Updating STAR detector and FREAK descriptor to work with large and/or 16-bit images
This commit is contained in:
parent
458ac2592b
commit
2cc11e2c6a
@ -397,8 +397,16 @@ public:
|
||||
protected:
|
||||
virtual void computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors ) const;
|
||||
void buildPattern();
|
||||
uchar meanIntensity( const Mat& image, const Mat& integral, const float kp_x, const float kp_y,
|
||||
const unsigned int scale, const unsigned int rot, const unsigned int point ) const;
|
||||
|
||||
template <typename imgType, typename iiType>
|
||||
imgType meanIntensity( const Mat& image, const Mat& integral, const float kp_x, const float kp_y,
|
||||
const unsigned int scale, const unsigned int rot, const unsigned int point ) const;
|
||||
|
||||
template <typename srcMatType, typename iiMatType>
|
||||
void computeDescriptors( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors ) const;
|
||||
|
||||
template <typename srcMatType>
|
||||
void extractDescriptor(srcMatType *pointsValue, void ** ptr) const;
|
||||
|
||||
bool orientationNormalized; //true if the orientation is normalized, false otherwise
|
||||
bool scaleNormalized; //true if the scale is normalized, false otherwise
|
||||
|
@ -224,13 +224,128 @@ void FREAK::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat
|
||||
|
||||
((FREAK*)this)->buildPattern();
|
||||
|
||||
// Convert to gray if not already
|
||||
Mat grayImage = image;
|
||||
if( image.channels() > 1 )
|
||||
cvtColor( image, grayImage, COLOR_BGR2GRAY );
|
||||
|
||||
// Use 32-bit integers if we won't overflow in the integral image
|
||||
if ((image.depth() == CV_8U || image.depth() == CV_8S) &&
|
||||
(image.rows * image.cols) < 8388608 ) // 8388608 = 2 ^ (32 - 8(bit depth) - 1(sign bit))
|
||||
{
|
||||
// Create the integral image appropriate for our type & usage
|
||||
if (image.depth() == CV_8U)
|
||||
computeDescriptors<uchar, int>(grayImage, keypoints, descriptors);
|
||||
else if (image.depth() == CV_8S)
|
||||
computeDescriptors<char, int>(grayImage, keypoints, descriptors);
|
||||
else
|
||||
CV_Error( Error::StsUnsupportedFormat, "" );
|
||||
} else {
|
||||
// Create the integral image appropriate for our type & usage
|
||||
if ( image.depth() == CV_8U )
|
||||
computeDescriptors<uchar, double>(grayImage, keypoints, descriptors);
|
||||
else if ( image.depth() == CV_8S )
|
||||
computeDescriptors<char, double>(grayImage, keypoints, descriptors);
|
||||
else if ( image.depth() == CV_16U )
|
||||
computeDescriptors<ushort, double>(grayImage, keypoints, descriptors);
|
||||
else if ( image.depth() == CV_16S )
|
||||
computeDescriptors<short, double>(grayImage, keypoints, descriptors);
|
||||
else
|
||||
CV_Error( Error::StsUnsupportedFormat, "" );
|
||||
}
|
||||
}
|
||||
|
||||
template <typename srcMatType>
|
||||
void FREAK::extractDescriptor(srcMatType *pointsValue, void ** ptr) const
|
||||
{
|
||||
std::bitset<FREAK_NB_PAIRS>** ptrScalar = (std::bitset<FREAK_NB_PAIRS>**) ptr;
|
||||
|
||||
// extracting descriptor preserving the order of SSE version
|
||||
int cnt = 0;
|
||||
for( int n = 7; n < FREAK_NB_PAIRS; n += 128)
|
