
{
cout << endl << (*it)->name() << ":\n";
setCurrentTest((*it)->name());
//fprintf(record_,"%s\n",(*it)->name().c_str());
(*it)->run();
finishCurrentSubtest();
}
}
catch (const Exception &)
{
// Message is printed via callback
resetCurrentSubtest();
}
catch (const runtime_error &e)
{
printError(e.what());
resetCurrentSubtest();
}
}
printSummary();
writeSummary();
}
void TestSystem::finishCurrentSubtest()
{
if (cur_subtest_is_empty_)
// There is no need to print subtest statistics
{
return;
}
double cpu_time = cpu_elapsed_ / getTickFrequency() * 1000.0;
double gpu_time = gpu_elapsed_ / getTickFrequency() * 1000.0;
double gpu_full_time = gpu_full_elapsed_ / getTickFrequency() * 1000.0;
double speedup = static_cast<double>(cpu_elapsed_) / std::max(1.0, gpu_elapsed_);
speedup_total_ += speedup;
double fullspeedup = static_cast<double>(cpu_elapsed_) / std::max(1.0, gpu_full_elapsed_);
speedup_full_total_ += fullspeedup;
if (speedup > top_)
{
speedup_faster_count_++;
}
else if (speedup < bottom_)
{
speedup_slower_count_++;
}
else
{
speedup_equal_count_++;
}
if (fullspeedup > top_)
{
speedup_full_faster_count_++;
}
else if (fullspeedup < bottom_)
{
speedup_full_slower_count_++;
}
else
{
speedup_full_equal_count_++;
}
// compute min, max and
std::sort(gpu_times_.begin(), gpu_times_.end());
double gpu_min = gpu_times_.front() / getTickFrequency() * 1000.0;
double gpu_max = gpu_times_.back() / getTickFrequency() * 1000.0;
double deviation = 0;
if (gpu_times_.size() > 1)
{
double sum = 0;
for (size_t i = 0; i < gpu_times_.size(); i++)
{
int64 diff = gpu_times_[i] - static_cast<int64>(gpu_elapsed_);
double diff_time = diff * 1000 / getTickFrequency();
sum += diff_time * diff_time;
}
deviation = std::sqrt(sum / gpu_times_.size());
}
printMetrics(is_accurate_, cpu_time, gpu_time, gpu_full_time, speedup, fullspeedup);
writeMetrics(cpu_time, gpu_time, gpu_full_time, speedup, fullspeedup, gpu_min, gpu_max, deviation);
num_subtests_called_++;
resetCurrentSubtest();
}
double TestSystem::meanTime(const vector<int64> &samples)
{
double sum = accumulate(samples.begin(), samples.end(), 0.);
return sum / samples.size();
}
void TestSystem::printHeading()
{
cout << endl;
cout<< setiosflags(ios_base::left);
#if 0
cout<<TAB<<setw(7)<< "Accu." << setw(10) << "CPU (ms)" << setw(10) << "GPU, ms"
<< setw(8) << "Speedup"<< setw(10)<<"GPUTotal" << setw(10) << "Total"
<< "Description\n";
cout<<TAB<<setw(7)<<""<<setw(10)<<""<<setw(10)<<""<<setw(8)<<""<<setw(10)<<"(ms)"<<setw(10)<<"Speedup\n";
#endif
cout<<TAB<< setw(10) << "CPU (ms)" << setw(10) << "GPU, ms"
<< setw(8) << "Speedup"<< setw(10)<<"GPUTotal" << setw(10) << "Total"
<< "Description\n";
cout<<TAB<<setw(10)<<""<<setw(10)<<""<<setw(8)<<""<<setw(10)<<"(ms)"<<setw(10)<<"Speedup\n";
cout << resetiosflags(ios_base::left);
}
void TestSystem::writeHeading()
{
if (!record_)
{
recordname_ += "_OCL.csv";
record_ = fopen(recordname_.c_str(), "w");
if(record_ == NULL)
{
cout<<".csv file open failed.\n";
exit(0);
}
}
fprintf(record_, "NAME,DESCRIPTION,ACCURACY,DIFFERENCE,CPU (ms),GPU (ms),SPEEDUP,GPUTOTAL (ms),TOTALSPEEDUP,GPU Min (ms),GPU Max (ms), Standard deviation (ms)\n");
fflush(record_);
}
void TestSystem::printSummary()
{
cout << setiosflags(ios_base::fixed);
cout << "\naverage GPU speedup: x"
<< setprecision(3) << speedup_total_ / std::max(1, num_subtests_called_)
<< endl;
cout << "\nGPU exceeded: "
<< setprecision(3) << speedup_faster_count_
<< "\nGPU passed: "
<< setprecision(3) << speedup_equal_count_
