fixed gpu core tests (added additional check for device's feature support)

added assertion on double types for old devices
This commit is contained in:
Vladislav Vinogradov 2012-03-26 14:33:43 +00:00
parent 98d7b10c16
commit 26691e00d4
6 changed files with 1039 additions and 525 deletions

View File

@ -69,16 +69,7 @@ void cv::gpu::gemm(const GpuMat& src1, const GpuMat& src2, double alpha, const G
{ {
#ifndef HAVE_CUBLAS #ifndef HAVE_CUBLAS
OPENCV_GPU_UNUSED(src1); CV_Error(CV_StsNotImplemented, "The library was build without CUBLAS");
OPENCV_GPU_UNUSED(src2);
OPENCV_GPU_UNUSED(alpha);
OPENCV_GPU_UNUSED(src3);
OPENCV_GPU_UNUSED(beta);
OPENCV_GPU_UNUSED(dst);
OPENCV_GPU_UNUSED(flags);
OPENCV_GPU_UNUSED(stream);
throw_nogpu();
#else #else
@ -87,6 +78,12 @@ void cv::gpu::gemm(const GpuMat& src1, const GpuMat& src2, double alpha, const G
CV_Assert(src1.type() == CV_32FC1 || src1.type() == CV_32FC2 || src1.type() == CV_64FC1 || src1.type() == CV_64FC2); CV_Assert(src1.type() == CV_32FC1 || src1.type() == CV_32FC2 || src1.type() == CV_64FC1 || src1.type() == CV_64FC2);
CV_Assert(src2.type() == src1.type() && (src3.empty() || src3.type() == src1.type())); CV_Assert(src2.type() == src1.type() && (src3.empty() || src3.type() == src1.type()));
if (src1.depth() == CV_64F)
{
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
bool tr1 = (flags & GEMM_1_T) != 0; bool tr1 = (flags & GEMM_1_T) != 0;
bool tr2 = (flags & GEMM_2_T) != 0; bool tr2 = (flags & GEMM_2_T) != 0;
bool tr3 = (flags & GEMM_3_T) != 0; bool tr3 = (flags & GEMM_3_T) != 0;
@ -230,6 +227,9 @@ void cv::gpu::transpose(const GpuMat& src, GpuMat& dst, Stream& s)
} }
else // if (src.elemSize() == 8) else // if (src.elemSize() == 8)
{ {
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
NppStStreamHandler h(stream); NppStStreamHandler h(stream);
NcvSize32u sz; NcvSize32u sz;
@ -290,7 +290,6 @@ namespace
void cv::gpu::flip(const GpuMat& src, GpuMat& dst, int flipCode, Stream& stream) void cv::gpu::flip(const GpuMat& src, GpuMat& dst, int flipCode, Stream& stream)
{ {
typedef void (*func_t)(const GpuMat& src, GpuMat& dst, int flipCode, cudaStream_t stream); typedef void (*func_t)(const GpuMat& src, GpuMat& dst, int flipCode, cudaStream_t stream);
static const func_t funcs[6][4] = static const func_t funcs[6][4] =
{ {
{NppMirror<CV_8U, nppiMirror_8u_C1R>::call, 0, NppMirror<CV_8U, nppiMirror_8u_C3R>::call, NppMirror<CV_8U, nppiMirror_8u_C4R>::call}, {NppMirror<CV_8U, nppiMirror_8u_C1R>::call, 0, NppMirror<CV_8U, nppiMirror_8u_C3R>::call, NppMirror<CV_8U, nppiMirror_8u_C4R>::call},
@ -403,12 +402,12 @@ namespace
void cv::gpu::magnitude(const GpuMat& src, GpuMat& dst, Stream& stream) void cv::gpu::magnitude(const GpuMat& src, GpuMat& dst, Stream& stream)
{ {
::npp_magnitude(src, dst, nppiMagnitude_32fc32f_C1R, StreamAccessor::getStream(stream)); npp_magnitude(src, dst, nppiMagnitude_32fc32f_C1R, StreamAccessor::getStream(stream));
} }
void cv::gpu::magnitudeSqr(const GpuMat& src, GpuMat& dst, Stream& stream) void cv::gpu::magnitudeSqr(const GpuMat& src, GpuMat& dst, Stream& stream)
{ {
::npp_magnitude(src, dst, nppiMagnitudeSqr_32fc32f_C1R, StreamAccessor::getStream(stream)); npp_magnitude(src, dst, nppiMagnitudeSqr_32fc32f_C1R, StreamAccessor::getStream(stream));
} }
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
@ -429,7 +428,7 @@ namespace
{ {
using namespace ::cv::gpu::device::mathfunc; using namespace ::cv::gpu::device::mathfunc;
CV_DbgAssert(x.size() == y.size() && x.type() == y.type()); CV_Assert(x.size() == y.size() && x.type() == y.type());
CV_Assert(x.depth() == CV_32F); CV_Assert(x.depth() == CV_32F);
if (mag) if (mag)
@ -449,7 +448,7 @@ namespace
{ {
using namespace ::cv::gpu::device::mathfunc; using namespace ::cv::gpu::device::mathfunc;
CV_DbgAssert((mag.empty() || mag.size() == angle.size()) && mag.type() == angle.type()); CV_Assert((mag.empty() || mag.size() == angle.size()) && mag.type() == angle.type());
CV_Assert(mag.depth() == CV_32F); CV_Assert(mag.depth() == CV_32F);
x.create(mag.size(), mag.type()); x.create(mag.size(), mag.type());

View File

@ -1096,18 +1096,18 @@ namespace cv { namespace gpu { namespace device
enum { smart_shift = 4 }; enum { smart_shift = 4 };
}; };
template <typename T> void absdiff_gpu(const DevMem2Db& src1, const DevMem2Db& src2, const DevMem2Db& dst, cudaStream_t stream) template <typename T> void absdiff_gpu(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream)
{ {
cv::gpu::device::transform((DevMem2D_<T>)src1, (DevMem2D_<T>)src2, (DevMem2D_<T>)dst, Absdiff<T>(), WithOutMask(), stream); cv::gpu::device::transform((DevMem2D_<T>)src1, (DevMem2D_<T>)src2, (DevMem2D_<T>)dst, Absdiff<T>(), WithOutMask(), stream);
} }
template void absdiff_gpu<uchar >(const DevMem2Db& src1, const DevMem2Db& src2, const DevMem2Db& dst, cudaStream_t stream); //template void absdiff_gpu<uchar >(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
template void absdiff_gpu<schar >(const DevMem2Db& src1, const DevMem2Db& src2, const DevMem2Db& dst, cudaStream_t stream); template void absdiff_gpu<schar >(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
template void absdiff_gpu<ushort>(const DevMem2Db& src1, const DevMem2Db& src2, const DevMem2Db& dst, cudaStream_t stream); //template void absdiff_gpu<ushort>(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
template void absdiff_gpu<short >(const DevMem2Db& src1, const DevMem2Db& src2, const DevMem2Db& dst, cudaStream_t stream); template void absdiff_gpu<short >(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
template void absdiff_gpu<int >(const DevMem2Db& src1, const DevMem2Db& src2, const DevMem2Db& dst, cudaStream_t stream); template void absdiff_gpu<int >(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
template void absdiff_gpu<float >(const DevMem2Db& src1, const DevMem2Db& src2, const DevMem2Db& dst, cudaStream_t stream); //template void absdiff_gpu<float >(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
template void absdiff_gpu<double>(const DevMem2Db& src1, const DevMem2Db& src2, const DevMem2Db& dst, cudaStream_t stream); template void absdiff_gpu<double>(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
template <typename T> struct AbsdiffScalar : unary_function<T, T> template <typename T> struct AbsdiffScalar : unary_function<T, T>
{ {
@ -1140,20 +1140,20 @@ namespace cv { namespace gpu { namespace device
enum { smart_shift = 4 }; enum { smart_shift = 4 };
}; };
template <typename T> void absdiff_gpu(const DevMem2Db& src1, double val, const DevMem2Db& dst, cudaStream_t stream) template <typename T> void absdiff_gpu(const DevMem2Db src1, double val, DevMem2Db dst, cudaStream_t stream)
{ {
cudaSafeCall( cudaSetDoubleForDevice(&val) ); cudaSafeCall( cudaSetDoubleForDevice(&val) );
AbsdiffScalar<T> op(val); AbsdiffScalar<T> op(val);
cv::gpu::device::transform((DevMem2D_<T>)src1, (DevMem2D_<T>)dst, op, WithOutMask(), stream); cv::gpu::device::transform((DevMem2D_<T>)src1, (DevMem2D_<T>)dst, op, WithOutMask(), stream);
} }
//template void absdiff_gpu<uchar >(const DevMem2Db& src1, double src2, const DevMem2Db& dst, cudaStream_t stream); //template void absdiff_gpu<uchar >(const DevMem2Db src1, double src2, DevMem2Db dst, cudaStream_t stream);
template void absdiff_gpu<schar >(const DevMem2Db& src1, double src2, const DevMem2Db& dst, cudaStream_t stream); template void absdiff_gpu<schar >(const DevMem2Db src1, double src2, DevMem2Db dst, cudaStream_t stream);
//template void absdiff_gpu<ushort>(const DevMem2Db& src1, double src2, const DevMem2Db& dst, cudaStream_t stream); //template void absdiff_gpu<ushort>(const DevMem2Db src1, double src2, DevMem2Db dst, cudaStream_t stream);
template void absdiff_gpu<short >(const DevMem2Db& src1, double src2, const DevMem2Db& dst, cudaStream_t stream); template void absdiff_gpu<short >(const DevMem2Db src1, double src2, DevMem2Db dst, cudaStream_t stream);
template void absdiff_gpu<int >(const DevMem2Db& src1, double src2, const DevMem2Db& dst, cudaStream_t stream); template void absdiff_gpu<int >(const DevMem2Db src1, double src2, DevMem2Db dst, cudaStream_t stream);
//template void absdiff_gpu<float >(const DevMem2Db& src1, double src2, const DevMem2Db& dst, cudaStream_t stream); //template void absdiff_gpu<float >(const DevMem2Db src1, double src2, DevMem2Db dst, cudaStream_t stream);
template void absdiff_gpu<double>(const DevMem2Db& src1, double src2, const DevMem2Db& dst, cudaStream_t stream); template void absdiff_gpu<double>(const DevMem2Db src1, double src2, DevMem2Db dst, cudaStream_t stream);
////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////
// Compare // Compare
@ -1587,60 +1587,60 @@ namespace cv { namespace gpu { namespace device
}; };
template <typename T> template <typename T>
void min_gpu(const DevMem2D_<T>& src1, const DevMem2D_<T>& src2, const DevMem2D_<T>& dst, cudaStream_t stream) void min_gpu(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream)
{ {
cv::gpu::device::transform(src1, src2, dst, minimum<T>(), WithOutMask(), stream); cv::gpu::device::transform((DevMem2D_<T>)src1, (DevMem2D_<T>)src2, (DevMem2D_<T>)dst, minimum<T>(), WithOutMask(), stream);
} }
template void min_gpu<uchar >(const DevMem2Db& src1, const DevMem2Db& src2, const DevMem2Db& dst, cudaStream_t stream); template void min_gpu<uchar >(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
template void min_gpu<schar >(const DevMem2D_<schar>& src1, const DevMem2D_<schar>& src2, const DevMem2D_<schar>& dst, cudaStream_t stream); template void min_gpu<schar >(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
template void min_gpu<ushort>(const DevMem2D_<ushort>& src1, const DevMem2D_<ushort>& src2, const DevMem2D_<ushort>& dst, cudaStream_t stream); template void min_gpu<ushort>(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
template void min_gpu<short >(const DevMem2D_<short>& src1, const DevMem2D_<short>& src2, const DevMem2D_<short>& dst, cudaStream_t stream); template void min_gpu<short >(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
template void min_gpu<int >(const DevMem2D_<int>& src1, const DevMem2D_<int>& src2, const DevMem2D_<int>& dst, cudaStream_t stream); template void min_gpu<int >(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
template void min_gpu<float >(const DevMem2D_<float>& src1, const DevMem2D_<float>& src2, const DevMem2D_<float>& dst, cudaStream_t stream); template void min_gpu<float >(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
template void min_gpu<double>(const DevMem2D_<double>& src1, const DevMem2D_<double>& src2, const DevMem2D_<double>& dst, cudaStream_t stream); template void min_gpu<double>(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
template <typename T> template <typename T>
void max_gpu(const DevMem2D_<T>& src1, const DevMem2D_<T>& src2, const DevMem2D_<T>& dst, cudaStream_t stream) void max_gpu(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream)
{ {
cv::gpu::device::transform(src1, src2, dst, maximum<T>(), WithOutMask(), stream); cv::gpu::device::transform((DevMem2D_<T>)src1, (DevMem2D_<T>)src2, (DevMem2D_<T>)dst, maximum<T>(), WithOutMask(), stream);
} }
template void max_gpu<uchar >(const DevMem2Db& src1, const DevMem2Db& src2, const DevMem2Db& dst, cudaStream_t stream); template void max_gpu<uchar >(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
