added get_first_k_initial_global_init_global_cost in gpu::SCBP
This commit is contained in:
parent
9a669b1ceb
commit
28030952fa
@ -235,7 +235,7 @@ namespace cv
|
||||
|
||||
class CV_EXPORTS CudaMem
|
||||
{
|
||||
public:
|
||||
public:
|
||||
enum { ALLOC_PAGE_LOCKED = 1, ALLOC_ZEROCOPY = 2, ALLOC_WRITE_COMBINED = 4 };
|
||||
|
||||
CudaMem();
|
||||
@ -417,7 +417,7 @@ namespace cv
|
||||
//! Acync version
|
||||
void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream);
|
||||
|
||||
|
||||
|
||||
//! version for user specified data term
|
||||
void operator()(const GpuMat& data, GpuMat& disparity);
|
||||
void operator()(const GpuMat& data, GpuMat& disparity, Stream& stream);
|
||||
@ -486,6 +486,8 @@ namespace cv
|
||||
int min_disp_th;
|
||||
|
||||
int msg_type;
|
||||
|
||||
bool use_local_init_data_cost;
|
||||
private:
|
||||
GpuMat u[2], d[2], l[2], r[2];
|
||||
GpuMat disp_selected_pyr[2];
|
||||
|
@ -62,10 +62,10 @@ namespace cv { namespace gpu { namespace csbp
|
||||
const DevMem2D& left, const DevMem2D& right, const DevMem2D& temp);
|
||||
|
||||
void init_data_cost(int rows, int cols, short* disp_selected_pyr, short* data_cost_selected,
|
||||
size_t msg_step, int h, int w, int level, int nr_plane, int ndisp, int channels, cudaStream_t stream);
|
||||
size_t msg_step, int h, int w, int level, int nr_plane, int ndisp, int channels, bool use_local_init_data_cost, cudaStream_t stream);
|
||||
|
||||
void init_data_cost(int rows, int cols, float* disp_selected_pyr, float* data_cost_selected,
|
||||
size_t msg_step, int h, int w, int level, int nr_plane, int ndisp, int channels, cudaStream_t stream);
|
||||
size_t msg_step, int h, int w, int level, int nr_plane, int ndisp, int channels, bool use_local_init_data_cost, cudaStream_t stream);
|
||||
|
||||
void compute_data_cost(const short* disp_selected_pyr, short* data_cost, size_t msg_step1, size_t msg_step2,
|
||||
int rows, int cols, int h, int w, int h2, int level, int nr_plane, int channels, cudaStream_t stream);
|
||||
@ -111,7 +111,7 @@ cv::gpu::StereoConstantSpaceBP::StereoConstantSpaceBP(int ndisp_, int iters_, in
|
||||
: ndisp(ndisp_), iters(iters_), levels(levels_), nr_plane(nr_plane_),
|
||||
max_data_term(DEFAULT_MAX_DATA_TERM), data_weight(DEFAULT_DATA_WEIGHT),
|
||||
max_disc_term(DEFAULT_MAX_DISC_TERM), disc_single_jump(DEFAULT_DISC_SINGLE_JUMP), min_disp_th(0),
|
||||
msg_type(msg_type_)
|
||||
msg_type(msg_type_), use_local_init_data_cost(true)
|
||||
{
|
||||
CV_Assert(msg_type_ == CV_32F || msg_type_ == CV_16S);
|
||||
}
|
||||
@ -122,7 +122,7 @@ cv::gpu::StereoConstantSpaceBP::StereoConstantSpaceBP(int ndisp_, int iters_, in
|
||||
: ndisp(ndisp_), iters(iters_), levels(levels_), nr_plane(nr_plane_),
|
||||
max_data_term(max_data_term_), data_weight(data_weight_),
|
||||
max_disc_term(max_disc_term_), disc_single_jump(disc_single_jump_), min_disp_th(min_disp_th_),
|
||||
msg_type(msg_type_)
|
||||
msg_type(msg_type_), use_local_init_data_cost(true)
|
||||
{
|
||||
CV_Assert(msg_type_ == CV_32F || msg_type_ == CV_16S);
|
||||
}
|
||||
@ -131,7 +131,7 @@ template<class T>
|
||||
static void csbp_operator(StereoConstantSpaceBP& rthis, GpuMat u[2], GpuMat d[2], GpuMat l[2], GpuMat r[2],
|
||||
GpuMat disp_selected_pyr[2], GpuMat& data_cost, GpuMat& data_cost_selected,
|
||||
GpuMat& temp, GpuMat& out, const GpuMat& left, const GpuMat& right, GpuMat& disp,
|
||||
cudaStream_t stream)
|
||||
bool use_local_init_data_cost, cudaStream_t stream)
|
||||
{
|
||||
CV_DbgAssert(0 < rthis.ndisp && 0 < rthis.iters && 0 < rthis.levels && 0 < rthis.nr_plane
|
||||
&& left.rows == right.rows && left.cols == right.cols && left.type() == right.type());
|
||||
@ -202,7 +202,7 @@ static void csbp_operator(StereoConstantSpaceBP& rthis, GpuMat u[2], GpuMat d[2]
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
// Compute
|
||||
|
||||
csbp::load_constants(rthis.ndisp, rthis.max_data_term, rthis.data_weight,
|
||||
csbp::load_constants(rthis.ndisp, rthis.max_data_term, rthis.data_weight,
|
||||
rthis.max_disc_term, rthis.disc_single_jump, rthis.min_disp_th, left, right, temp);
|
||||
|
||||
l[0] = zero;
|
||||
@ -225,7 +225,7 @@ static void csbp_operator(StereoConstantSpaceBP& rthis, GpuMat u[2], GpuMat d[2]
|
||||
if (i == levels - 1)
|
||||
{
|
||||
csbp::init_data_cost(left.rows, left.cols, disp_selected_pyr[cur_idx].ptr<T>(), data_cost_selected.ptr<T>(),
|
||||
step_pyr[i], rows_pyr[i], cols_pyr[i], i, nr_plane_pyr[i], rthis.ndisp, left.channels(), stream);
|
||||
step_pyr[i], rows_pyr[i], cols_pyr[i], i, nr_plane_pyr[i], rthis.ndisp, left.channels(), use_local_init_data_cost, stream);
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -265,20 +265,20 @@ static void csbp_operator(StereoConstantSpaceBP& rthis, GpuMat u[2], GpuMat d[2]
|
||||
typedef void (*csbp_operator_t)(StereoConstantSpaceBP& rthis, GpuMat u[2], GpuMat d[2], GpuMat l[2], GpuMat r[2],
