Canny
This commit is contained in:
parent
e299595667
commit
28716d7f30
modules/gpu
@ -792,31 +792,23 @@ private:
|
||||
GpuMat lab, l, ab;
|
||||
};
|
||||
|
||||
struct CV_EXPORTS CannyBuf
|
||||
{
|
||||
void create(const Size& image_size, int apperture_size = 3);
|
||||
void release();
|
||||
|
||||
struct CV_EXPORTS CannyBuf;
|
||||
GpuMat dx, dy;
|
||||
GpuMat mag;
|
||||
GpuMat map;
|
||||
GpuMat st1, st2;
|
||||
Ptr<FilterEngine_GPU> filterDX, filterDY;
|
||||
};
|
||||
|
||||
CV_EXPORTS void Canny(const GpuMat& image, GpuMat& edges, double low_thresh, double high_thresh, int apperture_size = 3, bool L2gradient = false);
|
||||
CV_EXPORTS void Canny(const GpuMat& image, CannyBuf& buf, GpuMat& edges, double low_thresh, double high_thresh, int apperture_size = 3, bool L2gradient = false);
|
||||
CV_EXPORTS void Canny(const GpuMat& dx, const GpuMat& dy, GpuMat& edges, double low_thresh, double high_thresh, bool L2gradient = false);
|
||||
CV_EXPORTS void Canny(const GpuMat& dx, const GpuMat& dy, CannyBuf& buf, GpuMat& edges, double low_thresh, double high_thresh, bool L2gradient = false);
|
||||
|
||||
struct CV_EXPORTS CannyBuf
|
||||
{
|
||||
CannyBuf() {}
|
||||
explicit CannyBuf(const Size& image_size, int apperture_size = 3) {create(image_size, apperture_size);}
|
||||
CannyBuf(const GpuMat& dx_, const GpuMat& dy_);
|
||||
|
||||
void create(const Size& image_size, int apperture_size = 3);
|
||||
|
||||
void release();
|
||||
|
||||
GpuMat dx, dy;
|
||||
GpuMat dx_buf, dy_buf;
|
||||
GpuMat edgeBuf;
|
||||
GpuMat trackBuf1, trackBuf2;
|
||||
Ptr<FilterEngine_GPU> filterDX, filterDY;
|
||||
};
|
||||
|
||||
class CV_EXPORTS ImagePyramid
|
||||
{
|
||||
public:
|
||||
|
@ -43,459 +43,463 @@
|
||||
#if !defined CUDA_DISABLER
|
||||
|
||||
#include <utility>
|
||||
#include <algorithm>
|
||||
#include "internal_shared.hpp"
|
||||
#include "opencv2/gpu/device/common.hpp"
|
||||
#include "opencv2/gpu/device/emulation.hpp"
|
||||
#include "opencv2/gpu/device/transform.hpp"
|
||||
#include "opencv2/gpu/device/functional.hpp"
|
||||
#include "opencv2/gpu/device/utility.hpp"
|
||||
|
||||
using namespace cv::gpu;
|
||||
using namespace cv::gpu::device;
|
||||
|
||||
namespace
|
||||
{
|
||||
struct L1 : binary_function<int, int, float>
|
||||
{
|
||||
__device__ __forceinline__ float operator ()(int x, int y) const
|
||||
{
|
||||
return ::abs(x) + ::abs(y);
|
||||
}
|
||||
|
||||
__device__ __forceinline__ L1() {}
|
||||
__device__ __forceinline__ L1(const L1&) {}
|
||||
};
|
||||
struct L2 : binary_function<int, int, float>
|
||||
{
|
||||
__device__ __forceinline__ float operator ()(int x, int y) const
|
||||
{
|
||||
return ::sqrtf(x * x + y * y);
|
||||
}
|
||||
|
||||
__device__ __forceinline__ L2() {}
|
||||
__device__ __forceinline__ L2(const L2&) {}
|
||||
};
|
||||
}
|
||||
|
||||
namespace cv { namespace gpu { namespace device
|
||||
{
|
||||
namespace canny
|
||||
template <> struct TransformFunctorTraits<L1> : DefaultTransformFunctorTraits<L1>
|
||||
{
|
||||
__global__ void calcSobelRowPass(const PtrStepb src, PtrStepi dx_buf, PtrStepi dy_buf, int rows, int cols)
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
template <> struct TransformFunctorTraits<L2> : DefaultTransformFunctorTraits<L2>
|
||||
{
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
}}}
|
||||
|
||||
namespace
|
||||
{
|
||||
texture<uchar, cudaTextureType2D, cudaReadModeElementType> tex_src(false, cudaFilterModePoint, cudaAddressModeClamp);
|
||||
struct SrcTex
|
||||
{
|
||||
const int xoff;
|
||||
const int yoff;
|
||||
__host__ SrcTex(int _xoff, int _yoff) : xoff(_xoff), yoff(_yoff) {}
|
||||
|
||||
__device__ __forceinline__ int operator ()(int y, int x) const
|
||||
{
|
||||
__shared__ int smem[16][18];
|
||||
return tex2D(tex_src, x + xoff, y + yoff);
|
||||
}
|
||||
};
|
||||
|
||||
const int j = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int i = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
template <class Norm> __global__
|
||||
void calcMagnitude(const SrcTex src, PtrStepi dx, PtrStepi dy, PtrStepSzf mag, const Norm norm)
|
||||
{
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (i < rows)
|
||||
{
|
||||
smem[threadIdx.y][threadIdx.x + 1] = src.ptr(i)[j];
|
||||
if (threadIdx.x == 0)
|
||||
{
|
||||
smem[threadIdx.y][0] = src.ptr(i)[::max(j - 1, 0)];
|
||||
smem[threadIdx.y][17] = src.ptr(i)[::min(j + 16, cols - 1)];
|
||||
}
|
||||
__syncthreads();
|
||||
if (y >= mag.rows || x >= mag.cols)
|
||||
return;
|
||||
|
||||
if (j < cols)
|
||||
{
|
||||
dx_buf.ptr(i)[j] = -smem[threadIdx.y][threadIdx.x] + smem[threadIdx.y][threadIdx.x + 2];
|