||||
{
|
||||
for( int m = 8; m--; )
|
||||
{
|
||||
int nm = n-m;
|
||||
for(int kk = nm+15*8; kk >= nm; kk-=8, ++cnt)
|
||||
{
|
||||
(*ptrScalar)->set(kk, pointsValue[descriptionPairs[cnt].i] >= pointsValue[descriptionPairs[cnt].j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
--(*ptrScalar);
|
||||
}
|
||||
|
||||
#if CV_SSE2
|
||||
template <>
|
||||
void FREAK::extractDescriptor(uchar *pointsValue, void ** ptr) const
|
||||
{
|
||||
__m128i** ptrSSE = (__m128i**) ptr;
|
||||
|
||||
// note that comparisons order is modified in each block (but first 128 comparisons remain globally the same-->does not affect the 128,384 bits segmanted matching strategy)
|
||||
int cnt = 0;
|
||||
for( int n = FREAK_NB_PAIRS/128; n-- ; )
|
||||
{
|
||||
__m128i result128 = _mm_setzero_si128();
|
||||
for( int m = 128/16; m--; cnt += 16 )
|
||||
{
|
||||
__m128i operand1 = _mm_set_epi8(pointsValue[descriptionPairs[cnt+0].i],
|
||||
pointsValue[descriptionPairs[cnt+1].i],
|
||||
pointsValue[descriptionPairs[cnt+2].i],
|
||||
pointsValue[descriptionPairs[cnt+3].i],
|
||||
pointsValue[descriptionPairs[cnt+4].i],
|
||||
pointsValue[descriptionPairs[cnt+5].i],
|
||||
pointsValue[descriptionPairs[cnt+6].i],
|
||||
pointsValue[descriptionPairs[cnt+7].i],
|
||||
pointsValue[descriptionPairs[cnt+8].i],
|
||||
pointsValue[descriptionPairs[cnt+9].i],
|
||||
pointsValue[descriptionPairs[cnt+10].i],
|
||||
pointsValue[descriptionPairs[cnt+11].i],
|
||||
pointsValue[descriptionPairs[cnt+12].i],
|
||||
pointsValue[descriptionPairs[cnt+13].i],
|
||||
pointsValue[descriptionPairs[cnt+14].i],
|
||||
pointsValue[descriptionPairs[cnt+15].i]);
|
||||
|
||||
__m128i operand2 = _mm_set_epi8(pointsValue[descriptionPairs[cnt+0].j],
|
||||
pointsValue[descriptionPairs[cnt+1].j],
|
||||
pointsValue[descriptionPairs[cnt+2].j],
|
||||
pointsValue[descriptionPairs[cnt+3].j],
|
||||
pointsValue[descriptionPairs[cnt+4].j],
|
||||
pointsValue[descriptionPairs[cnt+5].j],
|
||||
pointsValue[descriptionPairs[cnt+6].j],
|
||||
pointsValue[descriptionPairs[cnt+7].j],
|
||||
pointsValue[descriptionPairs[cnt+8].j],
|
||||
pointsValue[descriptionPairs[cnt+9].j],
|
||||
pointsValue[descriptionPairs[cnt+10].j],
|
||||
pointsValue[descriptionPairs[cnt+11].j],
|
||||
pointsValue[descriptionPairs[cnt+12].j],
|
||||
pointsValue[descriptionPairs[cnt+13].j],
|
||||
pointsValue[descriptionPairs[cnt+14].j],
|
||||
pointsValue[descriptionPairs[cnt+15].j]);
|
||||
|
||||
__m128i workReg = _mm_min_epu8(operand1, operand2); // emulated "not less than" for 8-bit UNSIGNED integers
|
||||
workReg = _mm_cmpeq_epi8(workReg, operand2); // emulated "not less than" for 8-bit UNSIGNED integers
|
||||
|
||||
workReg = _mm_and_si128(_mm_set1_epi16(short(0x8080 >> m)), workReg); // merge the last 16 bits with the 128bits std::vector until full
|
||||
result128 = _mm_or_si128(result128, workReg);
|
||||
}
|
||||
(**ptrSSE) = result128;
|
||||
++(*ptrSSE);
|
||||
}
|
||||
(*ptrSSE) -= 8;
|
||||
}
|
||||
#endif
|
||||
|
||||
template <typename srcMatType, typename iiMatType>
|
||||
void FREAK::computeDescriptors( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors ) const {