|
||||
GpuMat disp_selected_pyr[2], GpuMat& data_cost, GpuMat& data_cost_selected,
|
||||
GpuMat& temp, GpuMat& out, const GpuMat& left, const GpuMat& right, GpuMat& disp,
|
||||
cudaStream_t stream);
|
||||
bool use_local_init_data_cost, cudaStream_t stream);
|
||||
|
||||
const static csbp_operator_t operators[] = {0, 0, 0, csbp_operator<short>, 0, csbp_operator<float>, 0, 0};
|
||||
|
||||
void cv::gpu::StereoConstantSpaceBP::operator()(const GpuMat& left, const GpuMat& right, GpuMat& disp)
|
||||
{
|
||||
CV_Assert(msg_type == CV_32F || msg_type == CV_16S);
|
||||
operators[msg_type](*this, u, d, l, r, disp_selected_pyr, data_cost, data_cost_selected, temp, out, left, right, disp, 0);
|
||||
operators[msg_type](*this, u, d, l, r, disp_selected_pyr, data_cost, data_cost_selected, temp, out, left, right, disp, use_local_init_data_cost, 0);
|
||||
}
|
||||
|
||||
void cv::gpu::StereoConstantSpaceBP::operator()(const GpuMat& left, const GpuMat& right, GpuMat& disp, Stream& stream)
|
||||
{
|
||||
CV_Assert(msg_type == CV_32F || msg_type == CV_16S);
|
||||
operators[msg_type](*this, u, d, l, r, disp_selected_pyr, data_cost, data_cost_selected, temp, out, left, right, disp, StreamAccessor::getStream(stream));
|
||||
operators[msg_type](*this, u, d, l, r, disp_selected_pyr, data_cost, data_cost_selected, temp, out, left, right, disp, use_local_init_data_cost, StreamAccessor::getStream(stream));
|
||||
}
|
||||
|
||||
#endif /* !defined (HAVE_CUDA) */
|
||||
|
@ -55,16 +55,16 @@ using namespace cv::gpu::impl;
|
||||
#define SHRT_MAX 32767
|
||||
#endif
|
||||
|
||||
template <typename T>
|
||||
template <typename T>
|
||||
struct TypeLimits {};
|
||||
|
||||
template <>
|
||||
template <>
|
||||
struct TypeLimits<short>
|
||||
{
|
||||
static __device__ short max() {return SHRT_MAX;}
|
||||
};
|
||||
|
||||
template <>
|
||||
template <>
|
||||
struct TypeLimits<float>
|
||||
{
|
||||
static __device__ float max() {return FLT_MAX;}
|
||||
@ -82,7 +82,7 @@ namespace csbp_krnls
|
||||
__constant__ float cdata_weight;
|
||||
__constant__ float cmax_disc_term;
|
||||
__constant__ float cdisc_single_jump;
|
||||
|
||||
|
||||
__constant__ int cth;
|
||||
|
||||
__constant__ size_t cimg_step;
|
||||
@ -96,7 +96,7 @@ namespace csbp_krnls
|
||||
__constant__ uchar* ctemp;
|
||||
}
|
||||
|
||||
namespace cv { namespace gpu { namespace csbp
|
||||
namespace cv { namespace gpu { namespace csbp
|
||||
{
|
||||
void load_constants(int ndisp, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump, int min_disp_th,
|
||||
const DevMem2D& left, const DevMem2D& right, const DevMem2D& temp)
|
||||
@ -107,9 +107,9 @@ namespace cv { namespace gpu { namespace csbp
|
||||
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cdata_weight, &data_weight, sizeof(float)) );
|
||||
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cmax_disc_term, &max_disc_term, sizeof(float)) );
|
||||
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cdisc_single_jump, &disc_single_jump, sizeof(float)) );
|
||||
|
||||
|
||||
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cth, &min_disp_th, sizeof(int)) );
|
||||
|
||||
|
||||
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cimg_step, &left.step, sizeof(size_t)) );
|
||||
|
||||
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cleft, &left.ptr, sizeof(left.ptr)) );
|
||||
@ -123,8 +123,8 @@ namespace cv { namespace gpu { namespace csbp
|
||||
///////////////////////////////////////////////////////////////
|
||||
|
||||
namespace csbp_krnls
|
||||
{
|
||||
template <int channels>
|
||||
{
|
||||
template <int channels>
|
||||
struct DataCostPerPixel
|
||||
{
|
||||
static __device__ float compute(const uchar* left, const uchar* right)
|
||||
@ -137,7 +137,7 @@ namespace csbp_krnls
|
||||
}
|
||||
};
|
||||
|
||||
template <>
|
||||
template <>
|
||||
struct DataCostPerPixel<1>
|
||||
{
|
||||
static __device__ float compute(const uchar* left, const uchar* right)
|
||||
@ -146,12 +146,46 @@ namespace csbp_krnls
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
__global__ void get_first_k_initial_global(T* data_cost_selected_, T *selected_disp_pyr, int h, int w, int nr_plane)
|
||||
{
|
||||
int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (y < h && x < w)
|
||||
{
|
||||
T* selected_disparity = selected_disp_pyr + y * cmsg_step1 + x;
|
||||
T* data_cost_selected = data_cost_selected_ + y * cmsg_step1 + x;
|
||||
T* data_cost = (T*)ctemp + y * cmsg_step1 + x;
|
||||
|
||||
for(int i = 0; i < nr_plane; i++)
|
||||
{
|
||||
T fmin_ = data_cost[i * cdisp_step1];
|
||||
int id = i;
|
||||
for(int j = 0; j < nr_plane; j++)
|
||||
{
|
||||
T cur = data_cost[j * cdisp_step1];
|
||||
if(cur < fmin_)
|
||||
{
|
||||
fmin_ = cur;
|
||||
id = j;
|
||||
}
|
||||
}
|
||||
|
||||
data_cost_selected[i * cdisp_step1] = fmin_;