||||
dy_buf.ptr(i)[j] = smem[threadIdx.y][threadIdx.x] + 2 * smem[threadIdx.y][threadIdx.x + 1] + smem[threadIdx.y][threadIdx.x + 2];
|
||||
}
|
||||
}
|
||||
int dxVal = (src(y - 1, x + 1) + 2 * src(y, x + 1) + src(y + 1, x + 1)) - (src(y - 1, x - 1) + 2 * src(y, x - 1) + src(y + 1, x - 1));
|
||||
int dyVal = (src(y + 1, x - 1) + 2 * src(y + 1, x) + src(y + 1, x + 1)) - (src(y - 1, x - 1) + 2 * src(y - 1, x) + src(y - 1, x + 1));
|
||||
|
||||
dx(y, x) = dxVal;
|
||||
dy(y, x) = dyVal;
|
||||
|
||||
mag(y, x) = norm(dxVal, dyVal);
|
||||
}
|
||||
}
|
||||
|
||||
namespace canny
|
||||
{
|
||||
void calcMagnitude(PtrStepSzb srcWhole, int xoff, int yoff, PtrStepSzi dx, PtrStepSzi dy, PtrStepSzf mag, bool L2Grad)
|
||||
{
|
||||
const dim3 block(16, 16);
|
||||
const dim3 grid(divUp(mag.cols, block.x), divUp(mag.rows, block.y));
|
||||
|
||||
bindTexture(&tex_src, srcWhole);
|
||||
SrcTex src(xoff, yoff);
|
||||
|
||||
if (L2Grad)
|
||||
{
|
||||
L2 norm;
|
||||
::calcMagnitude<<<grid, block>>>(src, dx, dy, mag, norm);
|
||||
}
|
||||
else
|
||||
{
|
||||
L1 norm;
|
||||
::calcMagnitude<<<grid, block>>>(src, dx, dy, mag, norm);
|
||||
}
|
||||
|
||||
void calcSobelRowPass_gpu(PtrStepb src, PtrStepi dx_buf, PtrStepi dy_buf, int rows, int cols)
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall(cudaThreadSynchronize());
|
||||
}
|
||||
|
||||
void calcMagnitude(PtrStepSzi dx, PtrStepSzi dy, PtrStepSzf mag, bool L2Grad)
|
||||
{
|
||||
if (L2Grad)
|
||||
{
|
||||
dim3 block(16, 16, 1);
|
||||
dim3 grid(divUp(cols, block.x), divUp(rows, block.y), 1);
|
||||
|
||||
calcSobelRowPass<<<grid, block>>>(src, dx_buf, dy_buf, rows, cols);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
L2 norm;
|
||||
transform(dx, dy, mag, norm, WithOutMask(), 0);
|
||||
}
|
||||
|
||||
struct L1
|
||||
else
|
||||
{
|
||||
static __device__ __forceinline__ float calc(int x, int y)
|
||||
{
|
||||
return ::abs(x) + ::abs(y);
|
||||
}
|
||||
};
|
||||
struct L2
|
||||
{
|
||||
static __device__ __forceinline__ float calc(int x, int y)
|
||||
{
|
||||
return ::sqrtf(x * x + y * y);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Norm> __global__ void calcMagnitude(const PtrStepi dx_buf, const PtrStepi dy_buf,
|
||||
PtrStepi dx, PtrStepi dy, PtrStepf mag, int rows, int cols)
|
||||
{
|
||||
__shared__ int sdx[18][16];
|
||||
__shared__ int sdy[18][16];
|
||||
|
||||
const int j = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int i = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (j < cols)
|
||||
{
|
||||
sdx[threadIdx.y + 1][threadIdx.x] = dx_buf.ptr(i)[j];
|
||||
sdy[threadIdx.y + 1][threadIdx.x] = dy_buf.ptr(i)[j];
|
||||
if (threadIdx.y == 0)
|
||||
{
|
||||
sdx[0][threadIdx.x] = dx_buf.ptr(::max(i - 1, 0))[j];
|
||||
sdx[17][threadIdx.x] = dx_buf.ptr(::min(i + 16, rows - 1))[j];
|
||||
|
||||
sdy[0][threadIdx.x] = dy_buf.ptr(::max(i - 1, 0))[j];
|
||||
sdy[17][threadIdx.x] = dy_buf.ptr(::min(i + 16, rows - 1))[j];
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
if (i < rows)
|
||||
{
|
||||
int x = sdx[threadIdx.y][threadIdx.x] + 2 * sdx[threadIdx.y + 1][threadIdx.x] + sdx[threadIdx.y + 2][threadIdx.x];
|
||||
int y = -sdy[threadIdx.y][threadIdx.x] + sdy[threadIdx.y + 2][threadIdx.x];
|
||||
|
||||
dx.ptr(i)[j] = x;
|
||||
dy.ptr(i)[j] = y;
|
||||
|
||||
mag.ptr(i + 1)[j + 1] = Norm::calc(x, y);
|
||||
}
|
||||
}
|
||||
L1 norm;
|
||||
transform(dx, dy, mag, norm, WithOutMask(), 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void calcMagnitude_gpu(PtrStepi dx_buf, PtrStepi dy_buf, PtrStepi dx, PtrStepi dy, PtrStepf mag, int rows, int cols, bool L2Grad)
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
namespace
|
||||
{
|
||||
texture<float, cudaTextureType2D, cudaReadModeElementType> tex_mag(false, cudaFilterModePoint, cudaAddressModeClamp);
|
||||
|
||||
__global__ void calcMap(const PtrStepSzi dx, const PtrStepi dy, PtrStepi map, const float low_thresh, const float high_thresh)
|
||||
{
|
||||
const int CANNY_SHIFT = 15;
|
||||
const int TG22 = (int)(0.4142135623730950488016887242097*(1<<CANNY_SHIFT) + 0.5);
|
||||
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (x >= dx.cols || y >= dx.rows)
|
||||
return;
|
||||
|
||||
int dxVal = dx(y, x);
|
||||
int dyVal = dy(y, x);
|
||||
|
||||
const int s = (dxVal ^ dyVal) < 0 ? -1 : 1;
|
||||
const float m = tex2D(tex_mag, x, y);
|
||||
|
||||
dxVal = ::abs(dxVal);
|
||||
dyVal = ::abs(dyVal);
|
||||
|
||||
// 0 - the pixel can not belong to an edge
|
||||
// 1 - the pixel might belong to an edge
|
||||
// 2 - the pixel does belong to an edge
|
||||
int edge_type = 0;
|
||||
|
||||
if (m > low_thresh)
