fixed gpu core tests (added additional check for device's feature support)
added assertion on double types for old devices
This commit is contained in:
parent
98d7b10c16
commit
26691e00d4
@ -69,16 +69,7 @@ void cv::gpu::gemm(const GpuMat& src1, const GpuMat& src2, double alpha, const G
|
||||
{
|
||||
#ifndef HAVE_CUBLAS
|
||||
|
||||
OPENCV_GPU_UNUSED(src1);
|
||||
OPENCV_GPU_UNUSED(src2);
|
||||
OPENCV_GPU_UNUSED(alpha);
|
||||
OPENCV_GPU_UNUSED(src3);
|
||||
OPENCV_GPU_UNUSED(beta);
|
||||
OPENCV_GPU_UNUSED(dst);
|
||||
OPENCV_GPU_UNUSED(flags);
|
||||
OPENCV_GPU_UNUSED(stream);
|
||||
|
||||
throw_nogpu();
|
||||
CV_Error(CV_StsNotImplemented, "The library was build without CUBLAS");
|
||||
|
||||
#else
|
||||
|
||||
@ -87,6 +78,12 @@ void cv::gpu::gemm(const GpuMat& src1, const GpuMat& src2, double alpha, const G
|
||||
CV_Assert(src1.type() == CV_32FC1 || src1.type() == CV_32FC2 || src1.type() == CV_64FC1 || src1.type() == CV_64FC2);
|
||||
CV_Assert(src2.type() == src1.type() && (src3.empty() || src3.type() == src1.type()));
|
||||
|
||||
if (src1.depth() == CV_64F)
|
||||
{
|
||||
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
|
||||
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
|
||||
}
|
||||
|
||||
bool tr1 = (flags & GEMM_1_T) != 0;
|
||||
bool tr2 = (flags & GEMM_2_T) != 0;
|
||||
bool tr3 = (flags & GEMM_3_T) != 0;
|
||||
@ -230,6 +227,9 @@ void cv::gpu::transpose(const GpuMat& src, GpuMat& dst, Stream& s)
|
||||
}
|
||||
else // if (src.elemSize() == 8)
|
||||
{
|
||||
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
|
||||
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
|
||||
|
||||
NppStStreamHandler h(stream);
|
||||
|
||||
NcvSize32u sz;
|
||||
@ -290,7 +290,6 @@ namespace
|
||||
void cv::gpu::flip(const GpuMat& src, GpuMat& dst, int flipCode, Stream& stream)
|
||||
{
|
||||
typedef void (*func_t)(const GpuMat& src, GpuMat& dst, int flipCode, cudaStream_t stream);
|
||||
|
||||
static const func_t funcs[6][4] =
|
||||
{
|
||||
{NppMirror<CV_8U, nppiMirror_8u_C1R>::call, 0, NppMirror<CV_8U, nppiMirror_8u_C3R>::call, NppMirror<CV_8U, nppiMirror_8u_C4R>::call},
|
||||
@ -403,12 +402,12 @@ namespace
|
||||
|
||||
void cv::gpu::magnitude(const GpuMat& src, GpuMat& dst, Stream& stream)
|
||||
{
|
||||
::npp_magnitude(src, dst, nppiMagnitude_32fc32f_C1R, StreamAccessor::getStream(stream));
|
||||
npp_magnitude(src, dst, nppiMagnitude_32fc32f_C1R, StreamAccessor::getStream(stream));
|
||||
}
|
||||
|
||||
void cv::gpu::magnitudeSqr(const GpuMat& src, GpuMat& dst, Stream& stream)
|
||||
{
|
||||
::npp_magnitude(src, dst, nppiMagnitudeSqr_32fc32f_C1R, StreamAccessor::getStream(stream));
|
||||
npp_magnitude(src, dst, nppiMagnitudeSqr_32fc32f_C1R, StreamAccessor::getStream(stream));
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
@ -429,7 +428,7 @@ namespace
|
||||
{
|
||||
using namespace ::cv::gpu::device::mathfunc;
|
||||
|
||||
CV_DbgAssert(x.size() == y.size() && x.type() == y.type());
|
||||
CV_Assert(x.size() == y.size() && x.type() == y.type());
|
||||
CV_Assert(x.depth() == CV_32F);
|
||||
|
||||
if (mag)
|
||||
@ -449,7 +448,7 @@ namespace
|
||||
{
|
||||
using namespace ::cv::gpu::device::mathfunc;
|
||||
|
||||
CV_DbgAssert((mag.empty() || mag.size() == angle.size()) && mag.type() == angle.type());
|
||||
CV_Assert((mag.empty() || mag.size() == angle.size()) && mag.type() == angle.type());
|
||||
CV_Assert(mag.depth() == CV_32F);
|
||||
|
||||
x.create(mag.size(), mag.type());
|
||||
|
@ -1096,18 +1096,18 @@ namespace cv { namespace gpu { namespace device
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
|