<< "\nGPU failed: "
<< setprecision(3) << speedup_slower_count_
<< endl;
cout << "\nGPU exceeded rate: "
<< setprecision(3) << (float)speedup_faster_count_ / std::max(1, num_subtests_called_) * 100
<< "%"
<< "\nGPU passed rate: "
<< setprecision(3) << (float)speedup_equal_count_ / std::max(1, num_subtests_called_) * 100
<< "%"
<< "\nGPU failed rate: "
<< setprecision(3) << (float)speedup_slower_count_ / std::max(1, num_subtests_called_) * 100
<< "%"
<< endl;
cout << "\naverage GPUTOTAL speedup: x"
<< setprecision(3) << speedup_full_total_ / std::max(1, num_subtests_called_)
<< endl;
cout << "\nGPUTOTAL exceeded: "
<< setprecision(3) << speedup_full_faster_count_
<< "\nGPUTOTAL passed: "
<< setprecision(3) << speedup_full_equal_count_
<< "\nGPUTOTAL failed: "
<< setprecision(3) << speedup_full_slower_count_
<< endl;
cout << "\nGPUTOTAL exceeded rate: "
<< setprecision(3) << (float)speedup_full_faster_count_ / std::max(1, num_subtests_called_) * 100
<< "%"
<< "\nGPUTOTAL passed rate: "
<< setprecision(3) << (float)speedup_full_equal_count_ / std::max(1, num_subtests_called_) * 100
<< "%"
<< "\nGPUTOTAL failed rate: "
<< setprecision(3) << (float)speedup_full_slower_count_ / std::max(1, num_subtests_called_) * 100
<< "%"
<< endl;
cout << resetiosflags(ios_base::fixed);
}
enum GTestColor {
COLOR_DEFAULT,
COLOR_RED,
COLOR_GREEN,
COLOR_YELLOW
};
#if GTEST_OS_WINDOWS&&!GTEST_OS_WINDOWS_MOBILE
// Returns the character attribute for the given color.
static WORD GetColorAttribute(GTestColor color) {
switch (color) {
case COLOR_RED: return FOREGROUND_RED;
case COLOR_GREEN: return FOREGROUND_GREEN;
case COLOR_YELLOW: return FOREGROUND_RED | FOREGROUND_GREEN;
default: return 0;
}
}
#else
static const char* GetAnsiColorCode(GTestColor color) {
switch (color) {
case COLOR_RED: return "1";
case COLOR_GREEN: return "2";
case COLOR_YELLOW: return "3";
default: return NULL;
};
}
#endif
static void printMetricsUti(double cpu_time, double gpu_time, double gpu_full_time, double speedup, double fullspeedup, std::stringstream& stream, std::stringstream& cur_subtest_description)
{
//cout <<TAB<< setw(7) << stream.str();
cout <<TAB;
stream.str("");
stream << cpu_time;
cout << setw(10) << stream.str();
stream.str("");
stream << gpu_time;
cout << setw(10) << stream.str();
stream.str("");
stream << "x" << setprecision(3) << speedup;
cout << setw(8) << stream.str();
stream.str("");
stream << gpu_full_time;
cout << setw(10) << stream.str();
stream.str("");
stream << "x" << setprecision(3) << fullspeedup;
cout << setw(10) << stream.str();
cout << cur_subtest_description.str();
cout << resetiosflags(ios_base::left) << endl;
}
void TestSystem::printMetrics(int is_accurate, double cpu_time, double gpu_time, double gpu_full_time, double speedup, double fullspeedup)
{
cout << setiosflags(ios_base::left);
stringstream stream;
std::stringstream &cur_subtest_description = getCurSubtestDescription();
#if GTEST_OS_WINDOWS&&!GTEST_OS_WINDOWS_MOBILE
WORD color;
const HANDLE stdout_handle = GetStdHandle(STD_OUTPUT_HANDLE);
// Gets the current text color.
CONSOLE_SCREEN_BUFFER_INFO buffer_info;
GetConsoleScreenBufferInfo(stdout_handle, &buffer_info);
const WORD old_color_attrs = buffer_info.wAttributes;
// We need to flush the stream buffers into the console before each
// SetConsoleTextAttribute call lest it affect the text that is already
// printed but has not yet reached the console.
fflush(stdout);
if(is_accurate == 1||is_accurate == -1)
{
color = old_color_attrs;