|
||||
{
|
||||
dim3 block(16, 16, 1);
|
||||
dim3 grid(divUp(cols, block.x), divUp(rows, block.y), 1);
|
||||
const int tg22x = dxVal * TG22;
|
||||
const int tg67x = tg22x + ((dxVal + dxVal) << CANNY_SHIFT);
|
||||
|
||||
if (L2Grad)
|
||||
calcMagnitude<L2><<<grid, block>>>(dx_buf, dy_buf, dx, dy, mag, rows, cols);
|
||||
dyVal <<= CANNY_SHIFT;
|
||||
|
||||
if (dyVal < tg22x)
|
||||
{
|
||||
if (m > tex2D(tex_mag, x - 1, y) && m >= tex2D(tex_mag, x + 1, y))
|
||||
edge_type = 1 + (int)(m > high_thresh);
|
||||
}
|
||||
else if(dyVal > tg67x)
|
||||
{
|
||||
if (m > tex2D(tex_mag, x, y - 1) && m >= tex2D(tex_mag, x, y + 1))
|
||||
edge_type = 1 + (int)(m > high_thresh);
|
||||
}
|
||||
else
|
||||
calcMagnitude<L1><<<grid, block>>>(dx_buf, dy_buf, dx, dy, mag, rows, cols);
|
||||
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall(cudaThreadSynchronize());
|
||||
{
|
||||
if (m > tex2D(tex_mag, x - s, y - 1) && m >= tex2D(tex_mag, x + s, y + 1))
|
||||
edge_type = 1 + (int)(m > high_thresh);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Norm> __global__ void calcMagnitude(PtrStepi dx, PtrStepi dy, PtrStepf mag, int rows, int cols)
|
||||
{
|
||||
const int j = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int i = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
map(y, x) = edge_type;
|
||||
}
|
||||
}
|
||||
|
||||
if (i < rows && j < cols)
|
||||
mag.ptr(i + 1)[j + 1] = Norm::calc(dx.ptr(i)[j], dy.ptr(i)[j]);
|
||||
namespace canny
|
||||
{
|
||||
void calcMap(PtrStepSzi dx, PtrStepSzi dy, PtrStepSzf mag, PtrStepSzi map, float low_thresh, float high_thresh)
|
||||
{
|
||||
const dim3 block(16, 16);
|
||||
const dim3 grid(divUp(dx.cols, block.x), divUp(dx.rows, block.y));
|
||||
|
||||
bindTexture(&tex_mag, mag);
|
||||
|
||||
::calcMap<<<grid, block>>>(dx, dy, map, low_thresh, high_thresh);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
namespace
|
||||
{
|
||||
__device__ int counter = 0;
|
||||
|
||||
__global__ void edgesHysteresisLocal(PtrStepSzi map, ushort2* st)
|
||||
{
|
||||
__shared__ volatile int smem[18][18];
|
||||
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
smem[threadIdx.y + 1][threadIdx.x + 1] = x < map.cols && y < map.rows ? map(y, x) : 0;
|
||||
if (threadIdx.y == 0)
|
||||
smem[0][threadIdx.x + 1] = y > 0 ? map(y - 1, x) : 0;
|
||||
if (threadIdx.y == blockDim.y - 1)
|
||||
smem[blockDim.y + 1][threadIdx.x + 1] = y + 1 < map.rows ? map(y + 1, x) : 0;
|
||||
if (threadIdx.x == 0)
|
||||
smem[threadIdx.y + 1][0] = x > 0 ? map(y, x - 1) : 0;
|
||||
if (threadIdx.x == blockDim.x - 1)
|
||||
smem[threadIdx.y + 1][blockDim.x + 1] = x + 1 < map.cols ? map(y, x + 1) : 0;
|
||||
if (threadIdx.x == 0 && threadIdx.y == 0)
|
||||
smem[0][0] = y > 0 && x > 0 ? map(y - 1, x - 1) : 0;
|
||||
if (threadIdx.x == blockDim.x - 1 && threadIdx.y == 0)
|
||||
smem[0][blockDim.x + 1] = y > 0 && x + 1 < map.cols ? map(y - 1, x + 1) : 0;
|
||||
if (threadIdx.x == 0 && threadIdx.y == blockDim.y - 1)
|
||||
smem[blockDim.y + 1][0] = y + 1 < map.rows && x > 0 ? map(y + 1, x - 1) : 0;
|
||||
if (threadIdx.x == blockDim.x - 1 && threadIdx.y == blockDim.y - 1)
|
||||
smem[blockDim.y + 1][blockDim.x + 1] = y + 1 < map.rows && x + 1 < map.cols ? map(y + 1, x + 1) : 0;
|
||||
|
||||
__syncthreads();
|
||||
|
||||
if (x >= map.cols || y >= map.rows)
|
||||
return;
|
||||
|
||||
int n;
|
||||
|
||||
#pragma unroll
|
||||
for (int k = 0; k < 16; ++k)
|
||||
{
|
||||
n = 0;
|
||||
|
||||
if (smem[threadIdx.y + 1][threadIdx.x + 1] == 1)
|
||||
{
|
||||
n += smem[threadIdx.y ][threadIdx.x ] == 2;
|
||||
n += smem[threadIdx.y ][threadIdx.x + 1] == 2;
|
||||
n += smem[threadIdx.y ][threadIdx.x + 2] == 2;
|
||||
|
||||
n += smem[threadIdx.y + 1][threadIdx.x ] == 2;
|
||||
n += smem[threadIdx.y + 1][threadIdx.x + 2] == 2;
|
||||
|
||||
n += smem[threadIdx.y + 2][threadIdx.x ] == 2;
|
||||
n += smem[threadIdx.y + 2][threadIdx.x + 1] == 2;
|
||||
n += smem[threadIdx.y + 2][threadIdx.x + 2] == 2;
|
||||
}
|
||||
|
||||
if (n > 0)
|
||||
smem[threadIdx.y + 1][threadIdx.x + 1] = 2;
|
||||
}
|
||||
|
||||
void calcMagnitude_gpu(PtrStepi dx, PtrStepi dy, PtrStepf mag, int rows, int cols, bool L2Grad)
|
||||
const int e = smem[threadIdx.y + 1][threadIdx.x + 1];
|
||||
|
||||
map(y, x) = e;
|
||||
|
||||
n = 0;
|
||||
|
||||
if (e == 2)
|
||||
{
|
||||
dim3 block(16, 16, 1);
|
||||
dim3 grid(divUp(cols, block.x), divUp(rows, block.y), 1);
|
||||
n += smem[threadIdx.y ][threadIdx.x ] == 1;
|
||||
n += smem[threadIdx.y ][threadIdx.x + 1] == 1;
|
||||
n += smem[threadIdx.y ][threadIdx.x + 2] == 1;
|
||||
|
||||
if (L2Grad)
|
||||