|
||||
selected_disparity[i * cdisp_step1] = id;
|
||||
data_cost [id * cdisp_step1] = TypeLimits<T>::max();;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
__global__ void get_first_k_initial_local(T* data_cost_selected_, T* selected_disp_pyr, int h, int w, int nr_plane)
|
||||
{
|
||||
int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
|
||||
if (y < h && x < w)
|
||||
{
|
||||
T* selected_disparity = selected_disp_pyr + y * cmsg_step1 + x;
|
||||
@ -170,7 +204,7 @@ namespace csbp_krnls
|
||||
{
|
||||
data_cost_selected[nr_local_minimum * cdisp_step1] = cur;
|
||||
selected_disparity[nr_local_minimum * cdisp_step1] = d;
|
||||
|
||||
|
||||
data_cost[d * cdisp_step1] = TypeLimits<T>::max();
|
||||
|
||||
nr_local_minimum++;
|
||||
@ -203,11 +237,11 @@ namespace csbp_krnls
|
||||
}
|
||||
|
||||
template <typename T, int channels>
|
||||
__global__ void init_data_cost(int h, int w, int level)
|
||||
__global__ void init_data_cost(int h, int w, int level)
|
||||
{
|
||||
int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
|
||||
if (y < h && x < w)
|
||||
{
|
||||
int y0 = y << level;
|
||||
@ -224,28 +258,28 @@ namespace csbp_krnls
|
||||
for(int yi = y0; yi < yt; yi++)
|
||||
{
|
||||
for(int xi = x0; xi < xt; xi++)
|
||||
{
|
||||
{
|
||||
int xr = xi - d;
|
||||
if(d < cth || xr < 0)
|
||||
if(d < cth || xr < 0)
|
||||
val += cdata_weight * cmax_data_term;
|
||||
else
|
||||
{
|
||||
else
|
||||
{
|
||||
const uchar* lle = cleft + yi * cimg_step + xi * channels;
|
||||
const uchar* lri = cright + yi * cimg_step + xr * channels;
|
||||
|
||||
val += DataCostPerPixel<channels>::compute(lle, lri);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
data_cost[cdisp_step1 * d] = saturate_cast<T>(val);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, int winsz, int channels>
|
||||
template <typename T, int winsz, int channels>
|
||||
__global__ void init_data_cost_reduce(int level, int rows, int cols, int h)
|
||||
{
|
||||
int x_out = blockIdx.x;
|
||||
int x_out = blockIdx.x;
|
||||
int y_out = blockIdx.y % h;
|
||||
int d = (blockIdx.y / h) * blockDim.z + threadIdx.z;
|
||||
|
||||
@ -269,7 +303,7 @@ namespace csbp_krnls
|
||||
const uchar* lri = cright + y0 * cimg_step + channels * (x0 + tid - d);
|
||||
|
||||
for(int y = 0; y < len; ++y)
|
||||
{
|
||||
{
|
||||
val += DataCostPerPixel<channels>::compute(lle, lri);
|
||||
|
||||
lle += cimg_step;
|
||||
@ -292,28 +326,28 @@ namespace csbp_krnls
|
||||
if (winsz >= 32) if (tid < 16) dline[tid] += dline[tid + 16];
|
||||
if (winsz >= 16) if (tid < 8) dline[tid] += dline[tid + 8];
|
||||
if (winsz >= 8) if (tid < 4) dline[tid] += dline[tid + 4];
|
||||
if (winsz >= 4) if (tid < 2) dline[tid] += dline[tid + 2];
|
||||
if (winsz >= 4) if (tid < 2) dline[tid] += dline[tid + 2];
|
||||
if (winsz >= 2) if (tid < 1) dline[tid] += dline[tid + 1];
|
||||
|
||||
T* data_cost = (T*)ctemp + y_out * cmsg_step1 + x_out;
|
||||
|
||||
if (tid == 0)
|
||||
if (tid == 0)
|
||||
data_cost[cdisp_step1 * d] = saturate_cast<T>(dline[0]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
namespace cv { namespace gpu { namespace csbp
|
||||
namespace cv { namespace gpu { namespace csbp
|
||||
{
|
||||
template <typename T>
|
||||
template <typename T>
|
||||
void init_data_cost_caller_(int /*rows*/, int /*cols*/, int h, int w, int level, int /*ndisp*/, int channels, cudaStream_t stream)
|
||||
{
|
||||
dim3 threads(32, 8, 1);
|
||||
dim3 grid(1, 1, 1);
|
||||
|
||||
grid.x = divUp(w, threads.x);
|
||||
grid.y = divUp(h, threads.y);
|
||||
|
||||
grid.y = divUp(h, threads.y);
|
||||
|
||||
switch (channels)
|
||||
{
|
||||
case 1: csbp_krnls::init_data_cost<T, 1><<<grid, threads, 0, stream>>>(h, w, level); break;
|
||||
@ -322,16 +356,16 @@ namespace cv { namespace gpu { namespace csbp
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, int winsz>
|
||||
template <typename T, int winsz>
|
||||
void init_data_cost_reduce_caller_(int rows, int cols, int h, int w, int level, int ndisp, int channels, cudaStream_t stream)
|
||||
{
|
||||
const int threadsNum = 256;
|
||||
const size_t smem_size = threadsNum * sizeof(float);
|
||||
|
||||
|
||||
dim3 threads(winsz, 1, threadsNum / winsz);
|
||||
dim3 grid(w, h, 1);
|
||||
dim3 grid(w, h, 1);
|
||||
grid.y *= divUp(ndisp, threads.z);
|
||||
|
||||
|
||||
switch (channels)
|
||||
{
|
||||
case 1: csbp_krnls::init_data_cost_reduce<T, winsz, 1><<<grid, threads, smem_size, stream>>>(level, rows, cols, h); break;
|
||||
@ -341,19 +375,19 @@ namespace cv { namespace gpu { namespace csbp
|
||||
}
|
||||
|
||||
template<class T>
|
||||
void init_data_cost_tmpl(int rows, int cols, T* disp_selected_pyr, T* data_cost_selected,
|
||||
size_t msg_step, int h, int w, int level, int nr_plane, int ndisp, int channels, cudaStream_t stream)
|
||||
{
|
||||