template void max_gpu<schar >(const DevMem2D_<schar>& src1, const DevMem2D_<schar>& src2, const DevMem2D_<schar>& dst, cudaStream_t stream); template void max_gpu<schar >(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
template void max_gpu<ushort>(const DevMem2D_<ushort>& src1, const DevMem2D_<ushort>& src2, const DevMem2D_<ushort>& dst, cudaStream_t stream); template void max_gpu<ushort>(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
template void max_gpu<short >(const DevMem2D_<short>& src1, const DevMem2D_<short>& src2, const DevMem2D_<short>& dst, cudaStream_t stream); template void max_gpu<short >(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
template void max_gpu<int >(const DevMem2D_<int>& src1, const DevMem2D_<int>& src2, const DevMem2D_<int>& dst, cudaStream_t stream); template void max_gpu<int >(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
template void max_gpu<float >(const DevMem2D_<float>& src1, const DevMem2D_<float>& src2, const DevMem2D_<float>& dst, cudaStream_t stream); template void max_gpu<float >(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
template void max_gpu<double>(const DevMem2D_<double>& src1, const DevMem2D_<double>& src2, const DevMem2D_<double>& dst, cudaStream_t stream); template void max_gpu<double>(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
template <typename T> template <typename T>
void min_gpu(const DevMem2D_<T>& src1, T src2, const DevMem2D_<T>& dst, cudaStream_t stream) void min_gpu(const DevMem2Db src, T val, DevMem2Db dst, cudaStream_t stream)
{ {
cv::gpu::device::transform(src1, dst, device::bind2nd(minimum<T>(), src2), WithOutMask(), stream); cv::gpu::device::transform((DevMem2D_<T>)src, (DevMem2D_<T>)dst, device::bind2nd(minimum<T>(), val), WithOutMask(), stream);
} }
template void min_gpu<uchar >(const DevMem2Db& src1, uchar src2, const DevMem2Db& dst, cudaStream_t stream); template void min_gpu<uchar >(const DevMem2Db src, uchar val, DevMem2Db dst, cudaStream_t stream);
template void min_gpu<schar >(const DevMem2D_<schar>& src1, schar src2, const DevMem2D_<schar>& dst, cudaStream_t stream); template void min_gpu<schar >(const DevMem2Db src, schar val, DevMem2Db dst, cudaStream_t stream);
template void min_gpu<ushort>(const DevMem2D_<ushort>& src1, ushort src2, const DevMem2D_<ushort>& dst, cudaStream_t stream); template void min_gpu<ushort>(const DevMem2Db src, ushort val, DevMem2Db dst, cudaStream_t stream);
template void min_gpu<short >(const DevMem2D_<short>& src1, short src2, const DevMem2D_<short>& dst, cudaStream_t stream); template void min_gpu<short >(const DevMem2Db src, short val, DevMem2Db dst, cudaStream_t stream);
template void min_gpu<int >(const DevMem2D_<int>& src1, int src2, const DevMem2D_<int>& dst, cudaStream_t stream); template void min_gpu<int >(const DevMem2Db src, int val, DevMem2Db dst, cudaStream_t stream);
template void min_gpu<float >(const DevMem2D_<float>& src1, float src2, const DevMem2D_<float>& dst, cudaStream_t stream); template void min_gpu<float >(const DevMem2Db src, float val, DevMem2Db dst, cudaStream_t stream);
template void min_gpu<double>(const DevMem2D_<double>& src1, double src2, const DevMem2D_<double>& dst, cudaStream_t stream); template void min_gpu<double>(const DevMem2Db src, double val, DevMem2Db dst, cudaStream_t stream);
template <typename T> template <typename T>
void max_gpu(const DevMem2D_<T>& src1, T src2, const DevMem2D_<T>& dst, cudaStream_t stream) void max_gpu(const DevMem2Db src, T val, DevMem2Db dst, cudaStream_t stream)
{ {
cv::gpu::device::transform(src1, dst, device::bind2nd(maximum<T>(), src2), WithOutMask(), stream); cv::gpu::device::transform((DevMem2D_<T>)src, (DevMem2D_<T>)dst, device::bind2nd(maximum<T>(), val), WithOutMask(), stream);
} }
template void max_gpu<uchar >(const DevMem2Db& src1, uchar src2, const DevMem2Db& dst, cudaStream_t stream); template void max_gpu<uchar >(const DevMem2Db src, uchar val, DevMem2Db dst, cudaStream_t stream);
template void max_gpu<schar >(const DevMem2D_<schar>& src1, schar src2, const DevMem2D_<schar>& dst, cudaStream_t stream); template void max_gpu<schar >(const DevMem2Db src, schar val, DevMem2Db dst, cudaStream_t stream);
template void max_gpu<ushort>(const DevMem2D_<ushort>& src1, ushort src2, const DevMem2D_<ushort>& dst, cudaStream_t stream); template void max_gpu<ushort>(const DevMem2Db src, ushort val, DevMem2Db dst, cudaStream_t stream);
template void max_gpu<short >(const DevMem2D_<short>& src1, short src2, const DevMem2D_<short>& dst, cudaStream_t stream); template void max_gpu<short >(const DevMem2Db src, short val, DevMem2Db dst, cudaStream_t stream);
template void max_gpu<int >(const DevMem2D_<int>& src1, int src2, const DevMem2D_<int>& dst, cudaStream_t stream); template void max_gpu<int >(const DevMem2Db src, int val, DevMem2Db dst, cudaStream_t stream);
template void max_gpu<float >(const DevMem2D_<float>& src1, float src2, const DevMem2D_<float>& dst, cudaStream_t stream); template void max_gpu<float >(const DevMem2Db src, float val, DevMem2Db dst, cudaStream_t stream);
template void max_gpu<double>(const DevMem2D_<double>& src1, double src2, const DevMem2D_<double>& dst, cudaStream_t stream); template void max_gpu<double>(const DevMem2Db src, double val, DevMem2Db dst, cudaStream_t stream);
////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////
// threshold // threshold
@ -1805,19 +1805,64 @@ namespace cv { namespace gpu { namespace device
////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////
// addWeighted // addWeighted
template <typename T1, typename T2, typename D> struct AddWeighted : binary_function<T1, T2, D> namespace detail
{ {
__host__ __device__ __forceinline__ AddWeighted(double alpha_, double beta_, double gamma_) : alpha(alpha_), beta(beta_), gamma(gamma_) {} template <typename T> struct UseDouble
{
enum {value = 0};
};
template <> struct UseDouble<int>
{
enum {value = 1};
};
template <> struct UseDouble<float>
{
enum {value = 1};
};
template <> struct UseDouble<double>
{
enum {value = 1};
};
}
template <typename T1, typename T2, typename D> struct UseDouble
{
enum {value = (detail::UseDouble<T1>::value || detail::UseDouble<T2>::value || detail::UseDouble<D>::value)};
};
__device__ __forceinline__ D operator ()(typename TypeTraits<T1>::ParameterType a, typename TypeTraits<T2>::ParameterType b) const namespace detail
{ {
return saturate_cast<D>(alpha * a + beta * b + gamma); template <typename T1, typename T2, typename D, bool useDouble> struct AddWeighted;
template <typename T1, typename T2, typename D> struct AddWeighted<T1, T2, D, false> : binary_function<T1, T2, D>
{
AddWeighted(double alpha_, double beta_, double gamma_) : alpha(static_cast<float>(alpha_)), beta(static_cast<float>(beta_)), gamma(static_cast<float>(gamma_)) {}
__device__ __forceinline__ D operator ()(T1 a, T2 b) const
{
return saturate_cast<D>(a * alpha + b * beta + gamma);
}
const float alpha;
const float beta;
const float gamma;
};
template <typename T1, typename T2, typename D> struct AddWeighted<T1, T2, D, true> : binary_function<T1, T2, D>
{
AddWeighted(double alpha_, double beta_, double gamma_) : alpha(alpha_), beta(beta_), gamma(gamma_) {}
__device__ __forceinline__ D operator ()(T1 a, T2 b) const
{
return saturate_cast<D>(a * alpha + b * beta + gamma);
} }
const double alpha; const double alpha;
const double beta; const double beta;
const double gamma; const double gamma;
}; };
}
template <typename T1, typename T2, typename D> struct AddWeighted : detail::AddWeighted<T1, T2, D, UseDouble<T1, T2, D>::value>
{
AddWeighted(double alpha_, double beta_, double gamma_) : detail::AddWeighted<T1, T2, D, UseDouble<T1, T2, D>::value>(alpha_, beta_, gamma_) {}
};
template <> struct TransformFunctorTraits< AddWeighted<ushort, ushort, ushort> > : DefaultTransformFunctorTraits< AddWeighted<ushort, ushort, ushort> > template <> struct TransformFunctorTraits< AddWeighted<ushort, ushort, ushort> > : DefaultTransformFunctorTraits< AddWeighted<ushort, ushort, ushort> >
{ {
@ -1877,10 +1922,13 @@ namespace cv { namespace gpu { namespace device
template <typename T1, typename T2, typename D> template <typename T1, typename T2, typename D>
void addWeighted_gpu(const DevMem2Db& src1, double alpha, const DevMem2Db& src2, double beta, double gamma, const DevMem2Db& dst, cudaStream_t stream) void addWeighted_gpu(const DevMem2Db& src1, double alpha, const DevMem2Db& src2, double beta, double gamma, const DevMem2Db& dst, cudaStream_t stream)
{
if (UseDouble<T1, T2, D>::value)
{ {
cudaSafeCall( cudaSetDoubleForDevice(&alpha) ); cudaSafeCall( cudaSetDoubleForDevice(&alpha) );
cudaSafeCall( cudaSetDoubleForDevice(&beta) ); cudaSafeCall( cudaSetDoubleForDevice(&beta) );
cudaSafeCall( cudaSetDoubleForDevice(&gamma) ); cudaSafeCall( cudaSetDoubleForDevice(&gamma) );
}
AddWeighted<T1, T2, D> op(alpha, beta, gamma); AddWeighted<T1, T2, D> op(alpha, beta, gamma);

View File

@ -950,90 +950,26 @@ void cv::gpu::divide(double scale, const GpuMat& src, GpuMat& dst, int dtype, St
namespace cv { namespace gpu { namespace device namespace cv { namespace gpu { namespace device
{ {
template <typename T> template <typename T>
void absdiff_gpu(const DevMem2Db& src1, const DevMem2Db& src2, const DevMem2Db& dst, cudaStream_t stream); void absdiff_gpu(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
template <typename T> template <typename T>
void absdiff_gpu(const DevMem2Db& src1, double val, const DevMem2Db& dst, cudaStream_t stream); void absdiff_gpu(const DevMem2Db src1, double val, DevMem2Db dst, cudaStream_t stream);
}}} }}}
void cv::gpu::absdiff(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& s)
{
using namespace ::cv::gpu::device;
typedef void (*func_t)(const DevMem2Db& src1, const DevMem2Db& src2, const DevMem2Db& dst, cudaStream_t stream);
static const func_t funcs[] =
{
absdiff_gpu<unsigned char>, absdiff_gpu<signed char>, absdiff_gpu<unsigned short>, absdiff_gpu<short>, absdiff_gpu<int>, absdiff_gpu<float>, absdiff_gpu<double>
};
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
dst.create( src1.size(), src1.type() );
cudaStream_t stream = StreamAccessor::getStream(s);
NppiSize sz;
sz.width = src1.cols * src1.channels();
sz.height = src1.rows;
if (src1.depth() == CV_8U)
{
NppStreamHandler h(stream);
nppSafeCall( nppiAbsDiff_8u_C1R(src1.ptr<Npp8u>(), static_cast<int>(src1.step), src2.ptr<Npp8u>(), static_cast<int>(src2.step),
dst.ptr<Npp8u>(), static_cast<int>(dst.step), sz) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
else if (src1.depth() == CV_16U)
{
NppStreamHandler h(stream);
nppSafeCall( nppiAbsDiff_16u_C1R(src1.ptr<Npp16u>(), static_cast<int>(src1.step), src2.ptr<Npp16u>(), static_cast<int>(src2.step),
dst.ptr<Npp16u>(), static_cast<int>(dst.step), sz) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
else if (src1.depth() == CV_32F)
{
NppStreamHandler h(stream);
nppSafeCall( nppiAbsDiff_32f_C1R(src1.ptr<Npp32f>(), static_cast<int>(src1.step), src2.ptr<Npp32f>(), static_cast<int>(src2.step),
dst.ptr<Npp32f>(), static_cast<int>(dst.step), sz) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
else
{
const func_t func = funcs[src1.depth()];
CV_Assert(func != 0);
func(src1.reshape(1), src2.reshape(1), dst.reshape(1), stream);
}
}
namespace namespace
{ {
template <int DEPTH> struct NppAbsDiffCFunc template <int DEPTH> struct NppAbsDiffFunc
{ {
typedef typename NppTypeTraits<DEPTH>::npp_t npp_t; typedef typename NppTypeTraits<DEPTH>::npp_t npp_t;