calcMagnitude<L2><<<grid, block>>>(dx, dy, mag, rows, cols);
|
||||
else
|
||||
calcMagnitude<L1><<<grid, block>>>(dx, dy, mag, rows, cols);
|
||||
n += smem[threadIdx.y + 1][threadIdx.x ] == 1;
|
||||
n += smem[threadIdx.y + 1][threadIdx.x + 2] == 1;
|
||||
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
n += smem[threadIdx.y + 2][threadIdx.x ] == 1;
|
||||
n += smem[threadIdx.y + 2][threadIdx.x + 1] == 1;
|
||||
n += smem[threadIdx.y + 2][threadIdx.x + 2] == 1;
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#define CANNY_SHIFT 15
|
||||
#define TG22 (int)(0.4142135623730950488016887242097*(1<<CANNY_SHIFT) + 0.5)
|
||||
|
||||
__global__ void calcMap(const PtrStepi dx, const PtrStepi dy, const PtrStepf mag, PtrStepi map, int rows, int cols, float low_thresh, float high_thresh)
|
||||
if (n > 0)
|
||||
{
|
||||
__shared__ float smem[18][18];
|
||||
const int ind = ::atomicAdd(&counter, 1);
|
||||
st[ind] = make_ushort2(x, y);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const int j = blockIdx.x * 16 + threadIdx.x;
|
||||
const int i = blockIdx.y * 16 + threadIdx.y;
|
||||
namespace canny
|
||||
{
|
||||
void edgesHysteresisLocal(PtrStepSzi map, ushort2* st1)
|
||||
{
|
||||
void* counter_ptr;
|
||||
cudaSafeCall( cudaGetSymbolAddress(&counter_ptr, counter) );
|
||||
|
||||
const int tid = threadIdx.y * 16 + threadIdx.x;
|
||||
const int lx = tid % 18;
|
||||
const int ly = tid / 18;
|
||||
cudaSafeCall( cudaMemset(counter_ptr, 0, sizeof(int)) );
|
||||
|
||||
if (ly < 14)
|
||||
smem[ly][lx] = mag.ptr(blockIdx.y * 16 + ly)[blockIdx.x * 16 + lx];
|
||||
const dim3 block(16, 16);
|
||||
const dim3 grid(divUp(map.cols, block.x), divUp(map.rows, block.y));
|
||||
|
||||
if (ly < 4 && blockIdx.y * 16 + ly + 14 <= rows && blockIdx.x * 16 + lx <= cols)
|
||||
smem[ly + 14][lx] = mag.ptr(blockIdx.y * 16 + ly + 14)[blockIdx.x * 16 + lx];
|
||||
::edgesHysteresisLocal<<<grid, block>>>(map, st1);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
namespace
|
||||
{
|
||||
__constant__ int c_dx[8] = {-1, 0, 1, -1, 1, -1, 0, 1};
|
||||
__constant__ int c_dy[8] = {-1, -1, -1, 0, 0, 1, 1, 1};
|
||||
|
||||
__global__ void edgesHysteresisGlobal(PtrStepSzi map, ushort2* st1, ushort2* st2, const int count)
|
||||
{
|
||||
const int stack_size = 512;
|
||||
|
||||
__shared__ int s_counter;
|
||||
__shared__ int s_ind;
|
||||
__shared__ ushort2 s_st[stack_size];
|
||||
|
||||
if (threadIdx.x == 0)
|
||||
s_counter = 0;
|
||||
|
||||
__syncthreads();
|
||||
|
||||
int ind = blockIdx.y * gridDim.x + blockIdx.x;
|
||||
|
||||
if (ind >= count)
|
||||
return;
|
||||
|
||||
ushort2 pos = st1[ind];
|
||||
|
||||
if (threadIdx.x < 8)
|
||||
{
|
||||
pos.x += c_dx[threadIdx.x];
|
||||
pos.y += c_dy[threadIdx.x];
|
||||
|
||||
if (pos.x > 0 && pos.x <= map.cols && pos.y > 0 && pos.y <= map.rows && map(pos.y, pos.x) == 1)
|
||||
{
|
||||
map(pos.y, pos.x) = 2;
|
||||
|
||||
ind = Emulation::smem::atomicAdd(&s_counter, 1);
|
||||
|
||||
s_st[ind] = pos;
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
while (s_counter > 0 && s_counter <= stack_size - blockDim.x)
|
||||
{
|
||||
const int subTaskIdx = threadIdx.x >> 3;
|
||||
const int portion = ::min(s_counter, blockDim.x >> 3);
|
||||
|
||||
if (subTaskIdx < portion)
|
||||
pos = s_st[s_counter - 1 - subTaskIdx];
|
||||
|
||||
__syncthreads();
|
||||
|
||||
if (i < rows && j < cols)
|
||||
{
|
||||
int x = dx.ptr(i)[j];
|
||||
int y = dy.ptr(i)[j];
|
||||
const int s = (x ^ y) < 0 ? -1 : 1;
|
||||
const float m = smem[threadIdx.y + 1][threadIdx.x + 1];
|
||||
|
||||
x = ::abs(x);
|
||||
y = ::abs(y);
|
||||
|
||||
// 0 - the pixel can not belong to an edge
|
||||
// 1 - the pixel might belong to an edge
|
||||
// 2 - the pixel does belong to an edge
|
||||
int edge_type = 0;
|
||||
|
||||
if (m > low_thresh)
|
||||
{
|
||||
const int tg22x = x * TG22;
|
||||
const int tg67x = tg22x + ((x + x) << CANNY_SHIFT);
|
||||
|
||||
y <<= CANNY_SHIFT;
|
||||
|
||||
if (y < tg22x)
|
||||
{
|
||||
if (m > smem[threadIdx.y + 1][threadIdx.x] && m >= smem[threadIdx.y + 1][threadIdx.x + 2])
|
||||
edge_type = 1 + (int)(m > high_thresh);
|
||||
}
|
||||
else if( y > tg67x )
|
||||
{
|
||||
if (m > smem[threadIdx.y][threadIdx.x + 1] && m >= smem[threadIdx.y + 2][threadIdx.x + 1])
|
||||
edge_type = 1 + (int)(m > high_thresh);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (m > smem[threadIdx.y][threadIdx.x + 1 - s] && m > smem[threadIdx.y + 2][threadIdx.x + 1 + s])
|
||||
edge_type = 1 + (int)(m > high_thresh);
|
||||
}
|
||||
}
|
||||
|
||||
map.ptr(i + 1)[j + 1] = edge_type;
|
||||
}
|
||||
}
|
||||
|
||||
#undef CANNY_SHIFT
|
||||
#undef TG22