|
||||
|
||||
Mat imgIntegral;
|
||||
integral(image, imgIntegral);
|
||||
integral(image, imgIntegral, DataType<iiMatType>::type);
|
||||
std::vector<int> kpScaleIdx(keypoints.size()); // used to save pattern scale index corresponding to each keypoints
|
||||
const std::vector<int>::iterator ScaleIdxBegin = kpScaleIdx.begin(); // used in std::vector erase function
|
||||
const std::vector<cv::KeyPoint>::iterator kpBegin = keypoints.begin(); // used in std::vector erase function
|
||||
const float sizeCst = static_cast<float>(FREAK_NB_SCALES/(FREAK_LOG2* nOctaves));
|
||||
uchar pointsValue[FREAK_NB_POINTS];
|
||||
srcMatType pointsValue[FREAK_NB_POINTS];
|
||||
int thetaIdx = 0;
|
||||
int direction0;
|
||||
int direction1;
|
||||
@ -275,11 +390,8 @@ void FREAK::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat
|
||||
if( !extAll ) {
|
||||
// extract the best comparisons only
|
||||
descriptors = cv::Mat::zeros((int)keypoints.size(), FREAK_NB_PAIRS/8, CV_8U);
|
||||
#if CV_SSE2
|
||||
__m128i* ptr= (__m128i*) (descriptors.data+(keypoints.size()-1)*descriptors.step[0]);
|
||||
#else
|
||||
std::bitset<FREAK_NB_PAIRS>* ptr = (std::bitset<FREAK_NB_PAIRS>*) (descriptors.data+(keypoints.size()-1)*descriptors.step[0]);
|
||||
#endif
|
||||
void *ptr = descriptors.data+(keypoints.size()-1)*descriptors.step[0];
|
||||
|
||||
for( size_t k = keypoints.size(); k--; ) {
|
||||
// estimate orientation (gradient)
|
||||
if( !orientationNormalized ) {
|
||||
@ -289,7 +401,9 @@ void FREAK::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat
|
||||
else {
|
||||
// get the points intensity value in the un-rotated pattern
|
||||
for( int i = FREAK_NB_POINTS; i--; ) {
|
||||
pointsValue[i] = meanIntensity(image, imgIntegral, keypoints[k].pt.x,keypoints[k].pt.y, kpScaleIdx[k], 0, i);
|
||||
pointsValue[i] = meanIntensity<srcMatType, iiMatType>(image, imgIntegral,
|
||||
keypoints[k].pt.x, keypoints[k].pt.y,
|
||||
kpScaleIdx[k], 0, i);
|
||||
}
|
||||
direction0 = 0;
|
||||
direction1 = 0;
|
||||
@ -310,78 +424,13 @@ void FREAK::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat
|
||||
}
|
||||
// extract descriptor at the computed orientation
|
||||
for( int i = FREAK_NB_POINTS; i--; ) {
|
||||
pointsValue[i] = meanIntensity(image, imgIntegral, keypoints[k].pt.x,keypoints[k].pt.y, kpScaleIdx[k], thetaIdx, i);
|
||||
pointsValue[i] = meanIntensity<srcMatType, iiMatType>(image, imgIntegral,
|
||||
keypoints[k].pt.x, keypoints[k].pt.y,
|
||||
kpScaleIdx[k], thetaIdx, i);
|
||||
}
|
||||
#if CV_SSE2
|
||||
// note that comparisons order is modified in each block (but first 128 comparisons remain globally the same-->does not affect the 128,384 bits segmanted matching strategy)
|
||||
int cnt = 0;
|
||||
for( int n = FREAK_NB_PAIRS/128; n-- ; )
|
||||
{
|
||||
__m128i result128 = _mm_setzero_si128();
|
||||
for( int m = 128/16; m--; cnt += 16 )
|
||||
{
|
||||
__m128i operand1 = _mm_set_epi8(
|
||||
pointsValue[descriptionPairs[cnt+0].i],
|
||||
pointsValue[descriptionPairs[cnt+1].i],
|
||||
pointsValue[descriptionPairs[cnt+2].i],
|
||||
pointsValue[descriptionPairs[cnt+3].i],
|
||||