typedef NppStatus (*func_t)(const npp_t* pSrc1, int nSrc1Step, npp_t* pDst, int nDstStep, NppiSize oSizeROI, npp_t nConstant); typedef NppStatus (*func_t)(const npp_t* src1, int src1_step, const npp_t* src2, int src2_step, npp_t* dst, int dst_step, NppiSize sz);
};
template <> struct NppAbsDiffCFunc<CV_16U>
{
typedef NppStatus (*func_t)(const Npp16u* pSrc1, int nSrc1Step, Npp16u* pDst, int nDstStep, NppiSize oSizeROI, Npp32u nConstant);
}; };
template <int DEPTH, typename NppAbsDiffCFunc<DEPTH>::func_t func> struct NppAbsDiffC template <int DEPTH, typename NppAbsDiffFunc<DEPTH>::func_t func> struct NppAbsDiff
{ {
typedef typename NppTypeTraits<DEPTH>::npp_t npp_t; typedef typename NppAbsDiffFunc<DEPTH>::npp_t npp_t;
static void call(const DevMem2Db& src1, double val, const DevMem2Db& dst, cudaStream_t stream) static void call(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream)
{ {
NppStreamHandler h(stream); NppStreamHandler h(stream);
@ -1041,8 +977,44 @@ namespace
sz.width = src1.cols; sz.width = src1.cols;
sz.height = src1.rows; sz.height = src1.rows;
nppSafeCall( func((const npp_t*)src1.data, static_cast<int>(src1.step), (npp_t*)dst.data, static_cast<int>(dst.step), nppSafeCall( func((const npp_t*)src1.data, static_cast<int>(src1.step), (const npp_t*)src2.data, static_cast<int>(src2.step),
sz, static_cast<npp_t>(val)) ); (npp_t*)dst.data, static_cast<int>(dst.step), sz) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
};
template <int DEPTH> struct NppAbsDiffCFunc
{
typedef typename NppTypeTraits<DEPTH>::npp_t npp_t;
typedef npp_t scalar_t;
typedef NppStatus (*func_t)(const npp_t* pSrc1, int nSrc1Step, npp_t* pDst, int nDstStep, NppiSize oSizeROI, npp_t nConstant);
};
template <> struct NppAbsDiffCFunc<CV_16U>
{
typedef NppTypeTraits<CV_16U>::npp_t npp_t;
typedef Npp32u scalar_t;
typedef NppStatus (*func_t)(const Npp16u* pSrc1, int nSrc1Step, Npp16u* pDst, int nDstStep, NppiSize oSizeROI, Npp32u nConstant);
};
template <int DEPTH, typename NppAbsDiffCFunc<DEPTH>::func_t func> struct NppAbsDiffC
{
typedef typename NppAbsDiffCFunc<DEPTH>::npp_t npp_t;
typedef typename NppAbsDiffCFunc<DEPTH>::scalar_t scalar_t;
static void call(const DevMem2Db src1, double val, DevMem2Db dst, cudaStream_t stream)
{
NppStreamHandler h(stream);
NppiSize sz;
sz.width = src1.cols;
sz.height = src1.rows;
nppSafeCall( func((const npp_t*)src1.data, static_cast<int>(src1.step),
(npp_t*)dst.data, static_cast<int>(dst.step), sz, static_cast<scalar_t>(val)) );
if (stream == 0) if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() ); cudaSafeCall( cudaDeviceSynchronize() );
@ -1050,12 +1022,41 @@ namespace
}; };
} }
void cv::gpu::absdiff(const GpuMat& src1, const Scalar& src2, GpuMat& dst, Stream& s) void cv::gpu::absdiff(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& stream)
{ {
using namespace cv::gpu::device; using namespace cv::gpu::device;
typedef void (*func_t)(const DevMem2Db& src1, double val, const DevMem2Db& dst, cudaStream_t stream); typedef void (*func_t)(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
static const func_t funcs[] =
{
NppAbsDiff<CV_8U, nppiAbsDiff_8u_C1R>::call,
absdiff_gpu<signed char>,
NppAbsDiff<CV_16U, nppiAbsDiff_16u_C1R>::call,
absdiff_gpu<short>,
absdiff_gpu<int>,
NppAbsDiff<CV_32F, nppiAbsDiff_32f_C1R>::call,
absdiff_gpu<double>
};
CV_Assert(src1.depth() <= CV_64F);
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
if (src1.depth() == CV_64F)
{
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
dst.create(src1.size(), src1.type());
funcs[src1.depth()](src1.reshape(1), src2.reshape(1), dst.reshape(1), StreamAccessor::getStream(stream));
}
void cv::gpu::absdiff(const GpuMat& src1, const Scalar& src2, GpuMat& dst, Stream& stream)
{
using namespace cv::gpu::device;
typedef void (*func_t)(const DevMem2Db src1, double val, DevMem2Db dst, cudaStream_t stream);
static const func_t funcs[] = static const func_t funcs[] =
{ {
NppAbsDiffC<CV_8U, nppiAbsDiffC_8u_C1R>::call, NppAbsDiffC<CV_8U, nppiAbsDiffC_8u_C1R>::call,
@ -1067,13 +1068,18 @@ void cv::gpu::absdiff(const GpuMat& src1, const Scalar& src2, GpuMat& dst, Strea
absdiff_gpu<double> absdiff_gpu<double>
}; };
CV_Assert(src1.depth() <= CV_64F);
CV_Assert(src1.channels() == 1); CV_Assert(src1.channels() == 1);
if (src1.depth() == CV_64F)
{
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
dst.create(src1.size(), src1.type()); dst.create(src1.size(), src1.type());
cudaStream_t stream = StreamAccessor::getStream(s); funcs[src1.depth()](src1, src2.val[0], dst, StreamAccessor::getStream(stream));
funcs[src1.depth()](src1, src2.val[0], dst, stream);
} }
////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////
@ -1359,10 +1365,9 @@ namespace cv { namespace gpu { namespace device
void cv::gpu::compare(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, int cmpop, Stream& stream) void cv::gpu::compare(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, int cmpop, Stream& stream)
{ {
using namespace ::cv::gpu::device; using namespace cv::gpu::device;
typedef void (*func_t)(const DevMem2Db& src1, const DevMem2Db& src2, const DevMem2Db& dst, cudaStream_t stream); typedef void (*func_t)(const DevMem2Db& src1, const DevMem2Db& src2, const DevMem2Db& dst, cudaStream_t stream);
static const func_t funcs[7][4] = static const func_t funcs[7][4] =
{ {
{compare_eq<unsigned char> , compare_ne<unsigned char> , compare_lt<unsigned char> , compare_le<unsigned char> }, {compare_eq<unsigned char> , compare_ne<unsigned char> , compare_lt<unsigned char> , compare_le<unsigned char> },
@ -1374,19 +1379,24 @@ void cv::gpu::compare(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, int c
{compare_eq<double> , compare_ne<double> , compare_lt<double> , compare_le<double> } {compare_eq<double> , compare_ne<double> , compare_lt<double> , compare_le<double> }
}; };
CV_Assert(src1.depth() <= CV_64F);
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type()); CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
CV_Assert(cmpop >= CMP_EQ && cmpop <= CMP_NE); CV_Assert(cmpop >= CMP_EQ && cmpop <= CMP_NE);
if (src1.depth() == CV_64F)
{
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
static const int codes[] = static const int codes[] =
{ {
0, 2, 3, 2, 3, 1 0, 2, 3, 2, 3, 1
}; };
const GpuMat* psrc1[] = const GpuMat* psrc1[] =
{ {
&src1, &src2, &src2, &src1, &src1, &src1 &src1, &src2, &src2, &src1, &src1, &src1
}; };
const GpuMat* psrc2[] = const GpuMat* psrc2[] =
{ {
&src2, &src1, &src1, &src2, &src2, &src2 &src2, &src1, &src1, &src2, &src2, &src2
@ -1415,17 +1425,15 @@ namespace
{ {
dst.create(src.size(), src.type()); dst.create(src.size(), src.type());
::cv::gpu::device::bitwiseNotCaller(src.rows, src.cols, src.elemSize1(), dst.channels(), src, dst, stream); cv::gpu::device::bitwiseNotCaller(src.rows, src.cols, src.elemSize1(), dst.channels(), src, dst, stream);
} }
void bitwiseNotCaller(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream) void bitwiseNotCaller(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream)
{ {
using namespace ::cv::gpu::device; using namespace cv::gpu::device;
typedef void (*Caller)(int, int, int, const PtrStepb, const PtrStepb, PtrStepb, cudaStream_t); typedef void (*func_t)(int, int, int, const PtrStepb, const PtrStepb, PtrStepb, cudaStream_t);
static func_t funcs[] =
static Caller callers[] =
{ {
bitwiseMaskNotCaller<unsigned char>, bitwiseMaskNotCaller<unsigned char>, bitwiseMaskNotCaller<unsigned char>, bitwiseMaskNotCaller<unsigned char>,
bitwiseMaskNotCaller<unsigned short>, bitwiseMaskNotCaller<unsigned short>, bitwiseMaskNotCaller<unsigned short>, bitwiseMaskNotCaller<unsigned short>,
@ -1433,18 +1441,18 @@ namespace
bitwiseMaskNotCaller<unsigned int> bitwiseMaskNotCaller<unsigned int>
}; };
CV_Assert(src.depth() <= CV_64F);
CV_Assert(mask.type() == CV_8U && mask.size() == src.size()); CV_Assert(mask.type() == CV_8U && mask.size() == src.size());
dst.create(src.size(), src.type()); dst.create(src.size(), src.type());
Caller caller = callers[src.depth()]; const func_t func = funcs[src.depth()];
CV_Assert(caller);
int cn = src.depth() != CV_64F ? src.channels() : src.channels() * (sizeof(double) / sizeof(unsigned int)); int cn = src.depth() != CV_64F ? src.channels() : src.channels() * (sizeof(double) / sizeof(unsigned int));
caller(src.rows, src.cols, cn, src, mask, dst, stream);
}
func(src.rows, src.cols, cn, src, mask, dst, stream);
}
} }
void cv::gpu::bitwise_not(const GpuMat& src, GpuMat& dst, const GpuMat& mask, Stream& stream) void cv::gpu::bitwise_not(const GpuMat& src, GpuMat& dst, const GpuMat& mask, Stream& stream)
{ {
@ -1454,7 +1462,6 @@ void cv::gpu::bitwise_not(const GpuMat& src, GpuMat& dst, const GpuMat& mask, St
bitwiseNotCaller(src, dst, mask, StreamAccessor::getStream(stream)); bitwiseNotCaller(src, dst, mask, StreamAccessor::getStream(stream));
} }
////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////
// Binary bitwise logical operations // Binary bitwise logical operations
@ -1481,18 +1488,18 @@ namespace
void bitwiseOrCaller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream) void bitwiseOrCaller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream)
{ {
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type()); CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
dst.create(src1.size(), src1.type()); dst.create(src1.size(), src1.type());
::cv::gpu::device::bitwiseOrCaller(dst.rows, dst.cols, dst.elemSize1(), dst.channels(), src1, src2, dst, stream); cv::gpu::device::bitwiseOrCaller(dst.rows, dst.cols, dst.elemSize1(), dst.channels(), src1, src2, dst, stream);
} }
void bitwiseOrCaller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, cudaStream_t stream) void bitwiseOrCaller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, cudaStream_t stream)
{ {
using namespace ::cv::gpu::device; using namespace cv::gpu::device;
typedef void (*Caller)(int, int, int, const PtrStepb, const PtrStepb, const PtrStepb, PtrStepb, cudaStream_t); typedef void (*func_t)(int, int, int, const PtrStepb, const PtrStepb, const PtrStepb, PtrStepb, cudaStream_t);
static func_t funcs[] =
static Caller callers[] =
{ {
bitwiseMaskOrCaller<unsigned char>, bitwiseMaskOrCaller<unsigned char>, bitwiseMaskOrCaller<unsigned char>, bitwiseMaskOrCaller<unsigned char>,
bitwiseMaskOrCaller<unsigned short>, bitwiseMaskOrCaller<unsigned short>, bitwiseMaskOrCaller<unsigned short>, bitwiseMaskOrCaller<unsigned short>,
@ -1500,33 +1507,35 @@ namespace
bitwiseMaskOrCaller<unsigned int> bitwiseMaskOrCaller<unsigned int>
}; };
CV_Assert(src1.depth() <= CV_64F);
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type()); CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
CV_Assert(mask.type() == CV_8U && mask.size() == src1.size());
dst.create(src1.size(), src1.type()); dst.create(src1.size(), src1.type());
Caller caller = callers[src1.depth()]; const func_t func = funcs[src1.depth()];
CV_Assert(caller);
int cn = dst.depth() != CV_64F ? dst.channels() : dst.channels() * (sizeof(double) / sizeof(unsigned int)); int cn = dst.depth() != CV_64F ? dst.channels() : dst.channels() * (sizeof(double) / sizeof(unsigned int));
caller(dst.rows, dst.cols, cn, src1, src2, mask, dst, stream);
func(dst.rows, dst.cols, cn, src1, src2, mask, dst, stream);
} }
void bitwiseAndCaller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream) void bitwiseAndCaller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream)
{ {