|
||||
|
||||
void calcMap_gpu(PtrStepi dx, PtrStepi dy, PtrStepf mag, PtrStepi map, int rows, int cols, float low_thresh, float high_thresh)
|
||||
{
|
||||
dim3 block(16, 16, 1);
|
||||
dim3 grid(divUp(cols, block.x), divUp(rows, block.y), 1);
|
||||
|
||||
calcMap<<<grid, block>>>(dx, dy, mag, map, rows, cols, low_thresh, high_thresh);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
__device__ unsigned int counter = 0;
|
||||
|
||||
__global__ void edgesHysteresisLocal(PtrStepi map, ushort2* st, int rows, int cols)
|
||||
{
|
||||
#if defined (__CUDA_ARCH__) && (__CUDA_ARCH__ >= 120)
|
||||
|
||||
__shared__ int smem[18][18];
|
||||
|
||||
const int j = blockIdx.x * 16 + threadIdx.x;
|
||||
const int i = blockIdx.y * 16 + threadIdx.y;
|
||||
|
||||
const int tid = threadIdx.y * 16 + threadIdx.x;
|
||||
const int lx = tid % 18;
|
||||
const int ly = tid / 18;
|
||||
|
||||
if (ly < 14)
|
||||
smem[ly][lx] = map.ptr(blockIdx.y * 16 + ly)[blockIdx.x * 16 + lx];
|
||||
|
||||
if (ly < 4 && blockIdx.y * 16 + ly + 14 <= rows && blockIdx.x * 16 + lx <= cols)
|
||||
smem[ly + 14][lx] = map.ptr(blockIdx.y * 16 + ly + 14)[blockIdx.x * 16 + lx];
|
||||
|
||||
__syncthreads();
|
||||
|
||||
if (i < rows && j < cols)
|
||||
{
|
||||
int n;
|
||||
|
||||
#pragma unroll
|
||||
for (int k = 0; k < 16; ++k)
|
||||
{
|
||||
n = 0;
|
||||
|
||||
if (smem[threadIdx.y + 1][threadIdx.x + 1] == 1)
|
||||
{
|
||||
n += smem[threadIdx.y ][threadIdx.x ] == 2;
|
||||
n += smem[threadIdx.y ][threadIdx.x + 1] == 2;
|
||||
n += smem[threadIdx.y ][threadIdx.x + 2] == 2;
|
||||
|
||||
n += smem[threadIdx.y + 1][threadIdx.x ] == 2;
|
||||
n += smem[threadIdx.y + 1][threadIdx.x + 2] == 2;
|
||||
|
||||
n += smem[threadIdx.y + 2][threadIdx.x ] == 2;
|
||||
n += smem[threadIdx.y + 2][threadIdx.x + 1] == 2;
|
||||
n += smem[threadIdx.y + 2][threadIdx.x + 2] == 2;
|
||||
}
|
||||
|
||||
if (n > 0)
|
||||
smem[threadIdx.y + 1][threadIdx.x + 1] = 2;
|
||||
}
|
||||
|
||||
const int e = smem[threadIdx.y + 1][threadIdx.x + 1];
|
||||
|
||||
map.ptr(i + 1)[j + 1] = e;
|
||||
|
||||
n = 0;
|
||||
|
||||
if (e == 2)
|
||||
{
|
||||
n += smem[threadIdx.y ][threadIdx.x ] == 1;
|
||||
n += smem[threadIdx.y ][threadIdx.x + 1] == 1;
|
||||
n += smem[threadIdx.y ][threadIdx.x + 2] == 1;
|
||||
|
||||
n += smem[threadIdx.y + 1][threadIdx.x ] == 1;
|
||||
n += smem[threadIdx.y + 1][threadIdx.x + 2] == 1;
|
||||
|
||||
n += smem[threadIdx.y + 2][threadIdx.x ] == 1;
|
||||
n += smem[threadIdx.y + 2][threadIdx.x + 1] == 1;
|
||||
n += smem[threadIdx.y + 2][threadIdx.x + 2] == 1;
|
||||
}
|
||||
|
||||
if (n > 0)
|
||||
{
|
||||
const unsigned int ind = atomicInc(&counter, (unsigned int)(-1));
|
||||
st[ind] = make_ushort2(j + 1, i + 1);
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
void edgesHysteresisLocal_gpu(PtrStepi map, ushort2* st1, int rows, int cols)
|
||||
{
|
||||
void* counter_ptr;
|
||||
cudaSafeCall( cudaGetSymbolAddress(&counter_ptr, counter) );
|
||||
|
||||
cudaSafeCall( cudaMemset(counter_ptr, 0, sizeof(unsigned int)) );
|
||||
|
||||
dim3 block(16, 16, 1);
|
||||
dim3 grid(divUp(cols, block.x), divUp(rows, block.y), 1);
|
||||
|
||||
edgesHysteresisLocal<<<grid, block>>>(map, st1, rows, cols);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
__constant__ int c_dx[8] = {-1, 0, 1, -1, 1, -1, 0, 1};
|
||||
__constant__ int c_dy[8] = {-1, -1, -1, 0, 0, 1, 1, 1};
|
||||
|
||||
__global__ void edgesHysteresisGlobal(PtrStepi map, ushort2* st1, ushort2* st2, int rows, int cols, int count)
|
||||
{
|
||||
#if defined (__CUDA_ARCH__) && __CUDA_ARCH__ >= 120
|
||||
|
||||
const int stack_size = 512;
|
||||
|
||||
__shared__ unsigned int s_counter;
|
||||
__shared__ unsigned int s_ind;
|
||||
__shared__ ushort2 s_st[stack_size];
|
||||
|
||||
if (threadIdx.x == 0)
|
||||
s_counter = 0;
|
||||
s_counter -= portion;
|
||||
|
||||
__syncthreads();
|
||||
|
||||
int ind = blockIdx.y * gridDim.x + blockIdx.x;
|
||||
|
||||
if (ind < count)
|
||||
if (subTaskIdx < portion)
|
||||
{
|
||||
ushort2 pos = st1[ind];
|
||||
pos.x += c_dx[threadIdx.x & 7];
|
||||
pos.y += c_dy[threadIdx.x & 7];
|
||||
|
||||
if (pos.x > 0 && pos.x <= cols && pos.y > 0 && pos.y <= rows)
|
||||
if (pos.x > 0 && pos.x <= map.cols && pos.y > 0 && pos.y <= map.rows && map(pos.y, pos.x) == 1)
|
||||
{
|
||||
if (threadIdx.x < 8)
|
||||
{
|
||||
pos.x += c_dx[threadIdx.x];
|
||||
pos.y += c_dy[threadIdx.x];
|
||||
map(pos.y, pos.x) = 2;
|
||||
|
||||
if (map.ptr(pos.y)[pos.x] == 1)
|
||||
{
|
||||
map.ptr(pos.y)[pos.x] = 2;
|
||||
ind = Emulation::smem::atomicAdd(&s_counter, 1);
|
||||
|
||||
ind = atomicInc(&s_counter, (unsigned int)(-1));