pointsValue[descriptionPairs[cnt+4].i],
|
||||
pointsValue[descriptionPairs[cnt+5].i],
|
||||
pointsValue[descriptionPairs[cnt+6].i],
|
||||
pointsValue[descriptionPairs[cnt+7].i],
|
||||
pointsValue[descriptionPairs[cnt+8].i],
|
||||
pointsValue[descriptionPairs[cnt+9].i],
|
||||
pointsValue[descriptionPairs[cnt+10].i],
|
||||
pointsValue[descriptionPairs[cnt+11].i],
|
||||
pointsValue[descriptionPairs[cnt+12].i],
|
||||
pointsValue[descriptionPairs[cnt+13].i],
|
||||
pointsValue[descriptionPairs[cnt+14].i],
|
||||
pointsValue[descriptionPairs[cnt+15].i]);
|
||||
|
||||
__m128i operand2 = _mm_set_epi8(
|
||||
pointsValue[descriptionPairs[cnt+0].j],
|
||||
pointsValue[descriptionPairs[cnt+1].j],
|
||||
pointsValue[descriptionPairs[cnt+2].j],
|
||||
pointsValue[descriptionPairs[cnt+3].j],
|
||||
pointsValue[descriptionPairs[cnt+4].j],
|
||||
pointsValue[descriptionPairs[cnt+5].j],
|
||||
pointsValue[descriptionPairs[cnt+6].j],
|
||||
pointsValue[descriptionPairs[cnt+7].j],
|
||||
pointsValue[descriptionPairs[cnt+8].j],
|
||||
pointsValue[descriptionPairs[cnt+9].j],
|
||||
pointsValue[descriptionPairs[cnt+10].j],
|
||||
pointsValue[descriptionPairs[cnt+11].j],
|
||||
pointsValue[descriptionPairs[cnt+12].j],
|
||||
pointsValue[descriptionPairs[cnt+13].j],
|
||||
pointsValue[descriptionPairs[cnt+14].j],
|
||||
pointsValue[descriptionPairs[cnt+15].j]);
|
||||
|
||||
__m128i workReg = _mm_min_epu8(operand1, operand2); // emulated "not less than" for 8-bit UNSIGNED integers
|
||||
workReg = _mm_cmpeq_epi8(workReg, operand2); // emulated "not less than" for 8-bit UNSIGNED integers
|
||||
|
||||
workReg = _mm_and_si128(_mm_set1_epi16(short(0x8080 >> m)), workReg); // merge the last 16 bits with the 128bits std::vector until full
|
||||
result128 = _mm_or_si128(result128, workReg);
|
||||
}
|
||||
(*ptr) = result128;
|
||||
++ptr;
|
||||
}
|
||||
ptr -= 8;
|
||||
#else
|
||||
// extracting descriptor preserving the order of SSE version
|
||||
int cnt = 0;
|
||||
for( int n = 7; n < FREAK_NB_PAIRS; n += 128)
|
||||
{
|
||||
for( int m = 8; m--; )
|
||||
{
|
||||
int nm = n-m;
|
||||
for(int kk = nm+15*8; kk >= nm; kk-=8, ++cnt)
|
||||
{
|
||||
ptr->set(kk, pointsValue[descriptionPairs[cnt].i] >= pointsValue[descriptionPairs[cnt].j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
--ptr;
|
||||
#endif
|
||||
// Extract descriptor
|
||||
extractDescriptor<srcMatType>(pointsValue, &ptr);
|
||||
}
|
||||
}
|
||||
else { // extract all possible comparisons for selection
|
||||
@ -397,7 +446,9 @@ void FREAK::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat
|
||||
else {
|
||||
//get the points intensity value in the un-rotated pattern
|
||||
for( int i = FREAK_NB_POINTS;i--; )
|
||||
pointsValue[i] = meanIntensity(image, imgIntegral, keypoints[k].pt.x,keypoints[k].pt.y, kpScaleIdx[k], 0, i);
|
||||
pointsValue[i] = meanIntensity<srcMatType, iiMatType>(image, imgIntegral,
|
||||
keypoints[k].pt.x,keypoints[k].pt.y,
|
||||
kpScaleIdx[k], 0, i);
|
||||
|
||||
direction0 = 0;
|
||||
direction1 = 0;
|
||||
@ -419,8 +470,9 @@ void FREAK::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat
|
||||
}
|
||||