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type()); CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
dst.create(src1.size(), src1.type()); dst.create(src1.size(), src1.type());
::cv::gpu::device::bitwiseAndCaller(dst.rows, dst.cols, dst.elemSize1(), dst.channels(), src1, src2, dst, stream); cv::gpu::device::bitwiseAndCaller(dst.rows, dst.cols, dst.elemSize1(), dst.channels(), src1, src2, dst, stream);
} }
void bitwiseAndCaller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, cudaStream_t stream) void bitwiseAndCaller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, cudaStream_t stream)
{ {
using namespace ::cv::gpu::device; using namespace cv::gpu::device;
typedef void (*Caller)(int, int, int, const PtrStepb, const PtrStepb, const PtrStepb, PtrStepb, cudaStream_t); typedef void (*func_t)(int, int, int, const PtrStepb, const PtrStepb, const PtrStepb, PtrStepb, cudaStream_t);
static func_t funcs[] =
static Caller callers[] =
{ {
bitwiseMaskAndCaller<unsigned char>, bitwiseMaskAndCaller<unsigned char>, bitwiseMaskAndCaller<unsigned char>, bitwiseMaskAndCaller<unsigned char>,
bitwiseMaskAndCaller<unsigned short>, bitwiseMaskAndCaller<unsigned short>, bitwiseMaskAndCaller<unsigned short>, bitwiseMaskAndCaller<unsigned short>,
@ -1534,33 +1543,35 @@ namespace
bitwiseMaskAndCaller<unsigned int> bitwiseMaskAndCaller<unsigned int>
}; };
CV_Assert(src1.depth() <= CV_64F);
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type()); CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
CV_Assert(mask.type() == CV_8U && mask.size() == src1.size());
dst.create(src1.size(), src1.type()); dst.create(src1.size(), src1.type());
Caller caller = callers[src1.depth()]; const func_t func = funcs[src1.depth()];
CV_Assert(caller);
int cn = dst.depth() != CV_64F ? dst.channels() : dst.channels() * (sizeof(double) / sizeof(unsigned int)); int cn = dst.depth() != CV_64F ? dst.channels() : dst.channels() * (sizeof(double) / sizeof(unsigned int));
caller(dst.rows, dst.cols, cn, src1, src2, mask, dst, stream);
func(dst.rows, dst.cols, cn, src1, src2, mask, dst, stream);
} }
void bitwiseXorCaller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream) void bitwiseXorCaller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream)
{ {
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type()); CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
dst.create(src1.size(), src1.type()); dst.create(src1.size(), src1.type());
::cv::gpu::device::bitwiseXorCaller(dst.rows, dst.cols, dst.elemSize1(), dst.channels(), src1, src2, dst, stream); cv::gpu::device::bitwiseXorCaller(dst.rows, dst.cols, dst.elemSize1(), dst.channels(), src1, src2, dst, stream);
} }
void bitwiseXorCaller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, cudaStream_t stream) void bitwiseXorCaller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, cudaStream_t stream)
{ {
using namespace ::cv::gpu::device; using namespace cv::gpu::device;
typedef void (*Caller)(int, int, int, const PtrStepb, const PtrStepb, const PtrStepb, PtrStepb, cudaStream_t); typedef void (*func_t)(int, int, int, const PtrStepb, const PtrStepb, const PtrStepb, PtrStepb, cudaStream_t);
static func_t funcs[] =
static Caller callers[] =
{ {
bitwiseMaskXorCaller<unsigned char>, bitwiseMaskXorCaller<unsigned char>, bitwiseMaskXorCaller<unsigned char>, bitwiseMaskXorCaller<unsigned char>,
bitwiseMaskXorCaller<unsigned short>, bitwiseMaskXorCaller<unsigned short>, bitwiseMaskXorCaller<unsigned short>, bitwiseMaskXorCaller<unsigned short>,
@ -1568,14 +1579,17 @@ namespace
bitwiseMaskXorCaller<unsigned int> bitwiseMaskXorCaller<unsigned int>
}; };
CV_Assert(src1.depth() <= CV_64F);
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type()); CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
CV_Assert(mask.type() == CV_8U && mask.size() == src1.size());
dst.create(src1.size(), src1.type()); dst.create(src1.size(), src1.type());
Caller caller = callers[src1.depth()]; const func_t func = funcs[src1.depth()];
CV_Assert(caller);
int cn = dst.depth() != CV_64F ? dst.channels() : dst.channels() * (sizeof(double) / sizeof(unsigned int)); int cn = dst.depth() != CV_64F ? dst.channels() : dst.channels() * (sizeof(double) / sizeof(unsigned int));
caller(dst.rows, dst.cols, cn, src1, src2, mask, dst, stream);
func(dst.rows, dst.cols, cn, src1, src2, mask, dst, stream);
} }
} }
@ -1661,7 +1675,6 @@ namespace
void cv::gpu::bitwise_or(const GpuMat& src, const Scalar& sc, GpuMat& dst, Stream& stream) void cv::gpu::bitwise_or(const GpuMat& src, const Scalar& sc, GpuMat& dst, Stream& stream)
{ {
typedef void (*func_t)(const GpuMat& src, Scalar sc, GpuMat& dst, cudaStream_t stream); typedef void (*func_t)(const GpuMat& src, Scalar sc, GpuMat& dst, cudaStream_t stream);
static const func_t funcs[5][4] = static const func_t funcs[5][4] =
{ {
{NppBitwiseC<CV_8U , 1, nppiOrC_8u_C1R >::call, 0, NppBitwiseC<CV_8U , 3, nppiOrC_8u_C3R >::call, NppBitwiseC<CV_8U , 4, nppiOrC_8u_C4R >::call}, {NppBitwiseC<CV_8U , 1, nppiOrC_8u_C1R >::call, 0, NppBitwiseC<CV_8U , 3, nppiOrC_8u_C3R >::call, NppBitwiseC<CV_8U , 4, nppiOrC_8u_C4R >::call},
@ -1682,7 +1695,6 @@ void cv::gpu::bitwise_or(const GpuMat& src, const Scalar& sc, GpuMat& dst, Strea
void cv::gpu::bitwise_and(const GpuMat& src, const Scalar& sc, GpuMat& dst, Stream& stream) void cv::gpu::bitwise_and(const GpuMat& src, const Scalar& sc, GpuMat& dst, Stream& stream)
{ {
typedef void (*func_t)(const GpuMat& src, Scalar sc, GpuMat& dst, cudaStream_t stream); typedef void (*func_t)(const GpuMat& src, Scalar sc, GpuMat& dst, cudaStream_t stream);
static const func_t funcs[5][4] = static const func_t funcs[5][4] =
{ {
{NppBitwiseC<CV_8U , 1, nppiAndC_8u_C1R >::call, 0, NppBitwiseC<CV_8U , 3, nppiAndC_8u_C3R >::call, NppBitwiseC<CV_8U , 4, nppiAndC_8u_C4R >::call}, {NppBitwiseC<CV_8U , 1, nppiAndC_8u_C1R >::call, 0, NppBitwiseC<CV_8U , 3, nppiAndC_8u_C3R >::call, NppBitwiseC<CV_8U , 4, nppiAndC_8u_C4R >::call},
@ -1703,7 +1715,6 @@ void cv::gpu::bitwise_and(const GpuMat& src, const Scalar& sc, GpuMat& dst, Stre
void cv::gpu::bitwise_xor(const GpuMat& src, const Scalar& sc, GpuMat& dst, Stream& stream) void cv::gpu::bitwise_xor(const GpuMat& src, const Scalar& sc, GpuMat& dst, Stream& stream)
{ {
typedef void (*func_t)(const GpuMat& src, Scalar sc, GpuMat& dst, cudaStream_t stream); typedef void (*func_t)(const GpuMat& src, Scalar sc, GpuMat& dst, cudaStream_t stream);
static const func_t funcs[5][4] = static const func_t funcs[5][4] =
{ {
{NppBitwiseC<CV_8U , 1, nppiXorC_8u_C1R >::call, 0, NppBitwiseC<CV_8U , 3, nppiXorC_8u_C3R >::call, NppBitwiseC<CV_8U , 4, nppiXorC_8u_C4R >::call}, {NppBitwiseC<CV_8U , 1, nppiXorC_8u_C1R >::call, 0, NppBitwiseC<CV_8U , 3, nppiXorC_8u_C3R >::call, NppBitwiseC<CV_8U , 4, nppiXorC_8u_C4R >::call},
@ -1822,107 +1833,140 @@ void cv::gpu::lshift(const GpuMat& src, Scalar_<int> sc, GpuMat& dst, Stream& st
namespace cv { namespace gpu { namespace device namespace cv { namespace gpu { namespace device
{ {
template <typename T> template <typename T> void min_gpu(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
void min_gpu(const DevMem2D_<T>& src1, const DevMem2D_<T>& src2, const DevMem2D_<T>& dst, cudaStream_t stream); template <typename T> void max_gpu(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
template <typename T> template <typename T> void min_gpu(const DevMem2Db src, T val, DevMem2Db dst, cudaStream_t stream);
void max_gpu(const DevMem2D_<T>& src1, const DevMem2D_<T>& src2, const DevMem2D_<T>& dst, cudaStream_t stream); template <typename T> void max_gpu(const DevMem2Db src, T val, DevMem2Db dst, cudaStream_t stream);
template <typename T>
void min_gpu(const DevMem2D_<T>& src1, T src2, const DevMem2D_<T>& dst, cudaStream_t stream);
template <typename T>
void max_gpu(const DevMem2D_<T>& src1, T src2, const DevMem2D_<T>& dst, cudaStream_t stream);
}}} }}}
namespace
{
template <typename T>
void min_caller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream)
{
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
dst.create(src1.size(), src1.type());
::cv::gpu::device::min_gpu<T>(src1.reshape(1), src2.reshape(1), dst.reshape(1), stream);
}
template <typename T>
void min_caller(const GpuMat& src1, double src2, GpuMat& dst, cudaStream_t stream)
{
dst.create(src1.size(), src1.type());
::cv::gpu::device::min_gpu<T>(src1.reshape(1), saturate_cast<T>(src2), dst.reshape(1), stream);
}
template <typename T>
void max_caller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream)
{
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
dst.create(src1.size(), src1.type());
::cv::gpu::device::max_gpu<T>(src1.reshape(1), src2.reshape(1), dst.reshape(1), stream);
}
template <typename T>
void max_caller(const GpuMat& src1, double src2, GpuMat& dst, cudaStream_t stream)
{
dst.create(src1.size(), src1.type());
::cv::gpu::device::max_gpu<T>(src1.reshape(1), saturate_cast<T>(src2), dst.reshape(1), stream);
}
}
void cv::gpu::min(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& stream) void cv::gpu::min(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& stream)
{ {
using namespace cv::gpu::device;
typedef void (*func_t)(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
static const func_t funcs[] =
{
min_gpu<unsigned char>,
min_gpu<signed char>,
min_gpu<unsigned short>,
min_gpu<short>,
min_gpu<int>,
min_gpu<float>,
min_gpu<double>
};
CV_Assert(src1.depth() <= CV_64F);
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type()); CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
CV_Assert((src1.depth() != CV_64F) ||
(TargetArchs::builtWith(NATIVE_DOUBLE) && DeviceInfo().supports(NATIVE_DOUBLE)));
typedef void (*func_t)(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream); if (src1.depth() == CV_64F)
static const func_t funcs[] =
{ {
min_caller<unsigned char>, min_caller<signed char>, min_caller<unsigned short>, min_caller<short>, min_caller<int>, if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
min_caller<float>, min_caller<double> CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
};
funcs[src1.depth()](src1, src2, dst, StreamAccessor::getStream(stream));
} }
void cv::gpu::min(const GpuMat& src1, double src2, GpuMat& dst, Stream& stream)
{
CV_Assert((src1.depth() != CV_64F) ||
(TargetArchs::builtWith(NATIVE_DOUBLE) && DeviceInfo().supports(NATIVE_DOUBLE)));
typedef void (*func_t)(const GpuMat& src1, double src2, GpuMat& dst, cudaStream_t stream); dst.create(src1.size(), src1.type());
static const func_t funcs[] =
{ funcs[src1.depth()](src1.reshape(1), src2.reshape(1), dst.reshape(1), StreamAccessor::getStream(stream));
min_caller<unsigned char>, min_caller<signed char>, min_caller<unsigned short>, min_caller<short>, min_caller<int>,
min_caller<float>, min_caller<double>
};
funcs[src1.depth()](src1, src2, dst, StreamAccessor::getStream(stream));
} }
void cv::gpu::max(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& stream) void cv::gpu::max(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& stream)
{ {
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type()); using namespace cv::gpu::device;
CV_Assert((src1.depth() != CV_64F) ||
(TargetArchs::builtWith(NATIVE_DOUBLE) && DeviceInfo().supports(NATIVE_DOUBLE)));
typedef void (*func_t)(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream); typedef void (*func_t)(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
static const func_t funcs[] = static const func_t funcs[] =
{ {