printMetricsUti(cpu_time, gpu_time, gpu_full_time, speedup, fullspeedup, stream, cur_subtest_description);
}else
{
color = GetColorAttribute(COLOR_RED);
SetConsoleTextAttribute(stdout_handle,
color| FOREGROUND_INTENSITY);
printMetricsUti(cpu_time, gpu_time, gpu_full_time, speedup, fullspeedup, stream, cur_subtest_description);
fflush(stdout);
// Restores the text color.
SetConsoleTextAttribute(stdout_handle, old_color_attrs);
}
#else
GTestColor color = COLOR_RED;
if(is_accurate == 1|| is_accurate == -1)
{
printMetricsUti(cpu_time, gpu_time, gpu_full_time, speedup, fullspeedup, stream, cur_subtest_description);
}else
{
printf("\033[0;3%sm", GetAnsiColorCode(color));
printMetricsUti(cpu_time, gpu_time, gpu_full_time, speedup, fullspeedup, stream, cur_subtest_description);
printf("\033[m"); // Resets the terminal to default.
}
#endif
}
void TestSystem::writeMetrics(double cpu_time, double gpu_time, double gpu_full_time, double speedup, double fullspeedup, double gpu_min, double gpu_max, double std_dev)
{
if (!record_)
{
recordname_ += ".csv";
record_ = fopen(recordname_.c_str(), "w");
}
string _is_accurate_;
if(is_accurate_ == 1)
_is_accurate_ = "Pass";
else if(is_accurate_ == 0)
_is_accurate_ = "Fail";
else if(is_accurate_ == -1)
_is_accurate_ = " ";
else
{
std::cout<<"is_accurate errer: "<<is_accurate_<<"\n";
exit(-1);
}
fprintf(record_, "%s,%s,%s,%.2f,%.3f,%.3f,%.3f,%.3f,%.3f,%.3f,%.3f,%.3f\n",
itname_changed_ ? itname_.c_str() : "",
cur_subtest_description_.str().c_str(),
_is_accurate_.c_str(),
accurate_diff_,
cpu_time, gpu_time, speedup, gpu_full_time, fullspeedup,
gpu_min, gpu_max, std_dev);
if (itname_changed_)
{
itname_changed_ = false;
}
fflush(record_);
}
void TestSystem::writeSummary()
{
if (!record_)
{
recordname_ += ".csv";
record_ = fopen(recordname_.c_str(), "w");
}
fprintf(record_, "\nAverage GPU speedup: %.3f\n"
"exceeded: %d (%.3f%%)\n"
"passed: %d (%.3f%%)\n"
"failed: %d (%.3f%%)\n"
"\nAverage GPUTOTAL speedup: %.3f\n"
"exceeded: %d (%.3f%%)\n"
"passed: %d (%.3f%%)\n"
"failed: %d (%.3f%%)\n",
speedup_total_ / std::max(1, num_subtests_called_),
speedup_faster_count_, (float)speedup_faster_count_ / std::max(1, num_subtests_called_) * 100,
speedup_equal_count_, (float)speedup_equal_count_ / std::max(1, num_subtests_called_) * 100,
speedup_slower_count_, (float)speedup_slower_count_ / std::max(1, num_subtests_called_) * 100,
speedup_full_total_ / std::max(1, num_subtests_called_),
speedup_full_faster_count_, (float)speedup_full_faster_count_ / std::max(1, num_subtests_called_) * 100,
speedup_full_equal_count_, (float)speedup_full_equal_count_ / std::max(1, num_subtests_called_) * 100,
speedup_full_slower_count_, (float)speedup_full_slower_count_ / std::max(1, num_subtests_called_) * 100
);
fflush(record_);
}
void TestSystem::printError(const std::string &msg)
{
if(msg != "CL_INVALID_BUFFER_SIZE")
{
cout << TAB << "[error: " << msg << "] " << cur_subtest_description_.str() << endl;
}
}
void gen(Mat &mat, int rows, int cols, int type, Scalar low, Scalar high)
{
mat.create(rows, cols, type);
RNG rng(0);
rng.fill(mat, RNG::UNIFORM, low, high);
}
string abspath(const string &relpath)
{
return TestSystem::instance().workingDir() + relpath;
}
double checkNorm(const Mat &m)
{
return norm(m, NORM_INF);
}
double checkNorm(const Mat &m1, const Mat &m2)
{
return norm(m1, m2, NORM_INF);
}
double checkSimilarity(const Mat &m1, const Mat &m2)
{
Mat diff;
matchTemplate(m1, m2, diff, TM_CCORR_NORMED);
return std::abs(diff.at<float>(0, 0) - 1.f);
}