// get the points intensity value in the rotated pattern
|
||||
for( int i = FREAK_NB_POINTS; i--; ) {
|
||||
pointsValue[i] = meanIntensity(image, imgIntegral, keypoints[k].pt.x,
|
||||
keypoints[k].pt.y, kpScaleIdx[k], thetaIdx, i);
|
||||
pointsValue[i] = meanIntensity<srcMatType, iiMatType>(image, imgIntegral,
|
||||
keypoints[k].pt.x, keypoints[k].pt.y,
|
||||
kpScaleIdx[k], thetaIdx, i);
|
||||
}
|
||||
|
||||
int cnt(0);
|
||||
@ -437,19 +489,19 @@ void FREAK::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat
|
||||
}
|
||||
|
||||
// simply take average on a square patch, not even gaussian approx
|
||||
uchar FREAK::meanIntensity( const cv::Mat& image, const cv::Mat& integral,
|
||||
const float kp_x,
|
||||
const float kp_y,
|
||||
const unsigned int scale,
|
||||
const unsigned int rot,
|
||||
const unsigned int point) const {
|
||||
template <typename imgType, typename iiType>
|
||||
imgType FREAK::meanIntensity( const cv::Mat& image, const cv::Mat& integral,
|
||||
const float kp_x,
|
||||
const float kp_y,
|
||||
const unsigned int scale,
|
||||
const unsigned int rot,
|
||||
const unsigned int point) const {
|
||||
// get point position in image
|
||||
const PatternPoint& FreakPoint = patternLookup[scale*FREAK_NB_ORIENTATION*FREAK_NB_POINTS + rot*FREAK_NB_POINTS + point];
|
||||
const float xf = FreakPoint.x+kp_x;
|
||||
const float yf = FreakPoint.y+kp_y;
|
||||
const int x = int(xf);
|
||||
const int y = int(yf);
|
||||
const int& imagecols = image.cols;
|
||||
|
||||
// get the sigma:
|
||||
const float radius = FreakPoint.sigma;
|
||||
@ -461,19 +513,15 @@ uchar FREAK::meanIntensity( const cv::Mat& image, const cv::Mat& integral,
|
||||
const int r_y = static_cast<int>((yf-y)*1024);
|
||||
const int r_x_1 = (1024-r_x);
|
||||
const int r_y_1 = (1024-r_y);
|
||||
uchar* ptr = image.data+x+y*imagecols;
|
||||
unsigned int ret_val;
|
||||
// linear interpolation:
|
||||
ret_val = (r_x_1*r_y_1*int(*ptr));
|
||||
ptr++;
|
||||
ret_val += (r_x*r_y_1*int(*ptr));
|
||||
ptr += imagecols;
|
||||
ret_val += (r_x*r_y*int(*ptr));
|
||||
ptr--;
|
||||
ret_val += (r_x_1*r_y*int(*ptr));
|
||||
ret_val = r_x_1*r_y_1*int(image.at<imgType>(y , x ))
|
||||
+ r_x *r_y_1*int(image.at<imgType>(y , x+1))
|
||||
+ r_x_1*r_y *int(image.at<imgType>(y+1, x ))
|
||||
+ r_x *r_y *int(image.at<imgType>(y+1, x+1));
|
||||
//return the rounded mean
|
||||
ret_val += 2 * 1024 * 1024;
|
||||
return static_cast<uchar>(ret_val / (4 * 1024 * 1024));
|
||||
return static_cast<imgType>(ret_val / (4 * 1024 * 1024));
|
||||
}
|
||||
|
||||
// expected case:
|
||||
@ -483,15 +531,15 @@ uchar FREAK::meanIntensity( const cv::Mat& image, const cv::Mat& integral,
|
||||
const int y_top = int(yf-radius+0.5);
|
||||
const int x_right = int(xf+radius+1.5);//integral image is 1px wider
|
||||
const int y_bottom = int(yf+radius+1.5);//integral image is 1px higher
|
||||
int ret_val;
|
||||
iiType ret_val;
|
||||
|
||||
ret_val = integral.at<int>(y_bottom,x_right);//bottom right corner
|
||||
ret_val -= integral.at<int>(y_bottom,x_left);
|
||||
ret_val += integral.at<int>(y_top,x_left);
|
||||
ret_val -= integral.at<int>(y_top,x_right);