void init_data_cost_tmpl(int rows, int cols, T* disp_selected_pyr, T* data_cost_selected, size_t msg_step,
|
||||
int h, int w, int level, int nr_plane, int ndisp, int channels, bool use_local_init_data_cost, cudaStream_t stream)
|
||||
{
|
||||
|
||||
typedef void (*InitDataCostCaller)(int cols, int rows, int w, int h, int level, int ndisp, int channels, cudaStream_t stream);
|
||||
|
||||
static const InitDataCostCaller init_data_cost_callers[] =
|
||||
static const InitDataCostCaller init_data_cost_callers[] =
|
||||
{
|
||||
init_data_cost_caller_<T>, init_data_cost_caller_<T>, init_data_cost_reduce_caller_<T, 4>,
|
||||
init_data_cost_reduce_caller_<T, 8>, init_data_cost_reduce_caller_<T, 16>, init_data_cost_reduce_caller_<T, 32>,
|
||||
init_data_cost_caller_<T>, init_data_cost_caller_<T>, init_data_cost_reduce_caller_<T, 4>,
|
||||
init_data_cost_reduce_caller_<T, 8>, init_data_cost_reduce_caller_<T, 16>, init_data_cost_reduce_caller_<T, 32>,
|
||||
init_data_cost_reduce_caller_<T, 64>, init_data_cost_reduce_caller_<T, 128>, init_data_cost_reduce_caller_<T, 256>
|
||||
};
|
||||
|
||||
|
||||
size_t disp_step = msg_step * h;
|
||||
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cdisp_step1, &disp_step, sizeof(size_t)) );
|
||||
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cmsg_step1, &msg_step, sizeof(size_t)) );
|
||||
@ -368,21 +402,24 @@ namespace cv { namespace gpu { namespace csbp
|
||||
grid.x = divUp(w, threads.x);
|
||||
grid.y = divUp(h, threads.y);
|
||||
|
||||
csbp_krnls::get_first_k_initial_local<<<grid, threads, 0, stream>>>(data_cost_selected, disp_selected_pyr, h, w, nr_plane);
|
||||
if (use_local_init_data_cost == true)
|
||||
csbp_krnls::get_first_k_initial_local<<<grid, threads, 0, stream>>> (data_cost_selected, disp_selected_pyr, h, w, nr_plane);
|
||||
else
|
||||
csbp_krnls::get_first_k_initial_global<<<grid, threads, 0, stream>>>(data_cost_selected, disp_selected_pyr, h, w, nr_plane);
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaThreadSynchronize() );
|
||||
}
|
||||
|
||||
void init_data_cost(int rows, int cols, short* disp_selected_pyr, short* data_cost_selected,
|
||||
size_t msg_step, int h, int w, int level, int nr_plane, int ndisp, int channels, cudaStream_t stream)
|
||||
size_t msg_step, int h, int w, int level, int nr_plane, int ndisp, int channels, bool use_local_init_data_cost, cudaStream_t stream)
|
||||
{
|
||||
init_data_cost_tmpl(rows, cols, disp_selected_pyr, data_cost_selected, msg_step, h, w, level, nr_plane, ndisp, channels, stream);
|
||||
init_data_cost_tmpl(rows, cols, disp_selected_pyr, data_cost_selected, msg_step, h, w, level, nr_plane, ndisp, channels, use_local_init_data_cost, stream);
|
||||
}
|
||||
|
||||
void init_data_cost(int rows, int cols, float* disp_selected_pyr, float* data_cost_selected,
|
||||
size_t msg_step, int h, int w, int level, int nr_plane, int ndisp, int channels, cudaStream_t stream)
|
||||
size_t msg_step, int h, int w, int level, int nr_plane, int ndisp, int channels, bool use_local_init_data_cost, cudaStream_t stream)
|
||||
{
|
||||
init_data_cost_tmpl(rows, cols, disp_selected_pyr, data_cost_selected, msg_step, h, w, level, nr_plane, ndisp, channels, stream);
|
||||
init_data_cost_tmpl(rows, cols, disp_selected_pyr, data_cost_selected, msg_step, h, w, level, nr_plane, ndisp, channels, use_local_init_data_cost, stream);
|
||||
}
|
||||
|
||||
}}}
|
||||
@ -397,13 +434,13 @@ namespace csbp_krnls
|
||||
__global__ void compute_data_cost(const T* selected_disp_pyr, T* data_cost_, int h, int w, int level, int nr_plane)
|
||||
{
|
||||
int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (y < h && x < w)
|
||||
{
|
||||
int y0 = y << level;
|
||||
int yt = (y + 1) << level;
|
||||
|
||||
|
||||
int x0 = x << level;
|
||||
int xt = (x + 1) << level;
|
||||
|
||||
@ -420,9 +457,9 @@ namespace csbp_krnls
|
||||
int sel_disp = selected_disparity[d * cdisp_step2];
|
||||
int xr = xi - sel_disp;
|
||||
|
||||
if (xr < 0 || sel_disp < cth)
|
||||
if (xr < 0 || sel_disp < cth)
|
||||
val += cdata_weight * cmax_data_term;
|
||||
else
|
||||
else
|
||||
{
|
||||
const uchar* left_x = cleft + yi * cimg_step + xi * channels;
|
||||
const uchar* right_x = cright + yi * cimg_step + xr * channels;
|
||||
@ -436,17 +473,17 @@ namespace csbp_krnls
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, int winsz, int channels>
|
||||
template <typename T, int winsz, int channels>
|
||||
__global__ void compute_data_cost_reduce(const T* selected_disp_pyr, T* data_cost_, int level, int rows, int cols, int h, int nr_plane)
|
||||
{
|
||||
int x_out = blockIdx.x;
|
||||
int x_out = blockIdx.x;
|
||||
int y_out = blockIdx.y % h;
|
||||
int d = (blockIdx.y / h) * blockDim.z + threadIdx.z;
|
||||
|
||||
int tid = threadIdx.x;
|
||||
|
||||
const T* selected_disparity = selected_disp_pyr + y_out/2 * cmsg_step2 + x_out/2;
|
||||