View File

@ -40,6 +40,14 @@
//
//M*/
#ifdef __GNUC__
# pragma GCC diagnostic ignored "-Wmissing-declarations"
# if defined __clang__ || defined __APPLE__
# pragma GCC diagnostic ignored "-Wmissing-prototypes"
# pragma GCC diagnostic ignored "-Wextra"
# endif
#endif
#ifndef __OPENCV_PERF_PRECOMP_HPP__
#define __OPENCV_PERF_PRECOMP_HPP__
@ -58,7 +66,9 @@
#include <cstdio>
#include <vector>
#include <numeric>
#include "opencv2/core.hpp"
#include "opencv2/core/utility.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/calib3d.hpp"
@ -67,456 +77,38 @@
#include "opencv2/features2d.hpp"
#include "opencv2/ocl.hpp"
#include "opencv2/ts.hpp"
#include "opencv2/ts/ts_perf.hpp"
#include "opencv2/ts/ts_gtest.h"
#include "opencv2/core/utility.hpp"
#define Min_Size 1000
#define Max_Size 4000
#define Multiple 2
#define TAB " "
using namespace std;
using namespace cv;
void gen(Mat &mat, int rows, int cols, int type, Scalar low, Scalar high);
void gen(Mat &mat, int rows, int cols, int type, int low, int high, int n);
string abspath(const string &relpath);
typedef struct
{
short x;
short y;
} COOR;
COOR do_meanShift(int x0, int y0, uchar *sptr, uchar *dptr, int sstep,
cv::Size size, int sp, int sr, int maxIter, float eps, int *tab);
void meanShiftProc_(const Mat &src_roi, Mat &dst_roi, Mat &dstCoor_roi,
int sp, int sr, cv::TermCriteria crit);
template<class T1, class T2>
int ExpectedEQ(T1 expected, T2 actual)
{
if(expected == actual)
return 1;
return 0;
}
template<class T1>
int EeceptDoubleEQ(T1 expected, T1 actual)
{
testing::internal::Double lhs(expected);
testing::internal::Double rhs(actual);
if (lhs.AlmostEquals(rhs))
{
return 1;
}
return 0;
}
template<class T>
int AssertEQ(T expected, T actual)
{
if(expected == actual)
{
return 1;
}
return 0;
}
int ExceptDoubleNear(double val1, double val2, double abs_error);
bool match_rect(cv::Rect r1, cv::Rect r2, int threshold);
double checkNorm(const cv::Mat &m);
double checkNorm(const cv::Mat &m1, const cv::Mat &m2);
double checkSimilarity(const cv::Mat &m1, const cv::Mat &m2);
int ExpectedMatNear(cv::Mat dst, cv::Mat cpu_dst, double eps);
int ExceptedMatSimilar(cv::Mat dst, cv::Mat cpu_dst, double eps);
class Runnable
{
public:
explicit Runnable(const std::string &runname): name_(runname) {}
virtual ~Runnable() {}
const std::string &name() const
{
return name_;
}
virtual void run() = 0;
private:
std::string name_;
};
class TestSystem
{
public:
static TestSystem &instance()
{
static TestSystem me;
return me;
}
void setWorkingDir(const std::string &val)
{
working_dir_ = val;
}
const std::string &workingDir() const
{
return working_dir_;
}
void setTestFilter(const std::string &val)
{
test_filter_ = val;
}
const std::string &testFilter() const
{
return test_filter_;
}
void setNumIters(int num_iters)
{
num_iters_ = num_iters;
}
void setGPUWarmupIters(int num_iters)
{
gpu_warmup_iters_ = num_iters;
}
void setCPUIters(int num_iters)
{
cpu_num_iters_ = num_iters;
}
void setTopThreshold(double top)
{
top_ = top;
}
void setBottomThreshold(double bottom)
{
bottom_ = bottom;
}
void addInit(Runnable *init)
{
inits_.push_back(init);
}
void addTest(Runnable *test)
{
tests_.push_back(test);
}
void run();
// It's public because OpenCV callback uses it
void printError(const std::string &msg);
std::stringstream &startNewSubtest()
{
finishCurrentSubtest();
return cur_subtest_description_;
}
bool stop() const
{
return cur_iter_idx_ >= num_iters_;
}
bool cpu_stop() const
{
return cur_iter_idx_ >= cpu_num_iters_;
}
int get_cur_iter_idx()
{
return cur_iter_idx_;
}
int get_cpu_num_iters()
{
return cpu_num_iters_;
}
bool warmupStop()
{
return cur_warmup_idx_++ >= gpu_warmup_iters_;
}
void warmupComplete()
{
cur_warmup_idx_ = 0;
}
void cpuOn()
{
cpu_started_ = cv::getTickCount();
}
void cpuOff()
{
int64 delta = cv::getTickCount() - cpu_started_;
cpu_times_.push_back(delta);
++cur_iter_idx_;
}
void cpuComplete()
{
cpu_elapsed_ += meanTime(cpu_times_);
cur_subtest_is_empty_ = false;
cur_iter_idx_ = 0;
}
void gpuOn()
{
gpu_started_ = cv::getTickCount();
}
void gpuOff()
{
int64 delta = cv::getTickCount() - gpu_started_;
gpu_times_.push_back(delta);
++cur_iter_idx_;
}
void gpuComplete()
{
gpu_elapsed_ += meanTime(gpu_times_);
cur_subtest_is_empty_ = false;
cur_iter_idx_ = 0;
}
void gpufullOn()
{
gpu_full_started_ = cv::getTickCount();
}
void gpufullOff()
{
int64 delta = cv::getTickCount() - gpu_full_started_;
gpu_full_times_.push_back(delta);
++cur_iter_idx_;
}
void gpufullComplete()
{
gpu_full_elapsed_ += meanTime(gpu_full_times_);
cur_subtest_is_empty_ = false;
cur_iter_idx_ = 0;
}
bool isListMode() const
{
return is_list_mode_;
}
void setListMode(bool value)
{
is_list_mode_ = value;
}
void setRecordName(const std::string &name)
{
recordname_ = name;
}
void setCurrentTest(const std::string &name)
{
itname_ = name;
itname_changed_ = true;
}
void setAccurate(int accurate, double diff)
{
is_accurate_ = accurate;
accurate_diff_ = diff;
}
void ExpectMatsNear(vector<Mat>& dst, vector<Mat>& cpu_dst, vector<double>& eps)
{
assert(dst.size() == cpu_dst.size());
assert(cpu_dst.size() == eps.size());
is_accurate_ = 1;
for(size_t i=0; i<dst.size(); i++)
{
double cur_diff = checkNorm(dst[i], cpu_dst[i]);