|
||||
ret_val = integral.at<iiType>(y_bottom,x_right);//bottom right corner
|
||||
ret_val -= integral.at<iiType>(y_bottom,x_left);
|
||||
ret_val += integral.at<iiType>(y_top,x_left);
|
||||
ret_val -= integral.at<iiType>(y_top,x_right);
|
||||
ret_val = ret_val/( (x_right-x_left)* (y_bottom-y_top) );
|
||||
//~ std::cout<<integral.step[1]<<std::endl;
|
||||
return static_cast<uchar>(ret_val);
|
||||
return static_cast<imgType>(ret_val);
|
||||
}
|
||||
|
||||
// pair selection algorithm from a set of training images and corresponding keypoints
|
||||
|
@ -44,20 +44,24 @@
|
||||
namespace cv
|
||||
{
|
||||
|
||||
static void
|
||||
computeIntegralImages( const Mat& matI, Mat& matS, Mat& matT, Mat& _FT )
|
||||
template <typename inMatType, typename outMatType> static void
|
||||
computeIntegralImages( const Mat& matI, Mat& matS, Mat& matT, Mat& _FT,
|
||||
int iiType )
|
||||
{
|
||||
CV_Assert( matI.type() == CV_8U );
|
||||
|
||||
int x, y, rows = matI.rows, cols = matI.cols;
|
||||
|
||||
matS.create(rows + 1, cols + 1, CV_32S);
|
||||
matT.create(rows + 1, cols + 1, CV_32S);
|
||||
_FT.create(rows + 1, cols + 1, CV_32S);
|
||||
matS.create(rows + 1, cols + 1, iiType );
|
||||
matT.create(rows + 1, cols + 1, iiType );
|
||||
_FT.create(rows + 1, cols + 1, iiType );
|
||||
|
||||
const uchar* I = matI.ptr<uchar>();
|
||||
int *S = matS.ptr<int>(), *T = matT.ptr<int>(), *FT = _FT.ptr<int>();
|
||||
int istep = (int)matI.step, step = (int)(matS.step/sizeof(S[0]));
|
||||
const inMatType* I = matI.ptr<inMatType>();
|
||||
|
||||
outMatType *S = matS.ptr<outMatType>();
|
||||
outMatType *T = matT.ptr<outMatType>();
|
||||
outMatType *FT = _FT.ptr<outMatType>();
|
||||
|
||||
int istep = (int)(matI.step/matI.elemSize());
|
||||
int step = (int)(matS.step/matS.elemSize());
|
||||
|
||||
for( x = 0; x <= cols; x++ )
|
||||
S[x] = T[x] = FT[x] = 0;
|
||||
@ -95,14 +99,9 @@ computeIntegralImages( const Mat& matI, Mat& matS, Mat& matT, Mat& _FT )
|
||||
}
|
||||
}
|
||||
|
||||
struct StarFeature
|
||||
{
|
||||
int area;
|
||||
int* p[8];
|
||||
};
|
||||
|
||||
static int
|
||||
StarDetectorComputeResponses( const Mat& img, Mat& responses, Mat& sizes, int maxSize )
|
||||
template <typename iiMatType> static int
|
||||
StarDetectorComputeResponses( const Mat& img, Mat& responses, Mat& sizes,
|
||||
int maxSize, int iiType )
|
||||
{
|
||||
const int MAX_PATTERN = 17;
|
||||
static const int sizes0[] = {1, 2, 3, 4, 6, 8, 11, 12, 16, 22, 23, 32, 45, 46, 64, 90, 128, -1};
|
||||
@ -116,16 +115,21 @@ StarDetectorComputeResponses( const Mat& img, Mat& responses, Mat& sizes, int ma
|
||||
__m128 sizes1_4[MAX_PATTERN];
|
||||
union { int i; float f; } absmask;
|
||||
absmask.i = 0x7fffffff;
|
||||
volatile bool useSIMD = cv::checkHardwareSupport(CV_CPU_SSE2);
|
||||
volatile bool useSIMD = cv::checkHardwareSupport(CV_CPU_SSE2) && iiType == CV_32S;
|
||||
#endif
|
||||
|
||||
struct StarFeature
|
||||
{
|
||||
int area;
|
||||
iiMatType* p[8];
|
||||
};
|
||||
|
||||
StarFeature f[MAX_PATTERN];
|
||||
|
||||
Mat sum, tilted, flatTilted;
|
||||
int y, rows = img.rows, cols = img.cols;
|
||||