max_caller<unsigned char>, max_caller<signed char>, max_caller<unsigned short>, max_caller<short>, max_caller<int>, max_gpu<unsigned char>,
max_caller<float>, max_caller<double> max_gpu<signed char>,
max_gpu<unsigned short>,
max_gpu<short>,
max_gpu<int>,
max_gpu<float>,
max_gpu<double>
}; };
funcs[src1.depth()](src1, src2, dst, StreamAccessor::getStream(stream));
CV_Assert(src1.depth() <= CV_64F);
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
if (src1.depth() == CV_64F)
{
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
} }
void cv::gpu::max(const GpuMat& src1, double src2, GpuMat& dst, Stream& stream) dst.create(src1.size(), src1.type());
{
CV_Assert((src1.depth() != CV_64F) ||
(TargetArchs::builtWith(NATIVE_DOUBLE) && DeviceInfo().supports(NATIVE_DOUBLE)));
typedef void (*func_t)(const GpuMat& src1, double src2, GpuMat& dst, cudaStream_t stream); funcs[src1.depth()](src1.reshape(1), src2.reshape(1), dst.reshape(1), StreamAccessor::getStream(stream));
}
namespace
{
template <typename T> void minScalar(const DevMem2Db src, double val, DevMem2Db dst, cudaStream_t stream)
{
cv::gpu::device::min_gpu(src, saturate_cast<T>(val), dst, stream);
}
template <typename T> void maxScalar(const DevMem2Db src, double val, DevMem2Db dst, cudaStream_t stream)
{
cv::gpu::device::max_gpu(src, saturate_cast<T>(val), dst, stream);
}
}
void cv::gpu::min(const GpuMat& src, double val, GpuMat& dst, Stream& stream)
{
typedef void (*func_t)(const DevMem2Db src1, double src2, DevMem2Db dst, cudaStream_t stream);
static const func_t funcs[] = static const func_t funcs[] =
{ {
max_caller<unsigned char>, max_caller<signed char>, max_caller<unsigned short>, max_caller<short>, max_caller<int>, minScalar<unsigned char>,
max_caller<float>, max_caller<double> minScalar<signed char>,
minScalar<unsigned short>,
minScalar<short>,
minScalar<int>,
minScalar<float>,
minScalar<double>
}; };
funcs[src1.depth()](src1, src2, dst, StreamAccessor::getStream(stream));
CV_Assert(src.depth() <= CV_64F);
CV_Assert(src.channels() == 1);
if (src.depth() == CV_64F)
{
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
dst.create(src.size(), src.type());
funcs[src.depth()](src, val, dst, StreamAccessor::getStream(stream));
}
void cv::gpu::max(const GpuMat& src, double val, GpuMat& dst, Stream& stream)
{
typedef void (*func_t)(const DevMem2Db src1, double src2, DevMem2Db dst, cudaStream_t stream);
static const func_t funcs[] =
{
maxScalar<unsigned char>,
maxScalar<signed char>,
maxScalar<unsigned short>,
maxScalar<short>,
maxScalar<int>,
maxScalar<float>,
maxScalar<double>
};
CV_Assert(src.depth() <= CV_64F);
CV_Assert(src.channels() == 1);
if (src.depth() == CV_64F)
{
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
dst.create(src.size(), src.type());
funcs[src.depth()](src, val, dst, StreamAccessor::getStream(stream));
} }
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
@ -1947,6 +1991,12 @@ double cv::gpu::threshold(const GpuMat& src, GpuMat& dst, double thresh, double
CV_Assert(src.channels() == 1 && src.depth() <= CV_64F); CV_Assert(src.channels() == 1 && src.depth() <= CV_64F);
CV_Assert(type <= THRESH_TOZERO_INV); CV_Assert(type <= THRESH_TOZERO_INV);
if (src.depth() == CV_64F)
{
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
dst.create(src.size(), src.type()); dst.create(src.size(), src.type());
cudaStream_t stream = StreamAccessor::getStream(s); cudaStream_t stream = StreamAccessor::getStream(s);
@ -1967,9 +2017,8 @@ double cv::gpu::threshold(const GpuMat& src, GpuMat& dst, double thresh, double
} }
else else
{ {
typedef void (*caller_t)(const GpuMat& src, GpuMat& dst, double thresh, double maxVal, int type, cudaStream_t stream); typedef void (*func_t)(const GpuMat& src, GpuMat& dst, double thresh, double maxVal, int type, cudaStream_t stream);
static const func_t funcs[] =
static const caller_t callers[] =
{ {
threshold_caller<unsigned char>, threshold_caller<signed char>, threshold_caller<unsigned char>, threshold_caller<signed char>,
threshold_caller<unsigned short>, threshold_caller<short>, threshold_caller<unsigned short>, threshold_caller<short>,
@ -1982,7 +2031,7 @@ double cv::gpu::threshold(const GpuMat& src, GpuMat& dst, double thresh, double
maxVal = cvRound(maxVal); maxVal = cvRound(maxVal);
} }
callers[src.depth()](src, dst, thresh, maxVal, type, stream); funcs[src.depth()](src, dst, thresh, maxVal, type, stream);
} }
return thresh; return thresh;
@ -1993,8 +2042,7 @@ double cv::gpu::threshold(const GpuMat& src, GpuMat& dst, double thresh, double
namespace cv { namespace gpu { namespace device namespace cv { namespace gpu { namespace device
{ {
template<typename T> template<typename T> void pow_caller(DevMem2Db src, double power, DevMem2Db dst, cudaStream_t stream);
void pow_caller(DevMem2Db src, double power, DevMem2Db dst, cudaStream_t stream);
}}} }}}
void cv::gpu::pow(const GpuMat& src, double power, GpuMat& dst, Stream& stream) void cv::gpu::pow(const GpuMat& src, double power, GpuMat& dst, Stream& stream)
@ -2002,7 +2050,6 @@ void cv::gpu::pow(const GpuMat& src, double power, GpuMat& dst, Stream& stream)
using namespace cv::gpu::device; using namespace cv::gpu::device;
typedef void (*func_t)(DevMem2Db src, double power, DevMem2Db dst, cudaStream_t stream); typedef void (*func_t)(DevMem2Db src, double power, DevMem2Db dst, cudaStream_t stream);
static const func_t funcs[] = static const func_t funcs[] =
{ {
pow_caller<unsigned char>, pow_caller<signed char>, pow_caller<unsigned char>, pow_caller<signed char>,
@ -2010,6 +2057,14 @@ void cv::gpu::pow(const GpuMat& src, double power, GpuMat& dst, Stream& stream)
pow_caller<int>, pow_caller<float>, pow_caller<double> pow_caller<int>, pow_caller<float>, pow_caller<double>
}; };
CV_Assert(src.depth() <= CV_64F);
if (src.depth() == CV_64F)
{
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
dst.create(src.size(), src.type()); dst.create(src.size(), src.type());
funcs[src.depth()](src.reshape(1), power, dst.reshape(1), StreamAccessor::getStream(stream)); funcs[src.depth()](src.reshape(1), power, dst.reshape(1), StreamAccessor::getStream(stream));
@ -2075,8 +2130,7 @@ void cv::gpu::alphaComp(const GpuMat& img1, const GpuMat& img2, GpuMat& dst, int
NppAlphaComp<CV_16U, nppiAlphaComp_16u_AC4R>::call, NppAlphaComp<CV_16U, nppiAlphaComp_16u_AC4R>::call,
0, 0,
NppAlphaComp<CV_32S, nppiAlphaComp_32s_AC4R>::call, NppAlphaComp<CV_32S, nppiAlphaComp_32s_AC4R>::call,
NppAlphaComp<CV_32F, nppiAlphaComp_32f_AC4R>::call, NppAlphaComp<CV_32F, nppiAlphaComp_32f_AC4R>::call
0
}; };
CV_Assert(img1.type() == CV_8UC4 || img1.type() == CV_16UC4 || img1.type() == CV_32SC4 || img1.type() == CV_32FC4); CV_Assert(img1.type() == CV_8UC4 || img1.type() == CV_16UC4 || img1.type() == CV_32SC4 || img1.type() == CV_32FC4);
@ -2085,7 +2139,6 @@ void cv::gpu::alphaComp(const GpuMat& img1, const GpuMat& img2, GpuMat& dst, int
dst.create(img1.size(), img1.type()); dst.create(img1.size(), img1.type());
const func_t func = funcs[img1.depth()]; const func_t func = funcs[img1.depth()];
CV_Assert(func != 0);
func(img1, img2, dst, npp_alpha_ops[alpha_op], StreamAccessor::getStream(stream)); func(img1, img2, dst, npp_alpha_ops[alpha_op], StreamAccessor::getStream(stream));
} }
@ -2569,6 +2622,14 @@ void cv::gpu::addWeighted(const GpuMat& src1, double alpha, const GpuMat& src2,
dtype = dtype >= 0 ? CV_MAKETYPE(dtype, src1.channels()) : src1.type(); dtype = dtype >= 0 ? CV_MAKETYPE(dtype, src1.channels()) : src1.type();
CV_Assert(src1.depth() <= CV_64F && src2.depth() <= CV_64F && CV_MAT_DEPTH(dtype) <= CV_64F);
if (src1.depth() == CV_64F || src2.depth() == CV_64F || CV_MAT_DEPTH(dtype) == CV_64F)
{
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
dst.create(src1.size(), dtype); dst.create(src1.size(), dtype);
const GpuMat* psrc1 = &src1; const GpuMat* psrc1 = &src1;
@ -2581,7 +2642,9 @@ void cv::gpu::addWeighted(const GpuMat& src1, double alpha, const GpuMat& src2,
} }
const func_t func = funcs[psrc1->depth()][psrc2->depth()][dst.depth()]; const func_t func = funcs[psrc1->depth()][psrc2->depth()][dst.depth()];
CV_Assert(func != 0);
if (!func)
CV_Error(CV_StsUnsupportedFormat, "Unsupported combination of source and destination types");
func(psrc1->reshape(1), alpha, psrc2->reshape(1), beta, gamma, dst.reshape(1), StreamAccessor::getStream(stream)); func(psrc1->reshape(1), alpha, psrc2->reshape(1), beta, gamma, dst.reshape(1), StreamAccessor::getStream(stream));
} }

View File

@ -148,6 +148,8 @@ double cv::gpu::norm(const GpuMat& src, int normType)
double cv::gpu::norm(const GpuMat& src, int normType, GpuMat& buf) double cv::gpu::norm(const GpuMat& src, int normType, GpuMat& buf)
{ {
CV_Assert(normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2);
GpuMat src_single_channel = src.reshape(1); GpuMat src_single_channel = src.reshape(1);
if (normType == NORM_L1) if (normType == NORM_L1)
@ -156,22 +158,16 @@ double cv::gpu::norm(const GpuMat& src, int normType, GpuMat& buf)
if (normType == NORM_L2) if (normType == NORM_L2)
return std::sqrt(sqrSum(src_single_channel, buf)[0]); return std::sqrt(sqrSum(src_single_channel, buf)[0]);
if (normType == NORM_INF) // NORM_INF
{
double min_val, max_val; double min_val, max_val;
minMax(src_single_channel, &min_val, &max_val, GpuMat(), buf); minMax(src_single_channel, &min_val, &max_val, GpuMat(), buf);
return std::max(std::abs(min_val), std::abs(max_val)); return std::max(std::abs(min_val), std::abs(max_val));
} }
CV_Error(CV_StsBadArg, "norm: unsupported norm type");
return 0;
}
double cv::gpu::norm(const GpuMat& src1, const GpuMat& src2, int normType) double cv::gpu::norm(const GpuMat& src1, const GpuMat& src2, int normType)
{ {
CV_DbgAssert(src1.size() == src2.size() && src1.type() == src2.type());
CV_Assert(src1.type() == CV_8UC1); CV_Assert(src1.type() == CV_8UC1);
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
CV_Assert(normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2); CV_Assert(normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2);
typedef NppStatus (*npp_norm_diff_func_t)(const Npp8u* pSrc1, int nSrcStep1, const Npp8u* pSrc2, int nSrcStep2, typedef NppStatus (*npp_norm_diff_func_t)(const Npp8u* pSrc1, int nSrcStep1, const Npp8u* pSrc2, int nSrcStep2,
@ -239,23 +235,25 @@ Scalar cv::gpu::sum(const GpuMat& src)
Scalar cv::gpu::sum(const GpuMat& src, GpuMat& buf) Scalar cv::gpu::sum(const GpuMat& src, GpuMat& buf)
{ {
using namespace ::cv::gpu::device::matrix_reductions::sum; using namespace cv::gpu::device::matrix_reductions::sum;
typedef void (*Caller)(const DevMem2Db, PtrStepb, double*, int); typedef void (*Caller)(const DevMem2Db, PtrStepb, double*, int);
static Caller multipass_callers[7] = static Caller multipass_callers[] =
{ {
sumMultipassCaller<unsigned char>, sumMultipassCaller<char>, sumMultipassCaller<unsigned char>, sumMultipassCaller<char>,
sumMultipassCaller<unsigned short>, sumMultipassCaller<short>, sumMultipassCaller<unsigned short>, sumMultipassCaller<short>,
sumMultipassCaller<int>, sumMultipassCaller<float>, 0 sumMultipassCaller<int>, sumMultipassCaller<float>
}; };
static Caller singlepass_callers[7] = { static Caller singlepass_callers[] = {
sumCaller<unsigned char>, sumCaller<char>, sumCaller<unsigned char>, sumCaller<char>,
sumCaller<unsigned short>, sumCaller<short>, sumCaller<unsigned short>, sumCaller<short>,
sumCaller<int>, sumCaller<float>, 0 sumCaller<int>, sumCaller<float>
}; };
CV_Assert(src.depth() <= CV_32F);
Size buf_size; Size buf_size;