accurate_diff_ = max(accurate_diff_, cur_diff);
if(cur_diff > eps[i])
is_accurate_ = 0;
}
}
void ExpectedMatNear(cv::Mat& dst, cv::Mat& cpu_dst, double eps)
{
assert(dst.type() == cpu_dst.type());
assert(dst.size() == cpu_dst.size());
accurate_diff_ = checkNorm(dst, cpu_dst);
if(accurate_diff_ <= eps)
is_accurate_ = 1;
else
is_accurate_ = 0;
}
void ExceptedMatSimilar(cv::Mat& dst, cv::Mat& cpu_dst, double eps)
{
assert(dst.type() == cpu_dst.type());
assert(dst.size() == cpu_dst.size());
accurate_diff_ = checkSimilarity(cpu_dst, dst);
if(accurate_diff_ <= eps)
is_accurate_ = 1;
else
is_accurate_ = 0;
}
std::stringstream &getCurSubtestDescription()
{
return cur_subtest_description_;
}
private:
TestSystem():
cur_subtest_is_empty_(true), cpu_elapsed_(0),
gpu_elapsed_(0), gpu_full_elapsed_(0), speedup_total_(0.0),
num_subtests_called_(0),
speedup_faster_count_(0), speedup_slower_count_(0), speedup_equal_count_(0),
speedup_full_faster_count_(0), speedup_full_slower_count_(0), speedup_full_equal_count_(0), is_list_mode_(false),
num_iters_(10), cpu_num_iters_(2),
gpu_warmup_iters_(1), cur_iter_idx_(0), cur_warmup_idx_(0),
record_(0), recordname_("performance"), itname_changed_(true),
is_accurate_(-1), accurate_diff_(0.)
{
cpu_times_.reserve(num_iters_);
gpu_times_.reserve(num_iters_);
gpu_full_times_.reserve(num_iters_);
}
void finishCurrentSubtest();
void resetCurrentSubtest()
{
cpu_elapsed_ = 0;
gpu_elapsed_ = 0;
gpu_full_elapsed_ = 0;
cur_subtest_description_.str("");
cur_subtest_is_empty_ = true;
cur_iter_idx_ = 0;
cur_warmup_idx_ = 0;
cpu_times_.clear();
gpu_times_.clear();
gpu_full_times_.clear();
is_accurate_ = -1;
accurate_diff_ = 0.;
}
double meanTime(const std::vector<int64> &samples);
void printHeading();
void printSummary();
void printMetrics(int is_accurate, double cpu_time, double gpu_time = 0.0f, double gpu_full_time = 0.0f, double speedup = 0.0f, double fullspeedup = 0.0f);
void writeHeading();
void writeSummary();
void writeMetrics(double cpu_time, double gpu_time = 0.0f, double gpu_full_time = 0.0f,
double speedup = 0.0f, double fullspeedup = 0.0f,
double gpu_min = 0.0f, double gpu_max = 0.0f, double std_dev = 0.0f);
std::string working_dir_;
std::string test_filter_;
std::vector<Runnable *> inits_;
std::vector<Runnable *> tests_;
std::stringstream cur_subtest_description_;
bool cur_subtest_is_empty_;
int64 cpu_started_;
int64 gpu_started_;
int64 gpu_full_started_;
double cpu_elapsed_;
double gpu_elapsed_;
double gpu_full_elapsed_;
double speedup_total_;
double speedup_full_total_;
int num_subtests_called_;
int speedup_faster_count_;
int speedup_slower_count_;
int speedup_equal_count_;
int speedup_full_faster_count_;
int speedup_full_slower_count_;
int speedup_full_equal_count_;
bool is_list_mode_;
double top_;
double bottom_;
int num_iters_;
int cpu_num_iters_; //there's no need to set cpu running same times with gpu
int gpu_warmup_iters_; //gpu warm up times, default is 1
int cur_iter_idx_;
int cur_warmup_idx_; //current gpu warm up times
std::vector<int64> cpu_times_;
std::vector<int64> gpu_times_;
std::vector<int64> gpu_full_times_;
FILE *record_;
std::string recordname_;
std::string itname_;
bool itname_changed_;
int is_accurate_;
double accurate_diff_;
};
#define GLOBAL_INIT(name) \
struct name##_init: Runnable { \
name##_init(): Runnable(#name) { \
TestSystem::instance().addInit(this); \
} \
void run(); \
} name##_init_instance; \
void name##_init::run()
#define PERFTEST(name) \
struct name##_test: Runnable { \
name##_test(): Runnable(#name) { \
TestSystem::instance().addTest(this); \
} \
void run(); \
} name##_test_instance; \
void name##_test::run()
#define SUBTEST TestSystem::instance().startNewSubtest()
#define CPU_ON \
while (!TestSystem::instance().cpu_stop()) { \
TestSystem::instance().cpuOn()
#define CPU_OFF \
TestSystem::instance().cpuOff(); \
} TestSystem::instance().cpuComplete()
#define GPU_ON \
while (!TestSystem::instance().stop()) { \
TestSystem::instance().gpuOn()
#define GPU_OFF \
ocl::finish(); \
TestSystem::instance().gpuOff(); \
} TestSystem::instance().gpuComplete()
#define GPU_FULL_ON \
while (!TestSystem::instance().stop()) { \
TestSystem::instance().gpufullOn()
#define GPU_FULL_OFF \
TestSystem::instance().gpufullOff(); \
} TestSystem::instance().gpufullComplete()
#define WARMUP_ON \
while (!TestSystem::instance().warmupStop()) {
#define WARMUP_OFF \
ocl::finish(); \
} TestSystem::instance().warmupComplete()
#define OCL_SIZE_1000 Size(1000, 1000)
#define OCL_SIZE_2000 Size(2000, 2000)
#define OCL_SIZE_4000 Size(4000, 4000)
#define OCL_TYPICAL_MAT_SIZES ::testing::Values(OCL_SIZE_1000, OCL_SIZE_2000, OCL_SIZE_4000)
#define OCL_PERF_ENUM(type, ...) ::testing::Values(type, ## __VA_ARGS__ )
#define IMPL_OCL "ocl"
#define IMPL_GPU "gpu"
#define IMPL_PLAIN "plain"
#define RUN_OCL_IMPL (IMPL_OCL == getSelectedImpl())
#define RUN_PLAIN_IMPL (IMPL_PLAIN == getSelectedImpl())
#ifdef HAVE_OPENCV_GPU
# define RUN_GPU_IMPL (IMPL_GPU == getSelectedImpl())
#endif
#ifdef HAVE_OPENCV_GPU
#define OCL_PERF_ELSE \
if (RUN_GPU_IMPL) \
CV_TEST_FAIL_NO_IMPL(); \
else \
CV_TEST_FAIL_NO_IMPL();
#else
#define OCL_PERF_ELSE \
CV_TEST_FAIL_NO_IMPL();
#endif
#endif