T* data_cost = data_cost_ + y_out * cmsg_step1 + x_out;
|
||||
T* data_cost = data_cost_ + y_out * cmsg_step1 + x_out;
|
||||
|
||||
if (d < nr_plane)
|
||||
{
|
||||
@ -468,7 +505,7 @@ namespace csbp_krnls
|
||||
const uchar* lri = cright + y0 * cimg_step + channels * (x0 + tid - sel_disp);
|
||||
|
||||
for(int y = 0; y < len; ++y)
|
||||
{
|
||||
{
|
||||
val += DataCostPerPixel<channels>::compute(lle, lri);
|
||||
|
||||
lle += cimg_step;
|
||||
@ -491,18 +528,18 @@ namespace csbp_krnls
|
||||
if (winsz >= 32) if (tid < 16) dline[tid] += dline[tid + 16];
|
||||
if (winsz >= 16) if (tid < 8) dline[tid] += dline[tid + 8];
|
||||
if (winsz >= 8) if (tid < 4) dline[tid] += dline[tid + 4];
|
||||
if (winsz >= 4) if (tid < 2) dline[tid] += dline[tid + 2];
|
||||
if (winsz >= 4) if (tid < 2) dline[tid] += dline[tid + 2];
|
||||
if (winsz >= 2) if (tid < 1) dline[tid] += dline[tid + 1];
|
||||
|
||||
if (tid == 0)
|
||||
if (tid == 0)
|
||||
data_cost[cdisp_step1 * d] = saturate_cast<T>(dline[0]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
namespace cv { namespace gpu { namespace csbp
|
||||
namespace cv { namespace gpu { namespace csbp
|
||||
{
|
||||
template <typename T>
|
||||
template <typename T>
|
||||
void compute_data_cost_caller_(const T* disp_selected_pyr, T* data_cost, int /*rows*/, int /*cols*/,
|
||||
int h, int w, int level, int nr_plane, int channels, cudaStream_t stream)
|
||||
{
|
||||
@ -517,20 +554,20 @@ namespace cv { namespace gpu { namespace csbp
|
||||
case 1: csbp_krnls::compute_data_cost<T, 1><<<grid, threads, 0, stream>>>(disp_selected_pyr, data_cost, h, w, level, nr_plane); break;
|
||||
case 3: csbp_krnls::compute_data_cost<T, 3><<<grid, threads, 0, stream>>>(disp_selected_pyr, data_cost, h, w, level, nr_plane); break;
|
||||
default: cv::gpu::error("Unsupported channels count", __FILE__, __LINE__);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, int winsz>
|
||||
template <typename T, int winsz>
|
||||
void compute_data_cost_reduce_caller_(const T* disp_selected_pyr, T* data_cost, int rows, int cols,
|
||||
int h, int w, int level, int nr_plane, int channels, cudaStream_t stream)
|
||||
{
|
||||
const int threadsNum = 256;
|
||||
const size_t smem_size = threadsNum * sizeof(float);
|
||||
|
||||
|
||||
dim3 threads(winsz, 1, threadsNum / winsz);
|
||||
dim3 grid(w, h, 1);
|
||||
dim3 grid(w, h, 1);
|
||||
grid.y *= divUp(nr_plane, threads.z);
|
||||
|
||||
|
||||
switch (channels)
|
||||
{
|
||||
case 1: csbp_krnls::compute_data_cost_reduce<T, winsz, 1><<<grid, threads, smem_size, stream>>>(disp_selected_pyr, data_cost, level, rows, cols, h, nr_plane); break;
|
||||
@ -538,19 +575,19 @@ namespace cv { namespace gpu { namespace csbp
|
||||
default: cv::gpu::error("Unsupported channels count", __FILE__, __LINE__);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
template<class T>
|
||||
void compute_data_cost_tmpl(const T* disp_selected_pyr, T* data_cost, size_t msg_step1, size_t msg_step2,
|
||||
int rows, int cols, int h, int w, int h2, int level, int nr_plane, int channels, cudaStream_t stream)
|
||||
{
|
||||
typedef void (*ComputeDataCostCaller)(const T* disp_selected_pyr, T* data_cost, int rows, int cols,
|
||||
typedef void (*ComputeDataCostCaller)(const T* disp_selected_pyr, T* data_cost, int rows, int cols,
|
||||
int h, int w, int level, int nr_plane, int channels, cudaStream_t stream);
|
||||
|
||||
static const ComputeDataCostCaller callers[] =
|
||||
static const ComputeDataCostCaller callers[] =
|
||||
{
|
||||
compute_data_cost_caller_<T>, compute_data_cost_caller_<T>, compute_data_cost_reduce_caller_<T, 4>,
|
||||
compute_data_cost_reduce_caller_<T, 8>, compute_data_cost_reduce_caller_<T, 16>, compute_data_cost_reduce_caller_<T, 32>,
|
||||
compute_data_cost_caller_<T>, compute_data_cost_caller_<T>, compute_data_cost_reduce_caller_<T, 4>,
|
||||
compute_data_cost_reduce_caller_<T, 8>, compute_data_cost_reduce_caller_<T, 16>, compute_data_cost_reduce_caller_<T, 32>,
|
||||
compute_data_cost_reduce_caller_<T, 64>, compute_data_cost_reduce_caller_<T, 128>, compute_data_cost_reduce_caller_<T, 256>
|
||||
};
|
||||
|
||||
@ -559,12 +596,12 @@ namespace cv { namespace gpu { namespace csbp
|
||||
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cdisp_step1, &disp_step1, sizeof(size_t)) );
|
||||
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cdisp_step2, &disp_step2, sizeof(size_t)) );
|
||||
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cmsg_step1, &msg_step1, sizeof(size_t)) );
|
||||
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cmsg_step2, &msg_step2, sizeof(size_t)) );
|
||||
|
||||
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cmsg_step2, &msg_step2, sizeof(size_t)) );
|
||||
|
||||
callers[level](disp_selected_pyr, data_cost, rows, cols, h, w, level, nr_plane, channels, stream);
|
||||