|
||||
|
||||
s_st[ind] = pos;
|
||||
}
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
while (s_counter > 0 && s_counter <= stack_size - blockDim.x)
|
||||
{
|
||||
const int subTaskIdx = threadIdx.x >> 3;
|
||||
const int portion = ::min(s_counter, blockDim.x >> 3);
|
||||
|
||||
pos.x = pos.y = 0;
|
||||
|
||||
if (subTaskIdx < portion)
|
||||
pos = s_st[s_counter - 1 - subTaskIdx];
|
||||
__syncthreads();
|
||||
|
||||
if (threadIdx.x == 0)
|
||||
s_counter -= portion;
|
||||
__syncthreads();
|
||||
|
||||
if (pos.x > 0 && pos.x <= cols && pos.y > 0 && pos.y <= rows)
|
||||
{
|
||||
pos.x += c_dx[threadIdx.x & 7];
|
||||
pos.y += c_dy[threadIdx.x & 7];
|
||||
|
||||
if (map.ptr(pos.y)[pos.x] == 1)
|
||||
{
|
||||
map.ptr(pos.y)[pos.x] = 2;
|
||||
|
||||
ind = atomicInc(&s_counter, (unsigned int)(-1));
|
||||
|
||||
s_st[ind] = pos;
|
||||
}
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
if (s_counter > 0)
|
||||
{
|
||||
if (threadIdx.x == 0)
|
||||
{
|
||||
ind = atomicAdd(&counter, s_counter);
|
||||
s_ind = ind - s_counter;
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
ind = s_ind;
|
||||
|
||||
for (int i = threadIdx.x; i < s_counter; i += blockDim.x)
|
||||
{
|
||||
st2[ind + i] = s_st[i];
|
||||
}
|
||||
}
|
||||
s_st[ind] = pos;
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
void edgesHysteresisGlobal_gpu(PtrStepi map, ushort2* st1, ushort2* st2, int rows, int cols)
|
||||
if (s_counter > 0)
|
||||
{
|
||||
void* counter_ptr;
|
||||
cudaSafeCall( cudaGetSymbolAddress(&counter_ptr, counter) );
|
||||
|
||||
unsigned int count;
|
||||
cudaSafeCall( cudaMemcpy(&count, counter_ptr, sizeof(unsigned int), cudaMemcpyDeviceToHost) );
|
||||
|
||||
while (count > 0)
|
||||
if (threadIdx.x == 0)
|
||||
{
|
||||
cudaSafeCall( cudaMemset(counter_ptr, 0, sizeof(unsigned int)) );
|
||||
|
||||
dim3 block(128, 1, 1);
|
||||
dim3 grid(std::min(count, 65535u), divUp(count, 65535), 1);
|
||||
edgesHysteresisGlobal<<<grid, block>>>(map, st1, st2, rows, cols, count);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
|
||||
cudaSafeCall( cudaMemcpy(&count, counter_ptr, sizeof(unsigned int), cudaMemcpyDeviceToHost) );
|
||||
|
||||
std::swap(st1, st2);
|
||||
ind = ::atomicAdd(&counter, s_counter);
|
||||
s_ind = ind - s_counter;
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
ind = s_ind;
|
||||
|
||||
for (int i = threadIdx.x; i < s_counter; i += blockDim.x)
|
||||
st2[ind + i] = s_st[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void getEdges(PtrStepi map, PtrStepb dst, int rows, int cols)
|
||||
namespace canny
|
||||
{
|
||||
void edgesHysteresisGlobal(PtrStepSzi map, ushort2* st1, ushort2* st2)
|
||||
{
|
||||
void* counter_ptr;
|
||||
cudaSafeCall( cudaGetSymbolAddress(&counter_ptr, ::counter) );
|
||||
|
||||
int count;
|
||||
cudaSafeCall( cudaMemcpy(&count, counter_ptr, sizeof(int), cudaMemcpyDeviceToHost) );
|
||||
|
||||
while (count > 0)
|
||||
{
|
||||
const int j = blockIdx.x * 16 + threadIdx.x;
|
||||
const int i = blockIdx.y * 16 + threadIdx.y;
|
||||
cudaSafeCall( cudaMemset(counter_ptr, 0, sizeof(int)) );
|
||||
|
||||
if (i < rows && j < cols)
|
||||
dst.ptr(i)[j] = (uchar)(-(map.ptr(i + 1)[j + 1] >> 1));
|
||||
}
|
||||
const dim3 block(128);
|
||||
const dim3 grid(::min(count, 65535u), divUp(count, 65535), 1);
|
||||
|
||||
void getEdges_gpu(PtrStepi map, PtrStepb dst, int rows, int cols)
|
||||
{
|
||||
dim3 block(16, 16, 1);
|
||||
dim3 grid(divUp(cols, block.x), divUp(rows, block.y), 1);
|
||||
|
||||
getEdges<<<grid, block>>>(map, dst, rows, cols);
|
||||
::edgesHysteresisGlobal<<<grid, block>>>(map, st1, st2, count);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
|
||||
cudaSafeCall( cudaMemcpy(&count, counter_ptr, sizeof(int), cudaMemcpyDeviceToHost) );
|
||||
|
||||
std::swap(st1, st2);
|
||||
}
|
||||
} // namespace canny
|
||||
}}} // namespace cv { namespace gpu { namespace device
|
||||
}
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#endif /* CUDA_DISABLER */
|
||||
namespace
|
||||
{
|
||||
struct GetEdges : unary_function<int, uchar>
|
||||
{
|
||||
__device__ __forceinline__ uchar operator ()(int e) const
|
||||
{
|
||||
return (uchar)(-(e >> 1));
|
||||
}
|
||||
|
||||
__device__ __forceinline__ GetEdges() {}
|
||||
__device__ __forceinline__ GetEdges(const GetEdges&) {}
|
||||
};
|
||||
}
|
||||
|
||||
namespace cv { namespace gpu { namespace device
|
||||
{
|
||||
template <> struct TransformFunctorTraits<GetEdges> : DefaultTransformFunctorTraits<GetEdges>
|
||||
{
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
}}}
|
||||
|
||||
namespace canny
|
||||