View File

@ -45,88 +45,80 @@
//M*/
#include "perf_precomp.hpp"
using namespace perf;
using std::tr1::tuple;
using std::tr1::get;
///////////// pyrDown //////////////////////
PERFTEST(pyrDown)
typedef Size_MatType pyrDownFixture;
PERF_TEST_P(pyrDownFixture, pyrDown,
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
OCL_PERF_ENUM(CV_8UC1, CV_8UC4)))
{
Mat src, dst, ocl_dst;
int all_type[] = {CV_8UC1, CV_8UC4};
std::string type_name[] = {"CV_8UC1", "CV_8UC4"};
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
Mat src(srcSize, type), dst;
Size dstSize((srcSize.height + 1) >> 1, (srcSize.width + 1) >> 1);
dst.create(dstSize, type);
declare.in(src, WARMUP_RNG).out(dst);
if (RUN_OCL_IMPL)
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j] ;
ocl::oclMat oclSrc(src), oclDst(dstSize, type);
gen(src, size, size, all_type[j], 0, 256);
TEST_CYCLE() ocl::pyrDown(oclSrc, oclDst);
pyrDown(src, dst);
oclDst.download(dst);
CPU_ON;
pyrDown(src, dst);
CPU_OFF;
ocl::oclMat d_src(src);
ocl::oclMat d_dst;
WARMUP_ON;
ocl::pyrDown(d_src, d_dst);
WARMUP_OFF;
GPU_ON;
ocl::pyrDown(d_src, d_dst);
GPU_OFF;
GPU_FULL_ON;
d_src.upload(src);
ocl::pyrDown(d_src, d_dst);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
TestSystem::instance().ExpectedMatNear(dst, ocl_dst, dst.depth() == CV_32F ? 1e-4f : 1.0f);
}
SANITY_CHECK(dst);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() pyrDown(src, dst);
SANITY_CHECK(dst);
}
else
OCL_PERF_ELSE
}
///////////// pyrUp ////////////////////////
PERFTEST(pyrUp)
typedef Size_MatType pyrUpFixture;
PERF_TEST_P(pyrUpFixture, pyrUp,
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
OCL_PERF_ENUM(CV_8UC1, CV_8UC4)))
{
Mat src, dst, ocl_dst;
int all_type[] = {CV_8UC1, CV_8UC4};
std::string type_name[] = {"CV_8UC1", "CV_8UC4"};
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
for (int size = 500; size <= 2000; size *= 2)
Mat src(srcSize, type), dst;
Size dstSize(srcSize.height << 1, srcSize.width << 1);
dst.create(dstSize, type);
declare.in(src, WARMUP_RNG).out(dst);
if (RUN_OCL_IMPL)
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j] ;
ocl::oclMat oclSrc(src), oclDst(dstSize, type);
gen(src, size, size, all_type[j], 0, 256);
TEST_CYCLE() ocl::pyrDown(oclSrc, oclDst);
pyrUp(src, dst);
oclDst.download(dst);
CPU_ON;
pyrUp(src, dst);
CPU_OFF;
ocl::oclMat d_src(src);
ocl::oclMat d_dst;
WARMUP_ON;
ocl::pyrUp(d_src, d_dst);
WARMUP_OFF;
GPU_ON;
ocl::pyrUp(d_src, d_dst);
GPU_OFF;
GPU_FULL_ON;
d_src.upload(src);
ocl::pyrUp(d_src, d_dst);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
TestSystem::instance().ExpectedMatNear(dst, ocl_dst, (src.depth() == CV_32F ? 1e-4f : 1.0));
}
SANITY_CHECK(dst);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() pyrDown(src, dst);
SANITY_CHECK(dst);
}
else
OCL_PERF_ELSE
}