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaThreadSynchronize() );
|
||||
cudaSafeCall( cudaThreadSynchronize() );
|
||||
}
|
||||
|
||||
void compute_data_cost(const short* disp_selected_pyr, short* data_cost, size_t msg_step1, size_t msg_step2,
|
||||
@ -587,10 +624,10 @@ namespace cv { namespace gpu { namespace csbp
|
||||
namespace csbp_krnls
|
||||
{
|
||||
template <typename T>
|
||||
__device__ void get_first_k_element_increase(T* u_new, T* d_new, T* l_new, T* r_new,
|
||||
__device__ void get_first_k_element_increase(T* u_new, T* d_new, T* l_new, T* r_new,
|
||||
const T* u_cur, const T* d_cur, const T* l_cur, const T* r_cur,
|
||||
T* data_cost_selected, T* disparity_selected_new, T* data_cost_new,
|
||||
const T* data_cost_cur, const T* disparity_selected_cur,
|
||||
T* data_cost_selected, T* disparity_selected_new, T* data_cost_new,
|
||||
const T* data_cost_cur, const T* disparity_selected_cur,
|
||||
int nr_plane, int nr_plane2)
|
||||
{
|
||||
for(int i = 0; i < nr_plane; i++)
|
||||
@ -620,17 +657,17 @@ namespace csbp_krnls
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void init_message(T* u_new_, T* d_new_, T* l_new_, T* r_new_,
|
||||
const T* u_cur_, const T* d_cur_, const T* l_cur_, const T* r_cur_,
|
||||
T* selected_disp_pyr_new, const T* selected_disp_pyr_cur,
|
||||
T* data_cost_selected_, const T* data_cost_,
|
||||
__global__ void init_message(T* u_new_, T* d_new_, T* l_new_, T* r_new_,
|
||||
const T* u_cur_, const T* d_cur_, const T* l_cur_, const T* r_cur_,
|
||||
T* selected_disp_pyr_new, const T* selected_disp_pyr_cur,
|
||||
T* data_cost_selected_, const T* data_cost_,
|
||||
int h, int w, int nr_plane, int h2, int w2, int nr_plane2)
|
||||
{
|
||||
int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (y < h && x < w)
|
||||
{
|
||||
{
|
||||
const T* u_cur = u_cur_ + min(h2-1, y/2 + 1) * cmsg_step2 + x/2;
|
||||
const T* d_cur = d_cur_ + max(0, y/2 - 1) * cmsg_step2 + x/2;
|
||||
const T* l_cur = l_cur_ + y/2 * cmsg_step2 + min(w2-1, x/2 + 1);
|
||||
@ -644,7 +681,7 @@ namespace csbp_krnls
|
||||
for(int d = 0; d < nr_plane2; d++)
|
||||
{
|
||||
int idx2 = d * cdisp_step2;
|
||||
|
||||
|
||||
T val = data_cost[d * cdisp_step1] + u_cur[idx2] + d_cur[idx2] + l_cur[idx2] + r_cur[idx2];
|
||||
data_cost_new[d * cdisp_step1] = val;
|
||||
}
|
||||
@ -669,58 +706,58 @@ namespace csbp_krnls
|
||||
}
|
||||
}
|
||||
|
||||
namespace cv { namespace gpu { namespace csbp
|
||||
namespace cv { namespace gpu { namespace csbp
|
||||
{
|
||||
template<class T>
|
||||
void init_message_tmpl(T* u_new, T* d_new, T* l_new, T* r_new,
|
||||
const T* u_cur, const T* d_cur, const T* l_cur, const T* r_cur,
|
||||
T* selected_disp_pyr_new, const T* selected_disp_pyr_cur,
|
||||
T* data_cost_selected, const T* data_cost, size_t msg_step1, size_t msg_step2,
|
||||
void init_message_tmpl(T* u_new, T* d_new, T* l_new, T* r_new,
|
||||
const T* u_cur, const T* d_cur, const T* l_cur, const T* r_cur,
|
||||
T* selected_disp_pyr_new, const T* selected_disp_pyr_cur,
|
||||
T* data_cost_selected, const T* data_cost, size_t msg_step1, size_t msg_step2,
|
||||
int h, int w, int nr_plane, int h2, int w2, int nr_plane2, cudaStream_t stream)
|
||||
{
|
||||
|
||||
{
|
||||
|
||||
size_t disp_step1 = msg_step1 * h;
|
||||
size_t disp_step2 = msg_step2 * h2;
|
||||
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cdisp_step1, &disp_step1, sizeof(size_t)) );
|
||||
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cdisp_step2, &disp_step2, sizeof(size_t)) );
|
||||
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cmsg_step1, &msg_step1, sizeof(size_t)) );
|
||||
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cmsg_step2, &msg_step2, sizeof(size_t)) );
|
||||
|
||||
|
||||
dim3 threads(32, 8, 1);
|
||||
dim3 grid(1, 1, 1);
|
||||
|
||||
grid.x = divUp(w, threads.x);
|
||||
grid.y = divUp(h, threads.y);
|
||||
grid.y = divUp(h, threads.y);
|
||||
|
||||
csbp_krnls::init_message<<<grid, threads, 0, stream>>>(u_new, d_new, l_new, r_new,
|
||||
csbp_krnls::init_message<<<grid, threads, 0, stream>>>(u_new, d_new, l_new, r_new,
|
||||
u_cur, d_cur, l_cur, r_cur,
|
||||
selected_disp_pyr_new, selected_disp_pyr_cur,
|
||||
data_cost_selected, data_cost,
|
||||
selected_disp_pyr_new, selected_disp_pyr_cur,
|
||||
data_cost_selected, data_cost,
|
||||
h, w, nr_plane, h2, w2, nr_plane2);
|
||||
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaThreadSynchronize() );
|
||||
}
|
||||
|
||||
void init_message(short* u_new, short* d_new, short* l_new, short* r_new,
|
||||
const short* u_cur, const short* d_cur, const short* l_cur, const short* r_cur,
|
||||
short* selected_disp_pyr_new, const short* selected_disp_pyr_cur,
|
||||
short* data_cost_selected, const short* data_cost, size_t msg_step1, size_t msg_step2,
|
||||
void init_message(short* u_new, short* d_new, short* l_new, short* r_new,