getBufSizeRequired(src.cols, src.rows, src.channels(), buf_size.width, buf_size.height); getBufSizeRequired(src.cols, src.rows, src.channels(), buf_size.width, buf_size.height);
ensureSizeIsEnough(buf_size, CV_8U, buf); ensureSizeIsEnough(buf_size, CV_8U, buf);
@ -265,7 +263,6 @@ Scalar cv::gpu::sum(const GpuMat& src, GpuMat& buf)
callers = singlepass_callers; callers = singlepass_callers;
Caller caller = callers[src.depth()]; Caller caller = callers[src.depth()];
if (!caller) CV_Error(CV_StsBadArg, "sum: unsupported type");
double result[4]; double result[4];
caller(src, buf, result, src.channels()); caller(src, buf, result, src.channels());
@ -282,24 +279,26 @@ Scalar cv::gpu::absSum(const GpuMat& src)
Scalar cv::gpu::absSum(const GpuMat& src, GpuMat& buf) Scalar cv::gpu::absSum(const GpuMat& src, GpuMat& buf)
{ {
using namespace ::cv::gpu::device::matrix_reductions::sum; using namespace cv::gpu::device::matrix_reductions::sum;
typedef void (*Caller)(const DevMem2Db, PtrStepb, double*, int); typedef void (*Caller)(const DevMem2Db, PtrStepb, double*, int);
static Caller multipass_callers[7] = static Caller multipass_callers[] =
{ {
absSumMultipassCaller<unsigned char>, absSumMultipassCaller<char>, absSumMultipassCaller<unsigned char>, absSumMultipassCaller<char>,
absSumMultipassCaller<unsigned short>, absSumMultipassCaller<short>, absSumMultipassCaller<unsigned short>, absSumMultipassCaller<short>,
absSumMultipassCaller<int>, absSumMultipassCaller<float>, 0 absSumMultipassCaller<int>, absSumMultipassCaller<float>
}; };
static Caller singlepass_callers[7] = static Caller singlepass_callers[] =
{ {
absSumCaller<unsigned char>, absSumCaller<char>, absSumCaller<unsigned char>, absSumCaller<char>,
absSumCaller<unsigned short>, absSumCaller<short>, absSumCaller<unsigned short>, absSumCaller<short>,
absSumCaller<int>, absSumCaller<float>, 0 absSumCaller<int>, absSumCaller<float>
}; };
CV_Assert(src.depth() <= CV_32F);
Size buf_size; Size buf_size;
getBufSizeRequired(src.cols, src.rows, src.channels(), buf_size.width, buf_size.height); getBufSizeRequired(src.cols, src.rows, src.channels(), buf_size.width, buf_size.height);
ensureSizeIsEnough(buf_size, CV_8U, buf); ensureSizeIsEnough(buf_size, CV_8U, buf);
@ -309,7 +308,6 @@ Scalar cv::gpu::absSum(const GpuMat& src, GpuMat& buf)
callers = singlepass_callers; callers = singlepass_callers;
Caller caller = callers[src.depth()]; Caller caller = callers[src.depth()];
if (!caller) CV_Error(CV_StsBadArg, "absSum: unsupported type");
double result[4]; double result[4];
caller(src, buf, result, src.channels()); caller(src, buf, result, src.channels());
@ -326,24 +324,26 @@ Scalar cv::gpu::sqrSum(const GpuMat& src)
Scalar cv::gpu::sqrSum(const GpuMat& src, GpuMat& buf) Scalar cv::gpu::sqrSum(const GpuMat& src, GpuMat& buf)
{ {
using namespace ::cv::gpu::device::matrix_reductions::sum; using namespace cv::gpu::device::matrix_reductions::sum;
typedef void (*Caller)(const DevMem2Db, PtrStepb, double*, int); typedef void (*Caller)(const DevMem2Db, PtrStepb, double*, int);
static Caller multipass_callers[7] = static Caller multipass_callers[] =
{ {
sqrSumMultipassCaller<unsigned char>, sqrSumMultipassCaller<char>, sqrSumMultipassCaller<unsigned char>, sqrSumMultipassCaller<char>,
sqrSumMultipassCaller<unsigned short>, sqrSumMultipassCaller<short>, sqrSumMultipassCaller<unsigned short>, sqrSumMultipassCaller<short>,
sqrSumMultipassCaller<int>, sqrSumMultipassCaller<float>, 0 sqrSumMultipassCaller<int>, sqrSumMultipassCaller<float>
}; };
static Caller singlepass_callers[7] = static Caller singlepass_callers[7] =
{ {
sqrSumCaller<unsigned char>, sqrSumCaller<char>, sqrSumCaller<unsigned char>, sqrSumCaller<char>,
sqrSumCaller<unsigned short>, sqrSumCaller<short>, sqrSumCaller<unsigned short>, sqrSumCaller<short>,
sqrSumCaller<int>, sqrSumCaller<float>, 0 sqrSumCaller<int>, sqrSumCaller<float>
}; };
CV_Assert(src.depth() <= CV_32F);
Caller* callers = multipass_callers; Caller* callers = multipass_callers;
if (TargetArchs::builtWith(GLOBAL_ATOMICS) && DeviceInfo().supports(GLOBAL_ATOMICS)) if (TargetArchs::builtWith(GLOBAL_ATOMICS) && DeviceInfo().supports(GLOBAL_ATOMICS))
callers = singlepass_callers; callers = singlepass_callers;
@ -353,7 +353,6 @@ Scalar cv::gpu::sqrSum(const GpuMat& src, GpuMat& buf)
ensureSizeIsEnough(buf_size, CV_8U, buf); ensureSizeIsEnough(buf_size, CV_8U, buf);
Caller caller = callers[src.depth()]; Caller caller = callers[src.depth()];
if (!caller) CV_Error(CV_StsBadArg, "sqrSum: unsupported type");
double result[4]; double result[4];
caller(src, buf, result, src.channels()); caller(src, buf, result, src.channels());
@ -401,38 +400,44 @@ void cv::gpu::minMax(const GpuMat& src, double* minVal, double* maxVal, const Gp
typedef void (*Caller)(const DevMem2Db, double*, double*, PtrStepb); typedef void (*Caller)(const DevMem2Db, double*, double*, PtrStepb);
typedef void (*MaskedCaller)(const DevMem2Db, const PtrStepb, double*, double*, PtrStepb); typedef void (*MaskedCaller)(const DevMem2Db, const PtrStepb, double*, double*, PtrStepb);
static Caller multipass_callers[7] = static Caller multipass_callers[] =
{ {
minMaxMultipassCaller<unsigned char>, minMaxMultipassCaller<char>, minMaxMultipassCaller<unsigned char>, minMaxMultipassCaller<char>,
minMaxMultipassCaller<unsigned short>, minMaxMultipassCaller<short>, minMaxMultipassCaller<unsigned short>, minMaxMultipassCaller<short>,
minMaxMultipassCaller<int>, minMaxMultipassCaller<float>, 0 minMaxMultipassCaller<int>, minMaxMultipassCaller<float>, 0
}; };
static Caller singlepass_callers[7] = static Caller singlepass_callers[] =
{ {
minMaxCaller<unsigned char>, minMaxCaller<char>, minMaxCaller<unsigned char>, minMaxCaller<char>,
minMaxCaller<unsigned short>, minMaxCaller<short>, minMaxCaller<unsigned short>, minMaxCaller<short>,
minMaxCaller<int>, minMaxCaller<float>, minMaxCaller<double> minMaxCaller<int>, minMaxCaller<float>, minMaxCaller<double>
}; };
static MaskedCaller masked_multipass_callers[7] = static MaskedCaller masked_multipass_callers[] =
{ {
minMaxMaskMultipassCaller<unsigned char>, minMaxMaskMultipassCaller<char>, minMaxMaskMultipassCaller<unsigned char>, minMaxMaskMultipassCaller<char>,
minMaxMaskMultipassCaller<unsigned short>, minMaxMaskMultipassCaller<short>, minMaxMaskMultipassCaller<unsigned short>, minMaxMaskMultipassCaller<short>,
minMaxMaskMultipassCaller<int>, minMaxMaskMultipassCaller<float>, 0 minMaxMaskMultipassCaller<int>, minMaxMaskMultipassCaller<float>, 0
}; };
static MaskedCaller masked_singlepass_callers[7] = static MaskedCaller masked_singlepass_callers[] =
{ {
minMaxMaskCaller<unsigned char>, minMaxMaskCaller<char>, minMaxMaskCaller<unsigned char>, minMaxMaskCaller<char>,
minMaxMaskCaller<unsigned short>, minMaxMaskCaller<short>, minMaxMaskCaller<unsigned short>, minMaxMaskCaller<short>,
minMaxMaskCaller<int>, minMaxMaskCaller<float>, minMaxMaskCaller<double> minMaxMaskCaller<int>, minMaxMaskCaller<float>, minMaxMaskCaller<double>
}; };
CV_Assert(src.depth() <= CV_64F);
CV_Assert(src.channels() == 1); CV_Assert(src.channels() == 1);
CV_Assert(mask.empty() || (mask.type() == CV_8U && src.size() == mask.size())); CV_Assert(mask.empty() || (mask.type() == CV_8U && src.size() == mask.size()));
if (src.depth() == CV_64F)
{
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
double minVal_; if (!minVal) minVal = &minVal_; double minVal_; if (!minVal) minVal = &minVal_;
double maxVal_; if (!maxVal) maxVal = &maxVal_; double maxVal_; if (!maxVal) maxVal = &maxVal_;
@ -447,7 +452,7 @@ void cv::gpu::minMax(const GpuMat& src, double* minVal, double* maxVal, const Gp
callers = singlepass_callers; callers = singlepass_callers;
Caller caller = callers[src.type()]; Caller caller = callers[src.type()];
if (!caller) CV_Error(CV_StsBadArg, "minMax: unsupported type"); CV_Assert(caller != 0);
caller(src, minVal, maxVal, buf); caller(src, minVal, maxVal, buf);
} }
else else
@ -457,7 +462,7 @@ void cv::gpu::minMax(const GpuMat& src, double* minVal, double* maxVal, const Gp
callers = masked_singlepass_callers; callers = masked_singlepass_callers;
MaskedCaller caller = callers[src.type()]; MaskedCaller caller = callers[src.type()];
if (!caller) CV_Error(CV_StsBadArg, "minMax: unsupported type"); CV_Assert(caller != 0);
caller(src, mask, minVal, maxVal, buf); caller(src, mask, minVal, maxVal, buf);
} }
} }
@ -508,38 +513,44 @@ void cv::gpu::minMaxLoc(const GpuMat& src, double* minVal, double* maxVal, Point
typedef void (*Caller)(const DevMem2Db, double*, double*, int[2], int[2], PtrStepb, PtrStepb); typedef void (*Caller)(const DevMem2Db, double*, double*, int[2], int[2], PtrStepb, PtrStepb);
typedef void (*MaskedCaller)(const DevMem2Db, const PtrStepb, double*, double*, int[2], int[2], PtrStepb, PtrStepb); typedef void (*MaskedCaller)(const DevMem2Db, const PtrStepb, double*, double*, int[2], int[2], PtrStepb, PtrStepb);
static Caller multipass_callers[7] = static Caller multipass_callers[] =
{ {
minMaxLocMultipassCaller<unsigned char>, minMaxLocMultipassCaller<char>, minMaxLocMultipassCaller<unsigned char>, minMaxLocMultipassCaller<char>,
minMaxLocMultipassCaller<unsigned short>, minMaxLocMultipassCaller<short>, minMaxLocMultipassCaller<unsigned short>, minMaxLocMultipassCaller<short>,
minMaxLocMultipassCaller<int>, minMaxLocMultipassCaller<float>, 0 minMaxLocMultipassCaller<int>, minMaxLocMultipassCaller<float>, 0
}; };
static Caller singlepass_callers[7] = static Caller singlepass_callers[] =
{ {
minMaxLocCaller<unsigned char>, minMaxLocCaller<char>, minMaxLocCaller<unsigned char>, minMaxLocCaller<char>,
minMaxLocCaller<unsigned short>, minMaxLocCaller<short>, minMaxLocCaller<unsigned short>, minMaxLocCaller<short>,
minMaxLocCaller<int>, minMaxLocCaller<float>, minMaxLocCaller<double> minMaxLocCaller<int>, minMaxLocCaller<float>, minMaxLocCaller<double>
}; };
static MaskedCaller masked_multipass_callers[7] = static MaskedCaller masked_multipass_callers[] =
{ {
minMaxLocMaskMultipassCaller<unsigned char>, minMaxLocMaskMultipassCaller<char>, minMaxLocMaskMultipassCaller<unsigned char>, minMaxLocMaskMultipassCaller<char>,
minMaxLocMaskMultipassCaller<unsigned short>, minMaxLocMaskMultipassCaller<short>, minMaxLocMaskMultipassCaller<unsigned short>, minMaxLocMaskMultipassCaller<short>,
minMaxLocMaskMultipassCaller<int>, minMaxLocMaskMultipassCaller<float>, 0 minMaxLocMaskMultipassCaller<int>, minMaxLocMaskMultipassCaller<float>, 0
}; };
static MaskedCaller masked_singlepass_callers[7] = static MaskedCaller masked_singlepass_callers[] =
{ {
minMaxLocMaskCaller<unsigned char>, minMaxLocMaskCaller<char>, minMaxLocMaskCaller<unsigned char>, minMaxLocMaskCaller<char>,
minMaxLocMaskCaller<unsigned short>, minMaxLocMaskCaller<short>, minMaxLocMaskCaller<unsigned short>, minMaxLocMaskCaller<short>,
minMaxLocMaskCaller<int>, minMaxLocMaskCaller<float>, minMaxLocMaskCaller<double> minMaxLocMaskCaller<int>, minMaxLocMaskCaller<float>, minMaxLocMaskCaller<double>
}; };
CV_Assert(src.depth() <= CV_64F);
CV_Assert(src.channels() == 1); CV_Assert(src.channels() == 1);
CV_Assert(mask.empty() || (mask.type() == CV_8U && src.size() == mask.size())); CV_Assert(mask.empty() || (mask.type() == CV_8U && src.size() == mask.size()));
if (src.depth() == CV_64F)
{
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
double minVal_; if (!minVal) minVal = &minVal_; double minVal_; if (!minVal) minVal = &minVal_;