int border, npatterns=0, maxIdx=0;
|
||||
|
||||
CV_Assert( img.type() == CV_8UC1 );
|
||||
|
||||
responses.create( img.size(), CV_32F );
|
||||
sizes.create( img.size(), CV_16S );
|
||||
|
||||
@ -139,7 +143,18 @@ StarDetectorComputeResponses( const Mat& img, Mat& responses, Mat& sizes, int ma
|
||||
npatterns += (pairs[npatterns-1][0] >= 0);
|
||||
maxIdx = pairs[npatterns-1][0];
|
||||
|
||||
computeIntegralImages( img, sum, tilted, flatTilted );
|
||||
// Create the integral image appropriate for our type & usage
|
||||
if ( img.type() == CV_8U )
|
||||
computeIntegralImages<uchar, iiMatType>( img, sum, tilted, flatTilted, iiType );
|
||||
else if ( img.type() == CV_8S )
|
||||
computeIntegralImages<char, iiMatType>( img, sum, tilted, flatTilted, iiType );
|
||||
else if ( img.type() == CV_16U )
|
||||
computeIntegralImages<ushort, iiMatType>( img, sum, tilted, flatTilted, iiType );
|
||||
else if ( img.type() == CV_16S )
|
||||
computeIntegralImages<short, iiMatType>( img, sum, tilted, flatTilted, iiType );
|
||||
else
|
||||
CV_Error( Error::StsUnsupportedFormat, "" );
|
||||
|
||||
int step = (int)(sum.step/sum.elemSize());
|
||||
|
||||
for(int i = 0; i <= maxIdx; i++ )
|
||||
@ -148,15 +163,15 @@ StarDetectorComputeResponses( const Mat& img, Mat& responses, Mat& sizes, int ma
|
||||
int ur_area = (2*ur_size + 1)*(2*ur_size + 1);
|
||||
int t_area = t_size*t_size + (t_size + 1)*(t_size + 1);
|
||||
|
||||
f[i].p[0] = sum.ptr<int>() + (ur_size + 1)*step + ur_size + 1;
|
||||
f[i].p[1] = sum.ptr<int>() - ur_size*step + ur_size + 1;
|
||||
f[i].p[2] = sum.ptr<int>() + (ur_size + 1)*step - ur_size;
|
||||
f[i].p[3] = sum.ptr<int>() - ur_size*step - ur_size;
|
||||
f[i].p[0] = sum.ptr<iiMatType>() + (ur_size + 1)*step + ur_size + 1;
|
||||
f[i].p[1] = sum.ptr<iiMatType>() - ur_size*step + ur_size + 1;
|
||||
f[i].p[2] = sum.ptr<iiMatType>() + (ur_size + 1)*step - ur_size;
|
||||
f[i].p[3] = sum.ptr<iiMatType>() - ur_size*step - ur_size;
|
||||
|
||||
f[i].p[4] = tilted.ptr<int>() + (t_size + 1)*step + 1;
|
||||
f[i].p[5] = flatTilted.ptr<int>() - t_size;
|
||||
f[i].p[6] = flatTilted.ptr<int>() + t_size + 1;
|
||||
f[i].p[7] = tilted.ptr<int>() - t_size*step + 1;
|
||||
f[i].p[4] = tilted.ptr<iiMatType>() + (t_size + 1)*step + 1;
|
||||
f[i].p[5] = flatTilted.ptr<iiMatType>() - t_size;
|
||||
f[i].p[6] = flatTilted.ptr<iiMatType>() + t_size + 1;
|
||||
f[i].p[7] = tilted.ptr<iiMatType>() - t_size*step + 1;
|
||||
|
||||
f[i].area = ur_area + t_area;
|
||||
sizes1[i] = sizes0[i];
|
||||
@ -227,7 +242,7 @@ StarDetectorComputeResponses( const Mat& img, Mat& responses, Mat& sizes, int ma
|
||||
|
||||
for(int i = 0; i <= maxIdx; i++ )
|
||||
{
|
||||
const int** p = (const int**)&f[i].p[0];
|
||||
const iiMatType** p = (const iiMatType**)&f[i].p[0];
|
||||
__m128i r0 = _mm_sub_epi32(_mm_loadu_si128((const __m128i*)(p[0]+ofs)),
|
||||
_mm_loadu_si128((const __m128i*)(p[1]+ofs)));
|
||||
__m128i r1 = _mm_sub_epi32(_mm_loadu_si128((const __m128i*)(p[3]+ofs)),
|
||||
@ -269,9 +284,9 @@ StarDetectorComputeResponses( const Mat& img, Mat& responses, Mat& sizes, int ma
|
||||
|
||||
for(int i = 0; i <= maxIdx; i++ )