||||
template <typename T> void absdiff_gpu(const DevMem2Db& src1, const DevMem2Db& src2, const DevMem2Db& dst, cudaStream_t stream)
|
||||
template <typename T> void absdiff_gpu(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream)
|
||||
{
|
||||
cv::gpu::device::transform((DevMem2D_<T>)src1, (DevMem2D_<T>)src2, (DevMem2D_<T>)dst, Absdiff<T>(), WithOutMask(), stream);
|
||||
}
|
||||
|
||||
template void absdiff_gpu<uchar >(const DevMem2Db& src1, const DevMem2Db& src2, const DevMem2Db& dst, cudaStream_t stream);
|
||||
template void absdiff_gpu<schar >(const DevMem2Db& src1, const DevMem2Db& src2, const DevMem2Db& dst, cudaStream_t stream);
|
||||
template void absdiff_gpu<ushort>(const DevMem2Db& src1, const DevMem2Db& src2, const DevMem2Db& dst, cudaStream_t stream);
|
||||
template void absdiff_gpu<short >(const DevMem2Db& src1, const DevMem2Db& src2, const DevMem2Db& dst, cudaStream_t stream);
|
||||
template void absdiff_gpu<int >(const DevMem2Db& src1, const DevMem2Db& src2, const DevMem2Db& dst, cudaStream_t stream);
|
||||
template void absdiff_gpu<float >(const DevMem2Db& src1, const DevMem2Db& src2, const DevMem2Db& dst, cudaStream_t stream);
|
||||
template void absdiff_gpu<double>(const DevMem2Db& src1, const DevMem2Db& src2, const DevMem2Db& dst, cudaStream_t stream);
|
||||
//template void absdiff_gpu<uchar >(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
|
||||
template void absdiff_gpu<schar >(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
|
||||
//template void absdiff_gpu<ushort>(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
|
||||
template void absdiff_gpu<short >(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
|
||||
template void absdiff_gpu<int >(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
|
||||
//template void absdiff_gpu<float >(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
|
||||
template void absdiff_gpu<double>(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
|
||||
|
||||
template <typename T> struct AbsdiffScalar : unary_function<T, T>
|
||||
{
|
||||
@ -1140,20 +1140,20 @@ namespace cv { namespace gpu { namespace device
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
|
||||
template <typename T> void absdiff_gpu(const DevMem2Db& src1, double val, const DevMem2Db& dst, cudaStream_t stream)
|
||||
template <typename T> void absdiff_gpu(const DevMem2Db src1, double val, DevMem2Db dst, cudaStream_t stream)
|
||||
{
|
||||
cudaSafeCall( cudaSetDoubleForDevice(&val) );
|
||||
AbsdiffScalar<T> op(val);
|
||||
cv::gpu::device::transform((DevMem2D_<T>)src1, (DevMem2D_<T>)dst, op, WithOutMask(), stream);
|
||||
}
|
||||
|
||||
//template void absdiff_gpu<uchar >(const DevMem2Db& src1, double src2, const DevMem2Db& dst, cudaStream_t stream);
|
||||
template void absdiff_gpu<schar >(const DevMem2Db& src1, double src2, const DevMem2Db& dst, cudaStream_t stream);
|
||||
//template void absdiff_gpu<ushort>(const DevMem2Db& src1, double src2, const DevMem2Db& dst, cudaStream_t stream);
|
||||
template void absdiff_gpu<short >(const DevMem2Db& src1, double src2, const DevMem2Db& dst, cudaStream_t stream);
|
||||
template void absdiff_gpu<int >(const DevMem2Db& src1, double src2, const DevMem2Db& dst, cudaStream_t stream);
|
||||
//template void absdiff_gpu<float >(const DevMem2Db& src1, double src2, const DevMem2Db& dst, cudaStream_t stream);
|
||||
template void absdiff_gpu<double>(const DevMem2Db& src1, double src2, const DevMem2Db& dst, cudaStream_t stream);
|
||||
//template void absdiff_gpu<uchar >(const DevMem2Db src1, double src2, DevMem2Db dst, cudaStream_t stream);
|
||||