|
||||
const short* u_cur, const short* d_cur, const short* l_cur, const short* r_cur,
|
||||
short* selected_disp_pyr_new, const short* selected_disp_pyr_cur,
|
||||
short* data_cost_selected, const short* data_cost, size_t msg_step1, size_t msg_step2,
|
||||
int h, int w, int nr_plane, int h2, int w2, int nr_plane2, cudaStream_t stream)
|
||||
{
|
||||
init_message_tmpl(u_new, d_new, l_new, r_new, u_cur, d_cur, l_cur, r_cur,
|
||||
selected_disp_pyr_new, selected_disp_pyr_cur, data_cost_selected, data_cost, msg_step1, msg_step2,
|
||||
init_message_tmpl(u_new, d_new, l_new, r_new, u_cur, d_cur, l_cur, r_cur,
|
||||
selected_disp_pyr_new, selected_disp_pyr_cur, data_cost_selected, data_cost, msg_step1, msg_step2,
|
||||
h, w, nr_plane, h2, w2, nr_plane2, stream);
|
||||
}
|
||||
|
||||
void init_message(float* u_new, float* d_new, float* l_new, float* r_new,
|
||||
const float* u_cur, const float* d_cur, const float* l_cur, const float* r_cur,
|
||||
float* selected_disp_pyr_new, const float* selected_disp_pyr_cur,
|
||||
float* data_cost_selected, const float* data_cost, size_t msg_step1, size_t msg_step2,
|
||||
void init_message(float* u_new, float* d_new, float* l_new, float* r_new,
|
||||
const float* u_cur, const float* d_cur, const float* l_cur, const float* r_cur,
|
||||
float* selected_disp_pyr_new, const float* selected_disp_pyr_cur,
|
||||
float* data_cost_selected, const float* data_cost, size_t msg_step1, size_t msg_step2,
|
||||
int h, int w, int nr_plane, int h2, int w2, int nr_plane2, cudaStream_t stream)
|
||||
{
|
||||
init_message_tmpl(u_new, d_new, l_new, r_new, u_cur, d_cur, l_cur, r_cur,
|
||||
selected_disp_pyr_new, selected_disp_pyr_cur, data_cost_selected, data_cost, msg_step1, msg_step2,
|
||||
init_message_tmpl(u_new, d_new, l_new, r_new, u_cur, d_cur, l_cur, r_cur,
|
||||
selected_disp_pyr_new, selected_disp_pyr_cur, data_cost_selected, data_cost, msg_step1, msg_step2,
|
||||
h, w, nr_plane, h2, w2, nr_plane2, stream);
|
||||
}
|
||||
}}}
|
||||
@ -732,7 +769,7 @@ namespace cv { namespace gpu { namespace csbp
|
||||
namespace csbp_krnls
|
||||
{
|
||||
template <typename T>
|
||||
__device__ void message_per_pixel(const T* data, T* msg_dst, const T* msg1, const T* msg2, const T* msg3,
|
||||
__device__ void message_per_pixel(const T* data, T* msg_dst, const T* msg1, const T* msg2, const T* msg3,
|
||||
const T* dst_disp, const T* src_disp, int nr_plane, T* temp)
|
||||
{
|
||||
T minimum = TypeLimits<T>::max();
|
||||
@ -742,7 +779,7 @@ namespace csbp_krnls
|
||||
int idx = d * cdisp_step1;
|
||||
T val = data[idx] + msg1[idx] + msg2[idx] + msg3[idx];
|
||||
|
||||
if(val < minimum)
|
||||
if(val < minimum)
|
||||
minimum = val;
|
||||
|
||||
msg_dst[idx] = val;
|
||||
@ -756,7 +793,7 @@ namespace csbp_krnls
|
||||
|
||||
for(int d2 = 0; d2 < nr_plane; d2++)
|
||||
cost_min = fmin(cost_min, msg_dst[d2 * cdisp_step1] + cdisc_single_jump * abs(dst_disp[d2 * cdisp_step1] - src_disp_reg));
|
||||
|
||||
|
||||
temp[d * cdisp_step1] = saturate_cast<T>(cost_min);
|
||||
sum += cost_min;
|
||||
}
|
||||
@ -780,9 +817,9 @@ namespace csbp_krnls
|
||||
T* d = d_ + y * cmsg_step1 + x;
|
||||
T* l = l_ + y * cmsg_step1 + x;
|
||||
T* r = r_ + y * cmsg_step1 + x;
|
||||
|
||||
|
||||
const T* disp = selected_disp_pyr_cur + y * cmsg_step1 + x;
|
||||
|
||||
|
||||
T* temp = (T*)ctemp + y * cmsg_step1 + x;
|
||||
|
||||
message_per_pixel(data, u, r - 1, u + cmsg_step1, l + 1, disp, disp - cmsg_step1, nr_plane, temp);
|
||||
@ -793,12 +830,12 @@ namespace csbp_krnls
|
||||
}
|
||||
}
|
||||
|
||||
namespace cv { namespace gpu { namespace csbp
|
||||
namespace cv { namespace gpu { namespace csbp
|
||||
{
|
||||
template<class T>
|
||||
void calc_all_iterations_tmpl(T* u, T* d, T* l, T* r, const T* data_cost_selected,
|
||||
void calc_all_iterations_tmpl(T* u, T* d, T* l, T* r, const T* data_cost_selected,
|
||||
const T* selected_disp_pyr_cur, size_t msg_step, int h, int w, int nr_plane, int iters, cudaStream_t stream)
|
||||
{
|
||||
{
|
||||
size_t disp_step = msg_step * h;
|
||||
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cdisp_step1, &disp_step, sizeof(size_t)) );
|
||||
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cmsg_step1, &msg_step, sizeof(size_t)) );
|
||||
@ -811,20 +848,20 @@ namespace cv { namespace gpu { namespace csbp
|
||||
|
||||
for(int t = 0; t < iters; ++t)
|
||||
{
|
||||
csbp_krnls::compute_message<<<grid, threads, 0, stream>>>(u, d, l, r, data_cost_selected, selected_disp_pyr_cur, h, w, nr_plane, t & 1);
|
||||
|
||||
csbp_krnls::compute_message<<<grid, threads, 0, stream>>>(u, d, l, r, data_cost_selected, selected_disp_pyr_cur, h, w, nr_plane, t & 1);
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaThreadSynchronize() );
|
||||
}
|
||||
};
|
||||
|
||||