double maxVal_; if (!maxVal) maxVal = &maxVal_; double maxVal_; if (!maxVal) maxVal = &maxVal_;
int minLoc_[2]; int minLoc_[2];
@ -558,7 +569,7 @@ void cv::gpu::minMaxLoc(const GpuMat& src, double* minVal, double* maxVal, Point
callers = singlepass_callers; callers = singlepass_callers;
Caller caller = callers[src.type()]; Caller caller = callers[src.type()];
if (!caller) CV_Error(CV_StsBadArg, "minMaxLoc: unsupported type"); CV_Assert(caller != 0);
caller(src, minVal, maxVal, minLoc_, maxLoc_, valBuf, locBuf); caller(src, minVal, maxVal, minLoc_, maxLoc_, valBuf, locBuf);
} }
else else
@ -568,7 +579,7 @@ void cv::gpu::minMaxLoc(const GpuMat& src, double* minVal, double* maxVal, Point
callers = masked_singlepass_callers; callers = masked_singlepass_callers;
MaskedCaller caller = callers[src.type()]; MaskedCaller caller = callers[src.type()];
if (!caller) CV_Error(CV_StsBadArg, "minMaxLoc: unsupported type"); CV_Assert(caller != 0);
caller(src, mask, minVal, maxVal, minLoc_, maxLoc_, valBuf, locBuf); caller(src, mask, minVal, maxVal, minLoc_, maxLoc_, valBuf, locBuf);
} }
@ -622,8 +633,15 @@ int cv::gpu::countNonZero(const GpuMat& src, GpuMat& buf)
countNonZeroCaller<unsigned short>, countNonZeroCaller<short>, countNonZeroCaller<unsigned short>, countNonZeroCaller<short>,
countNonZeroCaller<int>, countNonZeroCaller<float>, countNonZeroCaller<double> }; countNonZeroCaller<int>, countNonZeroCaller<float>, countNonZeroCaller<double> };
CV_Assert(src.depth() <= CV_64F);
CV_Assert(src.channels() == 1); CV_Assert(src.channels() == 1);
if (src.depth() == CV_64F)
{
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
Size buf_size; Size buf_size;
getBufSizeRequired(src.cols, src.rows, buf_size.width, buf_size.height); getBufSizeRequired(src.cols, src.rows, buf_size.width, buf_size.height);
ensureSizeIsEnough(buf_size, CV_8U, buf); ensureSizeIsEnough(buf_size, CV_8U, buf);
@ -633,7 +651,7 @@ int cv::gpu::countNonZero(const GpuMat& src, GpuMat& buf)
callers = singlepass_callers; callers = singlepass_callers;
Caller caller = callers[src.type()]; Caller caller = callers[src.type()];
if (!caller) CV_Error(CV_StsBadArg, "countNonZero: unsupported type"); CV_Assert(caller != 0);
return caller(src, buf); return caller(src, buf);
} }
@ -719,6 +737,7 @@ void cv::gpu::reduce(const GpuMat& src, GpuMat& dst, int dim, int reduceOp, int
}; };
const caller_t func = callers[src.depth()][dst.depth()]; const caller_t func = callers[src.depth()][dst.depth()];
if (!func) if (!func)
CV_Error(CV_StsUnsupportedFormat, "Unsupported combination of input and output array formats"); CV_Error(CV_StsUnsupportedFormat, "Unsupported combination of input and output array formats");
@ -781,6 +800,7 @@ void cv::gpu::reduce(const GpuMat& src, GpuMat& dst, int dim, int reduceOp, int
}; };
const caller_t func = callers[src.depth()][dst.depth()]; const caller_t func = callers[src.depth()][dst.depth()];
if (!func) if (!func)
CV_Error(CV_StsUnsupportedFormat, "Unsupported combination of input and output array formats"); CV_Error(CV_StsUnsupportedFormat, "Unsupported combination of input and output array formats");

View File

@ -106,7 +106,7 @@
#error "OpenCV GPU module doesn't support NVIDIA compute capability 1.0" #error "OpenCV GPU module doesn't support NVIDIA compute capability 1.0"
#endif #endif
static inline void throw_nogpu() { CV_Error(CV_GpuNotSupported, "The called functionality is disabled for current build or platform"); } static inline void throw_nogpu() { CV_Error(CV_StsNotImplemented, "The called functionality is disabled for current build or platform"); }
#else /* defined(HAVE_CUDA) */ #else /* defined(HAVE_CUDA) */

View File

@ -995,6 +995,20 @@ TEST_P(AbsDiff, Array)
cv::Mat src1 = randomMat(size, depth); cv::Mat src1 = randomMat(size, depth);
cv::Mat src2 = randomMat(size, depth); cv::Mat src2 = randomMat(size, depth);
if (depth == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
{
try
{
cv::gpu::GpuMat dst;
cv::gpu::absdiff(loadMat(src1), loadMat(src2), dst);
}
catch (const cv::Exception& e)
{
ASSERT_EQ(CV_StsUnsupportedFormat, e.code);
}
}
else
{
cv::gpu::GpuMat dst = createMat(size, depth, useRoi); cv::gpu::GpuMat dst = createMat(size, depth, useRoi);
cv::gpu::absdiff(loadMat(src1, useRoi), loadMat(src2, useRoi), dst); cv::gpu::absdiff(loadMat(src1, useRoi), loadMat(src2, useRoi), dst);
@ -1003,12 +1017,27 @@ TEST_P(AbsDiff, Array)
EXPECT_MAT_NEAR(dst_gold, dst, 0.0); EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
} }
}
TEST_P(AbsDiff, Scalar) TEST_P(AbsDiff, Scalar)
{ {
cv::Mat src = randomMat(size, depth); cv::Mat src = randomMat(size, depth);
cv::Scalar val = randomScalar(0.0, 255.0); cv::Scalar val = randomScalar(0.0, 255.0);
if (depth == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
{
try
{
cv::gpu::GpuMat dst;
cv::gpu::absdiff(loadMat(src), val, dst);
}
catch (const cv::Exception& e)
{
ASSERT_EQ(CV_StsUnsupportedFormat, e.code);
}
}
else
{
cv::gpu::GpuMat dst = createMat(size, depth, useRoi); cv::gpu::GpuMat dst = createMat(size, depth, useRoi);
cv::gpu::absdiff(loadMat(src, useRoi), val, dst); cv::gpu::absdiff(loadMat(src, useRoi), val, dst);
@ -1017,6 +1046,7 @@ TEST_P(AbsDiff, Scalar)
EXPECT_MAT_NEAR(dst_gold, dst, depth <= CV_32F ? 1.0 : 1e-5); EXPECT_MAT_NEAR(dst_gold, dst, depth <= CV_32F ? 1.0 : 1e-5);
} }
}
INSTANTIATE_TEST_CASE_P(GPU_Core, AbsDiff, testing::Combine( INSTANTIATE_TEST_CASE_P(GPU_Core, AbsDiff, testing::Combine(
ALL_DEVICES, ALL_DEVICES,
@ -1243,6 +1273,40 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, Log, testing::Combine(
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
// Exp // Exp
template <typename T> void expImpl(const cv::Mat& src, cv::Mat& dst)
{
dst.create(src.size(), src.type());
for (int y = 0; y < src.rows; ++y)
{
for (int x = 0; x < src.cols; ++x)
dst.at<T>(y, x) = cv::saturate_cast<T>(static_cast<int>(std::exp(static_cast<float>(src.at<T>(y, x)))));
}
}
void expImpl_float(const cv::Mat& src, cv::Mat& dst)
{
dst.create(src.size(), src.type());
for (int y = 0; y < src.rows; ++y)
{
for (int x = 0; x < src.cols; ++x)
dst.at<float>(y, x) = std::exp(static_cast<float>(src.at<float>(y, x)));
}
}
void expGold(const cv::Mat& src, cv::Mat& dst)
{
typedef void (*func_t)(const cv::Mat& src, cv::Mat& dst);
const func_t funcs[] =
{
expImpl<uchar>, expImpl<schar>, expImpl<ushort>, expImpl<short>,
expImpl<int>, expImpl_float
};
funcs[src.depth()](src, dst);
}
PARAM_TEST_CASE(Exp, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi) PARAM_TEST_CASE(Exp, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi)
{ {
cv::gpu::DeviceInfo devInfo; cv::gpu::DeviceInfo devInfo;
@ -1269,7 +1333,7 @@ TEST_P(Exp, Accuracy)
cv::gpu::exp(loadMat(src, useRoi), dst); cv::gpu::exp(loadMat(src, useRoi), dst);
cv::Mat dst_gold; cv::Mat dst_gold;
cv::exp(src, dst_gold); expGold(src, dst_gold);
EXPECT_MAT_NEAR(dst_gold, dst, 1e-2); EXPECT_MAT_NEAR(dst_gold, dst, 1e-2);
} }
@ -1277,7 +1341,10 @@ TEST_P(Exp, Accuracy)
INSTANTIATE_TEST_CASE_P(GPU_Core, Exp, testing::Combine( INSTANTIATE_TEST_CASE_P(GPU_Core, Exp, testing::Combine(
ALL_DEVICES, ALL_DEVICES,
DIFFERENT_SIZES, DIFFERENT_SIZES,
testing::Values(MatType(CV_32FC1)), testing::Values(MatType(CV_8UC1),
MatType(CV_16UC1),
MatType(CV_16SC1),
MatType(CV_32FC1)),
WHOLE_SUBMAT)); WHOLE_SUBMAT));
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
@ -1311,6 +1378,20 @@ TEST_P(Compare, Accuracy)
cv::Mat src1 = randomMat(size, depth); cv::Mat src1 = randomMat(size, depth);
cv::Mat src2 = randomMat(size, depth); cv::Mat src2 = randomMat(size, depth);
if (depth == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
{
try
{
cv::gpu::GpuMat dst;
cv::gpu::compare(loadMat(src1), loadMat(src2), dst, cmp_code);
}
catch (const cv::Exception& e)
{
ASSERT_EQ(CV_StsUnsupportedFormat, e.code);
}
}
else
{
cv::gpu::GpuMat dst = createMat(size, CV_8UC1, useRoi); cv::gpu::GpuMat dst = createMat(size, CV_8UC1, useRoi);
cv::gpu::compare(loadMat(src1, useRoi), loadMat(src2, useRoi), dst, cmp_code); cv::gpu::compare(loadMat(src1, useRoi), loadMat(src2, useRoi), dst, cmp_code);
@ -1319,6 +1400,7 @@ TEST_P(Compare, Accuracy)
EXPECT_MAT_NEAR(dst_gold, dst, 0.0); EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
} }
}
INSTANTIATE_TEST_CASE_P(GPU_Core, Compare, testing::Combine( INSTANTIATE_TEST_CASE_P(GPU_Core, Compare, testing::Combine(
ALL_DEVICES, ALL_DEVICES,
@ -1635,11 +1717,25 @@ PARAM_TEST_CASE(Min, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi)
} }
}; };
TEST_P(Min, Accuracy) TEST_P(Min, Array)
{ {
cv::Mat src1 = randomMat(size, depth); cv::Mat src1 = randomMat(size, depth);
cv::Mat src2 = randomMat(size, depth); cv::Mat src2 = randomMat(size, depth);
if (depth == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
{
try
{
cv::gpu::GpuMat dst;
cv::gpu::min(loadMat(src1), loadMat(src2), dst);
}
catch (const cv::Exception& e)
{
ASSERT_EQ(CV_StsUnsupportedFormat, e.code);
}
}
else
{
cv::gpu::GpuMat dst = createMat(size, depth, useRoi); cv::gpu::GpuMat dst = createMat(size, depth, useRoi);
cv::gpu::min(loadMat(src1, useRoi), loadMat(src2, useRoi), dst); cv::gpu::min(loadMat(src1, useRoi), loadMat(src2, useRoi), dst);
@ -1647,6 +1743,35 @@ TEST_P(Min, Accuracy)
EXPECT_MAT_NEAR(dst_gold, dst, 0.0); EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
} }
}
TEST_P(Min, Scalar)
{
cv::Mat src = randomMat(size, depth);
double val = randomDouble(0.0, 255.0);
if (depth == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
{
try
{
cv::gpu::GpuMat dst;
cv::gpu::min(loadMat(src), val, dst);
}
catch (const cv::Exception& e)
{
ASSERT_EQ(CV_StsUnsupportedFormat, e.code);
}
}
else
{
cv::gpu::GpuMat dst = createMat(size, depth, useRoi);
cv::gpu::min(loadMat(src, useRoi), val, dst);
cv::Mat dst_gold = cv::min(src, val);
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
}
INSTANTIATE_TEST_CASE_P(GPU_Core, Min, testing::Combine( INSTANTIATE_TEST_CASE_P(GPU_Core, Min, testing::Combine(
ALL_DEVICES, ALL_DEVICES,
@ -1675,11 +1800,25 @@ PARAM_TEST_CASE(Max, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi)
} }
}; };
TEST_P(Max, Accuracy) TEST_P(Max, Array)
{ {
cv::Mat src1 = randomMat(size, depth); cv::Mat src1 = randomMat(size, depth);
cv::Mat src2 = randomMat(size, depth); cv::Mat src2 = randomMat(size, depth);
if (depth == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
{
try
{
cv::gpu::GpuMat dst;
cv::gpu::max(loadMat(src1), loadMat(src2), dst);
}
catch (const cv::Exception& e)
{
ASSERT_EQ(CV_StsUnsupportedFormat, e.code);
}
}
else
{
cv::gpu::GpuMat dst = createMat(size, depth, useRoi); cv::gpu::GpuMat dst = createMat(size, depth, useRoi);
cv::gpu::max(loadMat(src1, useRoi), loadMat(src2, useRoi), dst); cv::gpu::max(loadMat(src1, useRoi), loadMat(src2, useRoi), dst);
@ -1687,6 +1826,35 @@ TEST_P(Max, Accuracy)
EXPECT_MAT_NEAR(dst_gold, dst, 0.0); EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
} }
}
TEST_P(Max, Scalar)
{
cv::Mat src = randomMat(size, depth);
double val = randomDouble(0.0, 255.0);
if (depth == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
{
try
{
cv::gpu::GpuMat dst;
cv::gpu::max(loadMat(src), val, dst);
}
catch (const cv::Exception& e)
{
ASSERT_EQ(CV_StsUnsupportedFormat, e.code);
}
}
else
{
cv::gpu::GpuMat dst = createMat(size, depth, useRoi);
cv::gpu::max(loadMat(src, useRoi), val, dst);
cv::Mat dst_gold = cv::max(src, val);
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
}
INSTANTIATE_TEST_CASE_P(GPU_Core, Max, testing::Combine( INSTANTIATE_TEST_CASE_P(GPU_Core, Max, testing::Combine(