template void absdiff_gpu<schar >(const DevMem2Db src1, double src2, DevMem2Db dst, cudaStream_t stream);
|
||||
//template void absdiff_gpu<ushort>(const DevMem2Db src1, double src2, DevMem2Db dst, cudaStream_t stream);
|
||||
template void absdiff_gpu<short >(const DevMem2Db src1, double src2, DevMem2Db dst, cudaStream_t stream);
|
||||
template void absdiff_gpu<int >(const DevMem2Db src1, double src2, DevMem2Db dst, cudaStream_t stream);
|
||||
//template void absdiff_gpu<float >(const DevMem2Db src1, double src2, DevMem2Db dst, cudaStream_t stream);
|
||||
template void absdiff_gpu<double>(const DevMem2Db src1, double src2, DevMem2Db dst, cudaStream_t stream);
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////
|
||||
// Compare
|
||||
@ -1587,60 +1587,60 @@ namespace cv { namespace gpu { namespace device
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
void min_gpu(const DevMem2D_<T>& src1, const DevMem2D_<T>& src2, const DevMem2D_<T>& dst, cudaStream_t stream)
|
||||
void min_gpu(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream)
|
||||
{
|
||||
cv::gpu::device::transform(src1, src2, dst, minimum<T>(), WithOutMask(), stream);
|
||||
cv::gpu::device::transform((DevMem2D_<T>)src1, (DevMem2D_<T>)src2, (DevMem2D_<T>)dst, minimum<T>(), WithOutMask(), stream);
|
||||
}
|
||||
|
||||
template void min_gpu<uchar >(const DevMem2Db& src1, const DevMem2Db& src2, const DevMem2Db& dst, cudaStream_t stream);
|
||||
template void min_gpu<schar >(const DevMem2D_<schar>& src1, const DevMem2D_<schar>& src2, const DevMem2D_<schar>& dst, cudaStream_t stream);
|
||||
template void min_gpu<ushort>(const DevMem2D_<ushort>& src1, const DevMem2D_<ushort>& src2, const DevMem2D_<ushort>& dst, cudaStream_t stream);
|
||||
template void min_gpu<short >(const DevMem2D_<short>& src1, const DevMem2D_<short>& src2, const DevMem2D_<short>& dst, cudaStream_t stream);
|
||||
template void min_gpu<int >(const DevMem2D_<int>& src1, const DevMem2D_<int>& src2, const DevMem2D_<int>& dst, cudaStream_t stream);
|
||||
template void min_gpu<float >(const DevMem2D_<float>& src1, const DevMem2D_<float>& src2, const DevMem2D_<float>& dst, cudaStream_t stream);
|
||||
template void min_gpu<double>(const DevMem2D_<double>& src1, const DevMem2D_<double>& src2, const DevMem2D_<double>& dst, cudaStream_t stream);
|
||||
template void min_gpu<uchar >(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
|
||||
template void min_gpu<schar >(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
|
||||
template void min_gpu<ushort>(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
|
||||
template void min_gpu<short >(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
|
||||
template void min_gpu<int >(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
|
||||
template void min_gpu<float >(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
|
||||
template void min_gpu<double>(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
|
||||
|
||||
template <typename T>
|
||||
void max_gpu(const DevMem2D_<T>& src1, const DevMem2D_<T>& src2, const DevMem2D_<T>& dst, cudaStream_t stream)
|
||||
void max_gpu(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream)
|
||||
{
|
||||
cv::gpu::device::transform(src1, src2, dst, maximum<T>(), WithOutMask(), stream);
|
||||
cv::gpu::device::transform((DevMem2D_<T>)src1, (DevMem2D_<T>)src2, (DevMem2D_<T>)dst, maximum<T>(), WithOutMask(), stream);
|
||||
}
|
||||
|
||||
template void max_gpu<uchar >(const DevMem2Db& src1, const DevMem2Db& src2, const DevMem2Db& dst, cudaStream_t stream);
|
||||