|
||||
{
|
||||
const int** p = (const int**)&f[i].p[0];
|
||||
vals[i] = p[0][ofs] - p[1][ofs] - p[2][ofs] + p[3][ofs] +
|
||||
p[4][ofs] - p[5][ofs] - p[6][ofs] + p[7][ofs];
|
||||
const iiMatType** p = (const iiMatType**)&f[i].p[0];
|
||||
vals[i] = (int)(p[0][ofs] - p[1][ofs] - p[2][ofs] + p[3][ofs] +
|
||||
p[4][ofs] - p[5][ofs] - p[6][ofs] + p[7][ofs]);
|
||||
}
|
||||
for(int i = 0; i < npatterns; i++ )
|
||||
{
|
||||
@ -429,7 +444,7 @@ StarDetector::StarDetector(int _maxSize, int _responseThreshold,
|
||||
void StarDetector::detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask ) const
|
||||
{
|
||||
Mat grayImage = image;
|
||||
if( image.type() != CV_8U ) cvtColor( image, grayImage, COLOR_BGR2GRAY );
|
||||
if( image.channels() > 1 ) cvtColor( image, grayImage, COLOR_BGR2GRAY );
|
||||
|
||||
(*this)(grayImage, keypoints);
|
||||
KeyPointsFilter::runByPixelsMask( keypoints, mask );
|
||||
@ -438,7 +453,15 @@ void StarDetector::detectImpl( const Mat& image, std::vector<KeyPoint>& keypoint
|
||||
void StarDetector::operator()(const Mat& img, std::vector<KeyPoint>& keypoints) const
|
||||
{
|
||||
Mat responses, sizes;
|
||||
int border = StarDetectorComputeResponses( img, responses, sizes, maxSize );
|
||||
int border;
|
||||
|
||||
// Use 32-bit integers if we won't overflow in the integral image
|
||||
if ((img.depth() == CV_8U || img.depth() == CV_8S) &&
|
||||
(img.rows * img.cols) < 8388608 ) // 8388608 = 2 ^ (32 - 8(bit depth) - 1(sign bit))
|
||||
border = StarDetectorComputeResponses<int>( img, responses, sizes, maxSize, CV_32S );
|
||||
else
|
||||
border = StarDetectorComputeResponses<double>( img, responses, sizes, maxSize, CV_64F );
|
||||
|
||||
keypoints.clear();
|
||||
if( border >= 0 )
|
||||
StarDetectorSuppressNonmax( responses, sizes, keypoints, border,
|
||||
|
6
modules/imgproc/src/sumpixels.cpp
Normal file → Executable file
6
modules/imgproc/src/sumpixels.cpp
Normal file → Executable file
@ -217,6 +217,8 @@ static void integral_##suffix( T* src, size_t srcstep, ST* sum, size_t sumstep,
|
||||
DEF_INTEGRAL_FUNC(8u32s, uchar, int, double)
|
||||
DEF_INTEGRAL_FUNC(8u32f, uchar, float, double)
|
||||
DEF_INTEGRAL_FUNC(8u64f, uchar, double, double)
|
||||
DEF_INTEGRAL_FUNC(16u64f, ushort, double, double)
|
||||
DEF_INTEGRAL_FUNC(16s64f, short, double, double)
|
||||
DEF_INTEGRAL_FUNC(32f, float, float, double)
|
||||
DEF_INTEGRAL_FUNC(32f64f, float, double, double)
|
||||
DEF_INTEGRAL_FUNC(64f, double, double, double)
|
||||
@ -307,6 +309,10 @@ void cv::integral( InputArray _src, OutputArray _sum, OutputArray _sqsum, Output
|
||||
func = (IntegralFunc)integral_8u32f;
|
||||
else if( depth == CV_8U && sdepth == CV_64F )
|
||||
func = (IntegralFunc)integral_8u64f;
|
||||
else if( depth == CV_16U && sdepth == CV_64F )
|
||||
func = (IntegralFunc)integral_16u64f;
|
||||
else if( depth == CV_16S && sdepth == CV_64F )
|
||||
func = (IntegralFunc)integral_16s64f;
|
||||
else if( depth == CV_32F && sdepth == CV_32F )
|
||||
func = (IntegralFunc)integral_32f;
|
||||
else if( depth == CV_32F && sdepth == CV_64F )
|
||||
|
Loading…
x
Reference in New Issue
Block a user