View File

@ -45,110 +45,97 @@
//M*/
#include "perf_precomp.hpp"
using namespace perf;
using std::tr1::tuple;
using std::tr1::get;
///////////// Merge////////////////////////
PERFTEST(Merge)
typedef Size_MatType MergeFixture;
PERF_TEST_P(MergeFixture, Merge,
::testing::Combine(::testing::Values(OCL_SIZE_1000, OCL_SIZE_2000),
OCL_PERF_ENUM(CV_8U, CV_32F)))
{
Mat dst, ocl_dst;
ocl::oclMat d_dst;
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int depth = get<1>(params), channels = 3;
int channels = 4;
int all_type[] = {CV_8UC1, CV_32FC1};
std::string type_name[] = {"CV_8UC1", "CV_32FC1"};
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
const int dstType = CV_MAKE_TYPE(depth, channels);
Mat dst(srcSize, dstType);
vector<Mat> src(channels);
for (vector<Mat>::iterator i = src.begin(), end = src.end(); i != end; ++i)
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j] ;
Size size1 = Size(size, size);
std::vector<Mat> src(channels);
for (int i = 0; i < channels; ++i)
{
src[i] = Mat(size1, all_type[j], cv::Scalar::all(i));
}
merge(src, dst);
CPU_ON;
merge(src, dst);
CPU_OFF;
std::vector<ocl::oclMat> d_src(channels);
for (int i = 0; i < channels; ++i)
{
d_src[i] = ocl::oclMat(size1, all_type[j], cv::Scalar::all(i));
}
WARMUP_ON;
ocl::merge(d_src, d_dst);
WARMUP_OFF;
GPU_ON;
ocl::merge(d_src, d_dst);
GPU_OFF;
GPU_FULL_ON;
for (int i = 0; i < channels; ++i)
{
d_src[i] = ocl::oclMat(size1, all_type[j], cv::Scalar::all(i));
}
ocl::merge(d_src, d_dst);
d_dst.download(ocl_dst);
GPU_FULL_OFF;
TestSystem::instance().ExpectedMatNear(dst, ocl_dst, 0.0);
}
i->create(srcSize, CV_MAKE_TYPE(depth, 1));
declare.in(*i, WARMUP_RNG);
}
declare.out(dst);
if (RUN_OCL_IMPL)
{
ocl::oclMat oclDst(srcSize, dstType);
vector<ocl::oclMat> oclSrc(src.size());
for (vector<ocl::oclMat>::size_type i = 0, end = src.size(); i < end; ++i)
oclSrc[i] = src[i];
TEST_CYCLE() cv::ocl::merge(oclSrc, oclDst);
oclDst.download(dst);
SANITY_CHECK(dst);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() cv::merge(src, dst);
SANITY_CHECK(dst);
}
else
OCL_PERF_ELSE
}
///////////// Split////////////////////////
PERFTEST(Split)
typedef Size_MatType SplitFixture;
PERF_TEST_P(SplitFixture, Split,
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
OCL_PERF_ENUM(CV_8U, CV_32F)))
{
//int channels = 4;
int all_type[] = {CV_8UC1, CV_32FC1};
std::string type_name[] = {"CV_8UC1", "CV_32FC1"};
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int depth = get<1>(params), channels = 3;
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
Mat src(srcSize, CV_MAKE_TYPE(depth, channels));
declare.in(src, WARMUP_RNG);
if (RUN_OCL_IMPL)
{
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
{
SUBTEST << size << 'x' << size << "; " << type_name[j];
Size size1 = Size(size, size);
ocl::oclMat oclSrc(src);
vector<ocl::oclMat> oclDst(channels, ocl::oclMat(srcSize, CV_MAKE_TYPE(depth, 1)));
Mat src(size1, CV_MAKE_TYPE(all_type[j], 4), cv::Scalar(1, 2, 3, 4));
std::vector<cv::Mat> dst, ocl_dst(4);
split(src, dst);
CPU_ON;
split(src, dst);
CPU_OFF;
ocl::oclMat d_src(size1, CV_MAKE_TYPE(all_type[j], 4), cv::Scalar(1, 2, 3, 4));
std::vector<cv::ocl::oclMat> d_dst;
WARMUP_ON;
ocl::split(d_src, d_dst);
WARMUP_OFF;
GPU_ON;
ocl::split(d_src, d_dst);
GPU_OFF;
GPU_FULL_ON;
d_src.upload(src);
ocl::split(d_src, d_dst);
for(size_t i = 0; i < dst.size(); i++)
d_dst[i].download(ocl_dst[i]);
GPU_FULL_OFF;
vector<double> eps(4, 0.);
TestSystem::instance().ExpectMatsNear(dst, ocl_dst, eps);
}
TEST_CYCLE() cv::ocl::split(oclSrc, oclDst);
ASSERT_EQ(3, channels);
Mat dst0, dst1, dst2;
oclDst[0].download(dst0);
oclDst[1].download(dst1);
oclDst[2].download(dst2);
SANITY_CHECK(dst0);
SANITY_CHECK(dst1);
SANITY_CHECK(dst2);
}
else if (RUN_PLAIN_IMPL)
{
vector<Mat> dst(channels, Mat(srcSize, CV_MAKE_TYPE(depth, 1)));
TEST_CYCLE() cv::split(src, dst);
ASSERT_EQ(3, channels);
Mat & dst0 = dst[0], & dst1 = dst[1], & dst2 = dst[2];
SANITY_CHECK(dst0);
SANITY_CHECK(dst1);
SANITY_CHECK(dst2);
}
else
OCL_PERF_ELSE
}