template void max_gpu<schar >(const DevMem2D_<schar>& src1, const DevMem2D_<schar>& src2, const DevMem2D_<schar>& dst, cudaStream_t stream);
|
||||
template void max_gpu<ushort>(const DevMem2D_<ushort>& src1, const DevMem2D_<ushort>& src2, const DevMem2D_<ushort>& dst, cudaStream_t stream);
|
||||
template void max_gpu<short >(const DevMem2D_<short>& src1, const DevMem2D_<short>& src2, const DevMem2D_<short>& dst, cudaStream_t stream);
|
||||
template void max_gpu<int >(const DevMem2D_<int>& src1, const DevMem2D_<int>& src2, const DevMem2D_<int>& dst, cudaStream_t stream);
|
||||
template void max_gpu<float >(const DevMem2D_<float>& src1, const DevMem2D_<float>& src2, const DevMem2D_<float>& dst, cudaStream_t stream);
|
||||
template void max_gpu<double>(const DevMem2D_<double>& src1, const DevMem2D_<double>& src2, const DevMem2D_<double>& dst, cudaStream_t stream);
|
||||
template void max_gpu<uchar >(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
|
||||
template void max_gpu<schar >(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
|
||||
template void max_gpu<ushort>(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
|
||||
template void max_gpu<short >(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
|
||||
template void max_gpu<int >(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
|
||||
template void max_gpu<float >(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
|
||||
template void max_gpu<double>(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
|
||||
|
||||
template <typename T>
|
||||
void min_gpu(const DevMem2D_<T>& src1, T src2, const DevMem2D_<T>& dst, cudaStream_t stream)
|
||||
void min_gpu(const DevMem2Db src, T val, DevMem2Db dst, cudaStream_t stream)
|
||||
{
|
||||
cv::gpu::device::transform(src1, dst, device::bind2nd(minimum<T>(), src2), WithOutMask(), stream);
|
||||
cv::gpu::device::transform((DevMem2D_<T>)src, (DevMem2D_<T>)dst, device::bind2nd(minimum<T>(), val), WithOutMask(), stream);
|
||||
}
|
||||
|
||||
template void min_gpu<uchar >(const DevMem2Db& src1, uchar src2, const DevMem2Db& dst, cudaStream_t stream);
|
||||
template void min_gpu<schar >(const DevMem2D_<schar>& src1, schar src2, const DevMem2D_<schar>& dst, cudaStream_t stream);
|
||||
template void min_gpu<ushort>(const DevMem2D_<ushort>& src1, ushort src2, const DevMem2D_<ushort>& dst, cudaStream_t stream);
|
||||
template void min_gpu<short >(const DevMem2D_<short>& src1, short src2, const DevMem2D_<short>& dst, cudaStream_t stream);
|
||||
template void min_gpu<int >(const DevMem2D_<int>& src1, int src2, const DevMem2D_<int>& dst, cudaStream_t stream);
|
||||
template void min_gpu<float >(const DevMem2D_<float>& src1, float src2, const DevMem2D_<float>& dst, cudaStream_t stream);
|
||||
template void min_gpu<double>(const DevMem2D_<double>& src1, double src2, const DevMem2D_<double>& dst, cudaStream_t stream);
|
||||
template void min_gpu<uchar >(const DevMem2Db src, uchar val, DevMem2Db dst, cudaStream_t stream);
|
||||
template void min_gpu<schar >(const DevMem2Db src, schar val, DevMem2Db dst, cudaStream_t stream);
|
||||
template void min_gpu<ushort>(const DevMem2Db src, ushort val, DevMem2Db dst, cudaStream_t stream);
|
||||
template void min_gpu<short >(const DevMem2Db src, short val, DevMem2Db dst, cudaStream_t stream);
|
||||
template void min_gpu<int >(const DevMem2Db src, int val, DevMem2Db dst, cudaStream_t stream);
|
||||
template void min_gpu<float >(const DevMem2Db src, float val, DevMem2Db dst, cudaStream_t stream);
|
||||
template void min_gpu<double>(const DevMem2Db src, double val, DevMem2Db dst, cudaStream_t stream);
|
||||
|
||||
template <typename T>
|
||||