{
|
||||
void getEdges(PtrStepSzi map, PtrStepSzb dst)
|
||||
{
|
||||
transform(map, dst, GetEdges(), WithOutMask(), 0);
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* CUDA_DISABLER */
|
||||
|
@ -91,7 +91,6 @@ void cv::gpu::Canny(const GpuMat&, GpuMat&, double, double, int, bool) { throw_n
|
||||
void cv::gpu::Canny(const GpuMat&, CannyBuf&, GpuMat&, double, double, int, bool) { throw_nogpu(); }
|
||||
void cv::gpu::Canny(const GpuMat&, const GpuMat&, GpuMat&, double, double, bool) { throw_nogpu(); }
|
||||
void cv::gpu::Canny(const GpuMat&, const GpuMat&, CannyBuf&, GpuMat&, double, double, bool) { throw_nogpu(); }
|
||||
cv::gpu::CannyBuf::CannyBuf(const GpuMat&, const GpuMat&) { throw_nogpu(); }
|
||||
void cv::gpu::CannyBuf::create(const Size&, int) { throw_nogpu(); }
|
||||
void cv::gpu::CannyBuf::release() { throw_nogpu(); }
|
||||
|
||||
@ -1466,92 +1465,76 @@ void cv::gpu::convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result,
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
// Canny
|
||||
|
||||
cv::gpu::CannyBuf::CannyBuf(const GpuMat& dx_, const GpuMat& dy_) : dx(dx_), dy(dy_)
|
||||
{
|
||||
CV_Assert(dx_.type() == CV_32SC1 && dy_.type() == CV_32SC1 && dx_.size() == dy_.size());
|
||||
|
||||
create(dx_.size(), -1);
|
||||
}
|
||||
|
||||
void cv::gpu::CannyBuf::create(const Size& image_size, int apperture_size)
|
||||
{
|
||||
ensureSizeIsEnough(image_size, CV_32SC1, dx);
|
||||
ensureSizeIsEnough(image_size, CV_32SC1, dy);
|
||||
if (apperture_size > 0)
|
||||
{
|
||||
ensureSizeIsEnough(image_size, CV_32SC1, dx);
|
||||
ensureSizeIsEnough(image_size, CV_32SC1, dy);
|
||||
|
||||
if (apperture_size == 3)
|
||||
{
|
||||
ensureSizeIsEnough(image_size, CV_32SC1, dx_buf);
|
||||
ensureSizeIsEnough(image_size, CV_32SC1, dy_buf);
|
||||
}
|
||||
else if(apperture_size > 0)
|
||||
{
|
||||
if (!filterDX)
|
||||
if (apperture_size != 3)
|
||||
{
|
||||
filterDX = createDerivFilter_GPU(CV_8UC1, CV_32S, 1, 0, apperture_size, BORDER_REPLICATE);
|
||||
if (!filterDY)
|
||||
filterDY = createDerivFilter_GPU(CV_8UC1, CV_32S, 0, 1, apperture_size, BORDER_REPLICATE);
|
||||
}
|
||||
}
|
||||
|
||||
ensureSizeIsEnough(image_size.height + 2, image_size.width + 2, CV_32FC1, edgeBuf);
|
||||
ensureSizeIsEnough(image_size, CV_32FC1, mag);
|
||||
ensureSizeIsEnough(image_size, CV_32SC1, map);
|
||||
|
||||
ensureSizeIsEnough(1, image_size.width * image_size.height, CV_16UC2, trackBuf1);
|
||||
ensureSizeIsEnough(1, image_size.width * image_size.height, CV_16UC2, trackBuf2);
|
||||
ensureSizeIsEnough(1, image_size.area(), CV_16UC2, st1);
|
||||
ensureSizeIsEnough(1, image_size.area(), CV_16UC2, st2);
|
||||
}
|
||||
|
||||
void cv::gpu::CannyBuf::release()
|
||||
{
|
||||
dx.release();
|
||||
dy.release();
|
||||
dx_buf.release();
|
||||
dy_buf.release();
|
||||
edgeBuf.release();
|
||||
trackBuf1.release();
|
||||
trackBuf2.release();
|
||||
mag.release();
|
||||
map.release();
|
||||
st1.release();
|
||||
st2.release();
|
||||
}
|
||||
|
||||
namespace cv { namespace gpu { namespace device
|
||||
namespace canny
|
||||
{
|
||||
namespace canny
|
||||
{
|
||||
void calcSobelRowPass_gpu(PtrStepb src, PtrStepi dx_buf, PtrStepi dy_buf, int rows, int cols);
|
||||
void calcMagnitude(PtrStepSzb srcWhole, int xoff, int yoff, PtrStepSzi dx, PtrStepSzi dy, PtrStepSzf mag, bool L2Grad);
|
||||
void calcMagnitude(PtrStepSzi dx, PtrStepSzi dy, PtrStepSzf mag, bool L2Grad);
|
||||
|
||||
void calcMagnitude_gpu(PtrStepi dx_buf, PtrStepi dy_buf, PtrStepi dx, PtrStepi dy, PtrStepf mag, int rows, int cols, bool L2Grad);
|
||||
void calcMagnitude_gpu(PtrStepi dx, PtrStepi dy, PtrStepf mag, int rows, int cols, bool L2Grad);
|
||||
void calcMap(PtrStepSzi dx, PtrStepSzi dy, PtrStepSzf mag, PtrStepSzi map, float low_thresh, float high_thresh);
|
||||
|
||||
void calcMap_gpu(PtrStepi dx, PtrStepi dy, PtrStepf mag, PtrStepi map, int rows, int cols, float low_thresh, float high_thresh);
|
||||
void edgesHysteresisLocal(PtrStepSzi map, ushort2* st1);
|
||||
|
||||
void edgesHysteresisLocal_gpu(PtrStepi map, ushort2* st1, int rows, int cols);
|
||||
void edgesHysteresisGlobal(PtrStepSzi map, ushort2* st1, ushort2* st2);
|
||||
|
||||
void edgesHysteresisGlobal_gpu(PtrStepi map, ushort2* st1, ushort2* st2, int rows, int cols);
|
||||
|
||||
void getEdges_gpu(PtrStepi map, PtrStepb dst, int rows, int cols);
|
||||
}
|
||||
}}}
|
||||
void getEdges(PtrStepSzi map, PtrStepSzb dst);
|
||||
}
|
||||
|
||||
namespace
|
||||
{
|
||||
void CannyCaller(CannyBuf& buf, GpuMat& dst, float low_thresh, float high_thresh)
|
||||