void calc_all_iterations(short* u, short* d, short* l, short* r, short* data_cost_selected,
|
||||
const short* selected_disp_pyr_cur, size_t msg_step, int h, int w, int nr_plane, int iters, cudaStream_t stream)
|
||||
void calc_all_iterations(short* u, short* d, short* l, short* r, short* data_cost_selected,
|
||||
const short* selected_disp_pyr_cur, size_t msg_step, int h, int w, int nr_plane, int iters, cudaStream_t stream)
|
||||
{
|
||||
calc_all_iterations_tmpl(u, d, l, r, data_cost_selected, selected_disp_pyr_cur, msg_step, h, w, nr_plane, iters, stream);
|
||||
}
|
||||
|
||||
void calc_all_iterations(float*u, float* d, float* l, float* r, float* data_cost_selected,
|
||||
void calc_all_iterations(float*u, float* d, float* l, float* r, float* data_cost_selected,
|
||||
const float* selected_disp_pyr_cur, size_t msg_step, int h, int w, int nr_plane, int iters, cudaStream_t stream)
|
||||
{
|
||||
calc_all_iterations_tmpl(u, d, l, r, data_cost_selected, selected_disp_pyr_cur, msg_step, h, w, nr_plane, iters, stream);
|
||||
@ -839,10 +876,10 @@ namespace cv { namespace gpu { namespace csbp
|
||||
namespace csbp_krnls
|
||||
{
|
||||
template <typename T>
|
||||
__global__ void compute_disp(const T* u_, const T* d_, const T* l_, const T* r_,
|
||||
const T* data_cost_selected, const T* disp_selected_pyr,
|
||||
short* disp, size_t res_step, int cols, int rows, int nr_plane)
|
||||
{
|
||||
__global__ void compute_disp(const T* u_, const T* d_, const T* l_, const T* r_,
|
||||
const T* data_cost_selected, const T* disp_selected_pyr,
|
||||
short* disp, size_t res_step, int cols, int rows, int nr_plane)
|
||||
{
|
||||
int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
@ -855,15 +892,15 @@ namespace csbp_krnls
|
||||
const T* d = d_ + (y-1) * cmsg_step1 + (x+0);
|
||||
const T* l = l_ + (y+0) * cmsg_step1 + (x+1);
|
||||
const T* r = r_ + (y+0) * cmsg_step1 + (x-1);
|
||||
|
||||
|
||||
int best = 0;
|
||||
T best_val = TypeLimits<T>::max();
|
||||
for (int i = 0; i < nr_plane; ++i)
|
||||
for (int i = 0; i < nr_plane; ++i)
|
||||
{
|
||||
int idx = i * cdisp_step1;
|
||||
T val = data[idx]+ u[idx] + d[idx] + l[idx] + r[idx];
|
||||
|
||||
if (val < best_val)
|
||||
if (val < best_val)
|
||||
{
|
||||
best_val = val;
|
||||
best = saturate_cast<short>(disp_selected[idx]);
|
||||
@ -874,12 +911,12 @@ namespace csbp_krnls
|
||||
}
|
||||
}
|
||||
|
||||
namespace cv { namespace gpu { namespace csbp
|
||||
namespace cv { namespace gpu { namespace csbp
|
||||
{
|
||||
template<class T>
|
||||
void compute_disp_tmpl(const T* u, const T* d, const T* l, const T* r, const T* data_cost_selected, const T* disp_selected, size_t msg_step,
|
||||
template<class T>
|
||||
void compute_disp_tmpl(const T* u, const T* d, const T* l, const T* r, const T* data_cost_selected, const T* disp_selected, size_t msg_step,
|
||||
const DevMem2D_<short>& disp, int nr_plane, cudaStream_t stream)
|
||||
{
|
||||
{
|
||||
size_t disp_step = disp.rows * msg_step;
|
||||
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cdisp_step1, &disp_step, sizeof(size_t)) );
|
||||
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cmsg_step1, &msg_step, sizeof(size_t)) );
|
||||
@ -889,23 +926,23 @@ namespace cv { namespace gpu { namespace csbp
|
||||
|
||||
grid.x = divUp(disp.cols, threads.x);
|
||||
grid.y = divUp(disp.rows, threads.y);
|
||||
|
||||
csbp_krnls::compute_disp<<<grid, threads, 0, stream>>>(u, d, l, r, data_cost_selected, disp_selected,
|
||||
|
||||
csbp_krnls::compute_disp<<<grid, threads, 0, stream>>>(u, d, l, r, data_cost_selected, disp_selected,
|
||||
disp.ptr, disp.step / disp.elemSize(), disp.cols, disp.rows, nr_plane);
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaThreadSynchronize() );
|
||||
}
|
||||
|
||||
void compute_disp(const short* u, const short* d, const short* l, const short* r, const short* data_cost_selected, const short* disp_selected, size_t msg_step,
|
||||
void compute_disp(const short* u, const short* d, const short* l, const short* r, const short* data_cost_selected, const short* disp_selected, size_t msg_step,
|
||||
DevMem2D_<short> disp, int nr_plane, cudaStream_t stream)
|
||||
{
|
||||
compute_disp_tmpl(u, d, l, r, data_cost_selected, disp_selected, msg_step, disp, nr_plane, stream);
|
||||
}
|
||||
|
||||
void compute_disp(const float* u, const float* d, const float* l, const float* r, const float* data_cost_selected, const float* disp_selected, size_t msg_step,
|
||||
void compute_disp(const float* u, const float* d, const float* l, const float* r, const float* data_cost_selected, const float* disp_selected, size_t msg_step,
|
||||
DevMem2D_<short> disp, int nr_plane, cudaStream_t stream)
|
||||
{
|
||||
compute_disp_tmpl(u, d, l, r, data_cost_selected, disp_selected, msg_step, disp, nr_plane, stream);
|
||||
}
|
||||
|
||||
}}}
|
||||
}}}
|
||||
|
Loading…
x
Reference in New Issue
Block a user