View File

@ -2337,7 +2337,7 @@ void cv::ocl::pow(const oclMat &x, double p, oclMat &y)
return;
}
CV_Assert((x.type() == y.type() && x.size() == y.size() && x.depth() == CV_32F) || x.depth() == CV_64F);
CV_Assert(x.depth() == CV_32F || x.depth() == CV_64F);
y.create(x.size(), x.type());
String kernelName = "arithm_pow";

View File

@ -0,0 +1,63 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
typedef ::testing::TestWithParam<cv::Size> normFixture;
TEST_P(normFixture, DISABLED_accuracy)
{
const cv::Size srcSize = GetParam();
cv::Mat src1(srcSize, CV_8UC1), src2(srcSize, CV_8UC1);
cv::randu(src1, 0, 2);
cv::randu(src2, 0, 2);
cv::ocl::oclMat oclSrc1(src1), oclSrc2(src2);
double value = cv::norm(src1, src2, cv::NORM_INF);
double oclValue = cv::ocl::norm(oclSrc1, oclSrc2, cv::NORM_INF);
ASSERT_EQ(value, oclValue);
}
INSTANTIATE_TEST_CASE_P(oclNormTest, normFixture,
::testing::Values(cv::Size(500, 500), cv::Size(1000, 1000)));

View File

@ -7,9 +7,9 @@
<key>CFBundleIdentifier</key>
<string>org.opencv</string>
<key>CFBundleVersion</key>
<string>${VERSION}</string>
<string>${OPENCV_LIBVERSION}</string>
<key>CFBundleShortVersionString</key>
<string>${VERSION}</string>
<string>${OPENCV_LIBVERSION}</string>
<key>CFBundleSignature</key>
<string>????</string>
<key>CFBundlePackageType</key>

View File

@ -71,19 +71,11 @@ def put_framework_together(srcroot, dstroot):
os.makedirs(framework_dir)
os.chdir(framework_dir)
# determine OpenCV version (without subminor part)
tdir0 = "../build/" + targetlist[0]
cfg = open(tdir0 + "/cvconfig.h", "rt")
for l in cfg.readlines():
if l.startswith("#define VERSION"):
opencv_version = l[l.find("\"")+1:l.rfind(".")]
break
cfg.close()
# form the directory tree
dstdir = "Versions/A"
os.makedirs(dstdir + "/Resources")
tdir0 = "../build/" + targetlist[0]
# copy headers
shutil.copytree(tdir0 + "/install/include/opencv2", dstdir + "/Headers")
@ -91,13 +83,8 @@ def put_framework_together(srcroot, dstroot):
wlist = " ".join(["../build/" + t + "/lib/Release/libopencv_world.a" for t in targetlist])
os.system("lipo -create " + wlist + " -o " + dstdir + "/opencv2")
# form Info.plist
srcfile = open(srcroot + "/platforms/ios/Info.plist.in", "rt")
dstfile = open(dstdir + "/Resources/Info.plist", "wt")
for l in srcfile.readlines():
dstfile.write(l.replace("${VERSION}", opencv_version))
srcfile.close()
dstfile.close()
# copy Info.plist
shutil.copyfile(tdir0 + "/ios/Info.plist", dstdir + "/Resources/Info.plist")
# make symbolic links
os.symlink("A", "Versions/Current")

View File

@ -212,7 +212,7 @@ int main(int argc, const char* argv[])
#if defined(HAVE_OPENCV_OCL)
cout << "Mode : " << (useCuda ? "CUDA" : useOcl? "OpenCL" : "CPU") << endl;
#else
cout << "Mode : " << (useGpu ? "CUDA" : "CPU") << endl;
cout << "Mode : " << (useCuda ? "CUDA" : "CPU") << endl;
#endif
}