void CannyCaller(const GpuMat& dx, const GpuMat& dy, CannyBuf& buf, GpuMat& dst, float low_thresh, float high_thresh)
|
||||
{
|
||||
using namespace ::cv::gpu::device::canny;
|
||||
using namespace canny;
|
||||
|
||||
calcMap_gpu(buf.dx, buf.dy, buf.edgeBuf, buf.edgeBuf, dst.rows, dst.cols, low_thresh, high_thresh);
|
||||
calcMap(dx, dy, buf.mag, buf.map, low_thresh, high_thresh);
|
||||
|
||||
edgesHysteresisLocal_gpu(buf.edgeBuf, buf.trackBuf1.ptr<ushort2>(), dst.rows, dst.cols);
|
||||
edgesHysteresisLocal(buf.map, buf.st1.ptr<ushort2>());
|
||||
|
||||
edgesHysteresisGlobal_gpu(buf.edgeBuf, buf.trackBuf1.ptr<ushort2>(), buf.trackBuf2.ptr<ushort2>(), dst.rows, dst.cols);
|
||||
edgesHysteresisGlobal(buf.map, buf.st1.ptr<ushort2>(), buf.st2.ptr<ushort2>());
|
||||
|
||||
getEdges_gpu(buf.edgeBuf, dst, dst.rows, dst.cols);
|
||||
getEdges(buf.map, dst);
|
||||
}
|
||||
}
|
||||
|
||||
void cv::gpu::Canny(const GpuMat& src, GpuMat& dst, double low_thresh, double high_thresh, int apperture_size, bool L2gradient)
|
||||
{
|
||||
CannyBuf buf(src.size(), apperture_size);
|
||||
CannyBuf buf;
|
||||
Canny(src, buf, dst, low_thresh, high_thresh, apperture_size, L2gradient);
|
||||
}
|
||||
|
||||
void cv::gpu::Canny(const GpuMat& src, CannyBuf& buf, GpuMat& dst, double low_thresh, double high_thresh, int apperture_size, bool L2gradient)
|
||||
{
|
||||
using namespace ::cv::gpu::device::canny;
|
||||
using namespace canny;
|
||||
|
||||
CV_Assert(src.type() == CV_8UC1);
|
||||
|
||||
@ -1562,37 +1545,37 @@ void cv::gpu::Canny(const GpuMat& src, CannyBuf& buf, GpuMat& dst, double low_th
|
||||
std::swap( low_thresh, high_thresh);
|
||||
|
||||
dst.create(src.size(), CV_8U);
|
||||
dst.setTo(Scalar::all(0));
|
||||
|
||||
buf.create(src.size(), apperture_size);
|
||||
buf.edgeBuf.setTo(Scalar::all(0));
|
||||
|
||||
if (apperture_size == 3)
|
||||
{
|
||||
calcSobelRowPass_gpu(src, buf.dx_buf, buf.dy_buf, src.rows, src.cols);
|
||||
Size wholeSize;
|
||||
Point ofs;
|
||||
src.locateROI(wholeSize, ofs);
|
||||
GpuMat srcWhole(wholeSize, src.type(), src.datastart, src.step);
|
||||
|
||||
calcMagnitude_gpu(buf.dx_buf, buf.dy_buf, buf.dx, buf.dy, buf.edgeBuf, src.rows, src.cols, L2gradient);
|
||||
calcMagnitude(srcWhole, ofs.x, ofs.y, buf.dx, buf.dy, buf.mag, L2gradient);
|
||||
}
|
||||
else
|
||||
{
|
||||
buf.filterDX->apply(src, buf.dx, Rect(0, 0, src.cols, src.rows));
|
||||
buf.filterDY->apply(src, buf.dy, Rect(0, 0, src.cols, src.rows));
|
||||
|
||||
calcMagnitude_gpu(buf.dx, buf.dy, buf.edgeBuf, src.rows, src.cols, L2gradient);
|
||||
calcMagnitude(buf.dx, buf.dy, buf.mag, L2gradient);
|
||||
}
|
||||
|
||||
CannyCaller(buf, dst, static_cast<float>(low_thresh), static_cast<float>(high_thresh));
|
||||
CannyCaller(buf.dx, buf.dy, buf, dst, static_cast<float>(low_thresh), static_cast<float>(high_thresh));
|
||||
}
|
||||
|
||||
void cv::gpu::Canny(const GpuMat& dx, const GpuMat& dy, GpuMat& dst, double low_thresh, double high_thresh, bool L2gradient)
|
||||
{
|
||||
CannyBuf buf(dx, dy);
|
||||
CannyBuf buf;
|
||||
Canny(dx, dy, buf, dst, low_thresh, high_thresh, L2gradient);
|
||||
}
|
||||
|
||||
void cv::gpu::Canny(const GpuMat& dx, const GpuMat& dy, CannyBuf& buf, GpuMat& dst, double low_thresh, double high_thresh, bool L2gradient)
|
||||
{
|
||||
using namespace ::cv::gpu::device::canny;
|
||||
using namespace canny;
|
||||
|
||||
CV_Assert(TargetArchs::builtWith(SHARED_ATOMICS) && DeviceInfo().supports(SHARED_ATOMICS));
|
||||
CV_Assert(dx.type() == CV_32SC1 && dy.type() == CV_32SC1 && dx.size() == dy.size());
|
||||
@ -1601,17 +1584,11 @@ void cv::gpu::Canny(const GpuMat& dx, const GpuMat& dy, CannyBuf& buf, GpuMat& d
|
||||
std::swap( low_thresh, high_thresh);
|
||||
|
||||
dst.create(dx.size(), CV_8U);
|
||||
dst.setTo(Scalar::all(0));
|
||||
|
||||
buf.dx = dx; buf.dy = dy;
|
||||
buf.create(dx.size(), -1);
|
||||
buf.edgeBuf.setTo(Scalar::all(0));
|
||||
|
||||
calcMagnitude_gpu(dx, dy, buf.edgeBuf, dx.rows, dx.cols, L2gradient);
|
||||
calcMagnitude(dx, dy, buf.mag, L2gradient);
|
||||
|
||||
CannyCaller(buf, dst, static_cast<float>(low_thresh), static_cast<float>(high_thresh));
|
||||
CannyCaller(dx, dy, buf, dst, static_cast<float>(low_thresh), static_cast<float>(high_thresh));
|
||||
}
|
||||
|
||||
#endif /* !defined (HAVE_CUDA) */
|
||||
|
||||
|
||||
|
@ -313,7 +313,7 @@ TEST_P(Canny, Accuracy)
|
||||
cv::Mat edges_gold;
|
||||
cv::Canny(img, edges_gold, low_thresh, high_thresh, apperture_size, useL2gradient);
|
||||
|
||||
EXPECT_MAT_SIMILAR(edges_gold, edges, 1e-2);
|
||||
EXPECT_MAT_SIMILAR(edges_gold, edges, 2e-2);
|
||||
}
|
||||
}
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user