ALL_DEVICES, ALL_DEVICES,
@ -1723,6 +1891,20 @@ TEST_P(Pow, Accuracy)
if (src.depth() < CV_32F) if (src.depth() < CV_32F)
power = static_cast<int>(power); power = static_cast<int>(power);
if (depth == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
{
try
{
cv::gpu::GpuMat dst;
cv::gpu::pow(loadMat(src), power, dst);
}
catch (const cv::Exception& e)
{
ASSERT_EQ(CV_StsUnsupportedFormat, e.code);
}
}
else
{
cv::gpu::GpuMat dst = createMat(size, depth, useRoi); cv::gpu::GpuMat dst = createMat(size, depth, useRoi);
cv::gpu::pow(loadMat(src, useRoi), power, dst); cv::gpu::pow(loadMat(src, useRoi), power, dst);
@ -1731,6 +1913,7 @@ TEST_P(Pow, Accuracy)
EXPECT_MAT_NEAR(dst_gold, dst, depth < CV_32F ? 0.0 : 1e-1); EXPECT_MAT_NEAR(dst_gold, dst, depth < CV_32F ? 0.0 : 1e-1);
} }
}
INSTANTIATE_TEST_CASE_P(GPU_Core, Pow, testing::Combine( INSTANTIATE_TEST_CASE_P(GPU_Core, Pow, testing::Combine(
ALL_DEVICES, ALL_DEVICES,
@ -1750,7 +1933,6 @@ PARAM_TEST_CASE(AddWeighted, cv::gpu::DeviceInfo, cv::Size, MatDepth, MatDepth,
int dst_depth; int dst_depth;
bool useRoi; bool useRoi;
virtual void SetUp() virtual void SetUp()
{ {
devInfo = GET_PARAM(0); devInfo = GET_PARAM(0);
@ -1772,6 +1954,20 @@ TEST_P(AddWeighted, Accuracy)
double beta = randomDouble(-10.0, 10.0); double beta = randomDouble(-10.0, 10.0);
double gamma = randomDouble(-10.0, 10.0); double gamma = randomDouble(-10.0, 10.0);
if ((depth1 == CV_64F || depth2 == CV_64F || dst_depth == CV_64F) && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
{
try
{
cv::gpu::GpuMat dst;
cv::gpu::addWeighted(loadMat(src1), alpha, loadMat(src2), beta, gamma, dst, dst_depth);
}
catch (const cv::Exception& e)
{
ASSERT_EQ(CV_StsUnsupportedFormat, e.code);
}
}
else
{
cv::gpu::GpuMat dst = createMat(size, dst_depth, useRoi); cv::gpu::GpuMat dst = createMat(size, dst_depth, useRoi);
cv::gpu::addWeighted(loadMat(src1, useRoi), alpha, loadMat(src2, useRoi), beta, gamma, dst, dst_depth); cv::gpu::addWeighted(loadMat(src1, useRoi), alpha, loadMat(src2, useRoi), beta, gamma, dst, dst_depth);
@ -1780,6 +1976,7 @@ TEST_P(AddWeighted, Accuracy)
EXPECT_MAT_NEAR(dst_gold, dst, dst_depth < CV_32F ? 1.0 : 1e-12); EXPECT_MAT_NEAR(dst_gold, dst, dst_depth < CV_32F ? 1.0 : 1e-12);
} }
}
INSTANTIATE_TEST_CASE_P(GPU_Core, AddWeighted, testing::Combine( INSTANTIATE_TEST_CASE_P(GPU_Core, AddWeighted, testing::Combine(
ALL_DEVICES, ALL_DEVICES,
@ -1823,6 +2020,43 @@ TEST_P(GEMM, Accuracy)
double alpha = randomDouble(-10.0, 10.0); double alpha = randomDouble(-10.0, 10.0);
double beta = randomDouble(-10.0, 10.0); double beta = randomDouble(-10.0, 10.0);
#ifndef HAVE_CUBLAS
try
{
cv::gpu::GpuMat dst;
cv::gpu::gemm(loadMat(src1), loadMat(src2), alpha, loadMat(src3), beta, dst, flags);
}
catch (const cv::Exception& e)
{
ASSERT_EQ(CV_StsNotImplemented, e.code);
}
#else
if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
{
try
{
cv::gpu::GpuMat dst;
cv::gpu::gemm(loadMat(src1), loadMat(src2), alpha, loadMat(src3), beta, dst, flags);
}
catch (const cv::Exception& e)
{
ASSERT_EQ(CV_StsUnsupportedFormat, e.code);
}
}
else if (type == CV_64FC2 && flags != 0)
{
try
{
cv::gpu::GpuMat dst;
cv::gpu::gemm(loadMat(src1), loadMat(src2), alpha, loadMat(src3), beta, dst, flags);
}
catch (const cv::Exception& e)
{
ASSERT_EQ(CV_StsNotImplemented, e.code);
}
}
else
{
cv::gpu::GpuMat dst = createMat(size, type, useRoi); cv::gpu::GpuMat dst = createMat(size, type, useRoi);
cv::gpu::gemm(loadMat(src1, useRoi), loadMat(src2, useRoi), alpha, loadMat(src3, useRoi), beta, dst, flags); cv::gpu::gemm(loadMat(src1, useRoi), loadMat(src2, useRoi), alpha, loadMat(src3, useRoi), beta, dst, flags);
@ -1831,6 +2065,8 @@ TEST_P(GEMM, Accuracy)
EXPECT_MAT_NEAR(dst_gold, dst, CV_MAT_DEPTH(type) == CV_32F ? 1e-1 : 1e-10); EXPECT_MAT_NEAR(dst_gold, dst, CV_MAT_DEPTH(type) == CV_32F ? 1e-1 : 1e-10);
} }
#endif
}
INSTANTIATE_TEST_CASE_P(GPU_Core, GEMM, testing::Combine( INSTANTIATE_TEST_CASE_P(GPU_Core, GEMM, testing::Combine(
ALL_DEVICES, ALL_DEVICES,
@ -1864,6 +2100,20 @@ TEST_P(Transpose, Accuracy)
{ {
cv::Mat src = randomMat(size, type); cv::Mat src = randomMat(size, type);
if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
{
try
{
cv::gpu::GpuMat dst;
cv::gpu::transpose(loadMat(src), dst);
}
catch (const cv::Exception& e)
{
ASSERT_EQ(CV_StsUnsupportedFormat, e.code);
}
}
else
{
cv::gpu::GpuMat dst = createMat(cv::Size(size.height, size.width), type, useRoi); cv::gpu::GpuMat dst = createMat(cv::Size(size.height, size.width), type, useRoi);
cv::gpu::transpose(loadMat(src, useRoi), dst); cv::gpu::transpose(loadMat(src, useRoi), dst);
@ -1872,6 +2122,7 @@ TEST_P(Transpose, Accuracy)
EXPECT_MAT_NEAR(dst_gold, dst, 0.0); EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
} }
}
INSTANTIATE_TEST_CASE_P(GPU_Core, Transpose, testing::Combine( INSTANTIATE_TEST_CASE_P(GPU_Core, Transpose, testing::Combine(
ALL_DEVICES, ALL_DEVICES,
@ -2498,6 +2749,20 @@ TEST_P(MinMax, WithoutMask)
{ {
cv::Mat src = randomMat(size, depth); cv::Mat src = randomMat(size, depth);
if (depth == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
{
try
{
double minVal, maxVal;
cv::gpu::minMax(loadMat(src), &minVal, &maxVal);
}
catch (const cv::Exception& e)
{
ASSERT_EQ(CV_StsUnsupportedFormat, e.code);
}
}
else
{
double minVal, maxVal; double minVal, maxVal;
cv::gpu::minMax(loadMat(src, useRoi), &minVal, &maxVal); cv::gpu::minMax(loadMat(src, useRoi), &minVal, &maxVal);
@ -2507,12 +2772,27 @@ TEST_P(MinMax, WithoutMask)
EXPECT_DOUBLE_EQ(minVal_gold, minVal); EXPECT_DOUBLE_EQ(minVal_gold, minVal);
EXPECT_DOUBLE_EQ(maxVal_gold, maxVal); EXPECT_DOUBLE_EQ(maxVal_gold, maxVal);
} }
}
TEST_P(MinMax, WithMask) TEST_P(MinMax, WithMask)
{ {
cv::Mat src = randomMat(size, depth); cv::Mat src = randomMat(size, depth);
cv::Mat mask = randomMat(size, CV_8UC1, 0.0, 2.0); cv::Mat mask = randomMat(size, CV_8UC1, 0.0, 2.0);
if (depth == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
{
try
{
double minVal, maxVal;
cv::gpu::minMax(loadMat(src), &minVal, &maxVal, loadMat(mask));
}
catch (const cv::Exception& e)
{
ASSERT_EQ(CV_StsUnsupportedFormat, e.code);
}
}
else
{
double minVal, maxVal; double minVal, maxVal;
cv::gpu::minMax(loadMat(src, useRoi), &minVal, &maxVal, loadMat(mask, useRoi)); cv::gpu::minMax(loadMat(src, useRoi), &minVal, &maxVal, loadMat(mask, useRoi));
@ -2522,12 +2802,37 @@ TEST_P(MinMax, WithMask)
EXPECT_DOUBLE_EQ(minVal_gold, minVal); EXPECT_DOUBLE_EQ(minVal_gold, minVal);
EXPECT_DOUBLE_EQ(maxVal_gold, maxVal); EXPECT_DOUBLE_EQ(maxVal_gold, maxVal);
} }
}
TEST_P(MinMax, NullPtr) TEST_P(MinMax, NullPtr)
{ {
cv::Mat src = randomMat(size, depth); cv::Mat src = randomMat(size, depth);
cv::gpu::minMax(loadMat(src, useRoi), 0, 0); if (depth == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
{
try
{
double minVal, maxVal;
cv::gpu::minMax(loadMat(src), &minVal, 0);
cv::gpu::minMax(loadMat(src), 0, &maxVal);
}
catch (const cv::Exception& e)
{
ASSERT_EQ(CV_StsUnsupportedFormat, e.code);
}
}
else
{
double minVal, maxVal;
cv::gpu::minMax(loadMat(src, useRoi), &minVal, 0);
cv::gpu::minMax(loadMat(src, useRoi), 0, &maxVal);
double minVal_gold, maxVal_gold;
minMaxLocGold(src, &minVal_gold, &maxVal_gold, 0, 0);
EXPECT_DOUBLE_EQ(minVal_gold, minVal);
EXPECT_DOUBLE_EQ(maxVal_gold, maxVal);
}
} }
INSTANTIATE_TEST_CASE_P(GPU_Core, MinMax, testing::Combine( INSTANTIATE_TEST_CASE_P(GPU_Core, MinMax, testing::Combine(
@ -2585,6 +2890,21 @@ TEST_P(MinMaxLoc, WithoutMask)
{ {
cv::Mat src = randomMat(size, depth); cv::Mat src = randomMat(size, depth);
if (depth == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
{
try
{
double minVal, maxVal;
cv::Point minLoc, maxLoc;
cv::gpu::minMaxLoc(loadMat(src), &minVal, &maxVal, &minLoc, &maxLoc);
}
catch (const cv::Exception& e)
{
ASSERT_EQ(CV_StsUnsupportedFormat, e.code);
}
}
else
{
double minVal, maxVal; double minVal, maxVal;
cv::Point minLoc, maxLoc; cv::Point minLoc, maxLoc;
cv::gpu::minMaxLoc(loadMat(src, useRoi), &minVal, &maxVal, &minLoc, &maxLoc); cv::gpu::minMaxLoc(loadMat(src, useRoi), &minVal, &maxVal, &minLoc, &maxLoc);
@ -2599,12 +2919,28 @@ TEST_P(MinMaxLoc, WithoutMask)
expectEqual(src, minLoc_gold, minLoc); expectEqual(src, minLoc_gold, minLoc);
expectEqual(src, maxLoc_gold, maxLoc); expectEqual(src, maxLoc_gold, maxLoc);
} }
}
TEST_P(MinMaxLoc, WithMask) TEST_P(MinMaxLoc, WithMask)
{ {
cv::Mat src = randomMat(size, depth); cv::Mat src = randomMat(size, depth);
cv::Mat mask = randomMat(size, CV_8UC1, 0.0, 2.0); cv::Mat mask = randomMat(size, CV_8UC1, 0.0, 2.0);
if (depth == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
{
try
{
double minVal, maxVal;
cv::Point minLoc, maxLoc;
cv::gpu::minMaxLoc(loadMat(src), &minVal, &maxVal, &minLoc, &maxLoc, loadMat(mask));
}
catch (const cv::Exception& e)
{
ASSERT_EQ(CV_StsUnsupportedFormat, e.code);
}
}
else
{
double minVal, maxVal; double minVal, maxVal;
cv::Point minLoc, maxLoc; cv::Point minLoc, maxLoc;
cv::gpu::minMaxLoc(loadMat(src, useRoi), &minVal, &maxVal, &minLoc, &maxLoc, loadMat(mask, useRoi)); cv::gpu::minMaxLoc(loadMat(src, useRoi), &minVal, &maxVal, &minLoc, &maxLoc, loadMat(mask, useRoi));
@ -2619,12 +2955,47 @@ TEST_P(MinMaxLoc, WithMask)
expectEqual(src, minLoc_gold, minLoc); expectEqual(src, minLoc_gold, minLoc);
expectEqual(src, maxLoc_gold, maxLoc); expectEqual(src, maxLoc_gold, maxLoc);
} }
}
TEST_P(MinMaxLoc, NullPtr) TEST_P(MinMaxLoc, NullPtr)
{ {
cv::Mat src = randomMat(size, depth); cv::Mat src = randomMat(size, depth);
cv::gpu::minMaxLoc(loadMat(src, useRoi), 0, 0, 0, 0); if (depth == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
{
try
{
double minVal, maxVal;
cv::Point minLoc, maxLoc;
cv::gpu::minMaxLoc(loadMat(src, useRoi), &minVal, 0, 0, 0);
cv::gpu::minMaxLoc(loadMat(src, useRoi), 0, &maxVal, 0, 0);
cv::gpu::minMaxLoc(loadMat(src, useRoi), 0, 0, &minLoc, 0);
cv::gpu::minMaxLoc(loadMat(src, useRoi), 0, 0, 0, &maxLoc);
}
catch (const cv::Exception& e)
{
ASSERT_EQ(CV_StsUnsupportedFormat, e.code);
}
}
else
{
double minVal, maxVal;
cv::Point minLoc, maxLoc;
cv::gpu::minMaxLoc(loadMat(src, useRoi), &minVal, 0, 0, 0);
cv::gpu::minMaxLoc(loadMat(src, useRoi), 0, &maxVal, 0, 0);
cv::gpu::minMaxLoc(loadMat(src, useRoi), 0, 0, &minLoc, 0);
cv::gpu::minMaxLoc(loadMat(src, useRoi), 0, 0, 0, &maxLoc);
double minVal_gold, maxVal_gold;
cv::Point minLoc_gold, maxLoc_gold;
minMaxLocGold(src, &minVal_gold, &maxVal_gold, &minLoc_gold, &maxLoc_gold);
EXPECT_DOUBLE_EQ(minVal_gold, minVal);
EXPECT_DOUBLE_EQ(maxVal_gold, maxVal);
expectEqual(src, minLoc_gold, minLoc);
expectEqual(src, maxLoc_gold, maxLoc);
}
} }
INSTANTIATE_TEST_CASE_P(GPU_Core, MinMaxLoc, testing::Combine( INSTANTIATE_TEST_CASE_P(GPU_Core, MinMaxLoc, testing::Combine(
@ -2661,13 +3032,26 @@ TEST_P(CountNonZero, Accuracy)
cv::Mat src; cv::Mat src;
srcBase.convertTo(src, depth); srcBase.convertTo(src, depth);
if (depth == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
{
try
{
cv::gpu::countNonZero(loadMat(src));
}
catch (const cv::Exception& e)
{
ASSERT_EQ(CV_StsUnsupportedFormat, e.code);
}
}
else
{
int val = cv::gpu::countNonZero(loadMat(src, useRoi)); int val = cv::gpu::countNonZero(loadMat(src, useRoi));
int val_gold = cv::countNonZero(src); int val_gold = cv::countNonZero(src);
ASSERT_EQ(val_gold, val); ASSERT_EQ(val_gold, val);
} }
}
INSTANTIATE_TEST_CASE_P(GPU_Core, CountNonZero, testing::Combine( INSTANTIATE_TEST_CASE_P(GPU_Core, CountNonZero, testing::Combine(
ALL_DEVICES, ALL_DEVICES,