void max_gpu(const DevMem2D_<T>& src1, T src2, const DevMem2D_<T>& dst, cudaStream_t stream)
|
||||
void max_gpu(const DevMem2Db src, T val, DevMem2Db dst, cudaStream_t stream)
|
||||
{
|
||||
cv::gpu::device::transform(src1, dst, device::bind2nd(maximum<T>(), src2), WithOutMask(), stream);
|
||||
cv::gpu::device::transform((DevMem2D_<T>)src, (DevMem2D_<T>)dst, device::bind2nd(maximum<T>(), val), WithOutMask(), stream);
|
||||
}
|
||||
|
||||
template void max_gpu<uchar >(const DevMem2Db& src1, uchar src2, const DevMem2Db& dst, cudaStream_t stream);
|
||||
template void max_gpu<schar >(const DevMem2D_<schar>& src1, schar src2, const DevMem2D_<schar>& dst, cudaStream_t stream);
|
||||
template void max_gpu<ushort>(const DevMem2D_<ushort>& src1, ushort src2, const DevMem2D_<ushort>& dst, cudaStream_t stream);
|
||||
template void max_gpu<short >(const DevMem2D_<short>& src1, short src2, const DevMem2D_<short>& dst, cudaStream_t stream);
|
||||
template void max_gpu<int >(const DevMem2D_<int>& src1, int src2, const DevMem2D_<int>& dst, cudaStream_t stream);
|
||||
template void max_gpu<float >(const DevMem2D_<float>& src1, float src2, const DevMem2D_<float>& dst, cudaStream_t stream);
|
||||
template void max_gpu<double>(const DevMem2D_<double>& src1, double src2, const DevMem2D_<double>& dst, cudaStream_t stream);
|
||||
template void max_gpu<uchar >(const DevMem2Db src, uchar val, DevMem2Db dst, cudaStream_t stream);
|
||||
template void max_gpu<schar >(const DevMem2Db src, schar val, DevMem2Db dst, cudaStream_t stream);
|
||||
template void max_gpu<ushort>(const DevMem2Db src, ushort val, DevMem2Db dst, cudaStream_t stream);
|
||||
template void max_gpu<short >(const DevMem2Db src, short val, DevMem2Db dst, cudaStream_t stream);
|
||||
template void max_gpu<int >(const DevMem2Db src, int val, DevMem2Db dst, cudaStream_t stream);
|
||||
template void max_gpu<float >(const DevMem2Db src, float val, DevMem2Db dst, cudaStream_t stream);
|
||||
template void max_gpu<double>(const DevMem2Db src, double val, DevMem2Db dst, cudaStream_t stream);
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// threshold
|
||||
@ -1805,18 +1805,63 @@ namespace cv { namespace gpu { namespace device
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// addWeighted
|
||||
|
||||
template <typename T1, typename T2, typename D> struct AddWeighted : binary_function<T1, T2, D>
|
||||
namespace detail
|
||||
{
|
||||
__host__ __device__ __forceinline__ AddWeighted(double alpha_, double beta_, double gamma_) : alpha(alpha_), beta(beta_), gamma(gamma_) {}
|
||||
|
||||
__device__ __forceinline__ D operator ()(typename TypeTraits<T1>::ParameterType a, typename TypeTraits<T2>::ParameterType b) const
|
||||
template <typename T> struct UseDouble
|
||||
{
|
||||
return saturate_cast<D>(alpha * a + beta * b + gamma);
|
||||
}
|
||||
enum {value = 0};
|
||||
};
|
||||
template <> struct UseDouble<int>
|
||||
{
|
||||
enum {value = 1};
|
||||
};
|
||||
template <> struct UseDouble<float>
|
||||
{
|
||||
enum {value = 1};
|
||||
};
|
||||
template <> struct UseDouble<double>
|
||||
{
|
||||
enum {value = 1};
|
||||
};
|
||||
}
|
||||
template <typename T1, typename T2, typename D> struct UseDouble
|
||||
{
|
||||
enum {value = (detail::UseDouble<T1>::value || detail::UseDouble<T2>::value || detail::UseDouble<D>::value)};
|
||||
};
|
||||
|
||||
const double alpha;
|
||||
const double beta;
|
||||
const double gamma;
|
||||
namespace detail
|
||||
{
|
||||
template <typename T1, typename T2, typename D, bool useDouble> struct AddWeighted;
|
||||
template <typename T1, typename T2, typename D> struct AddWeighted<T1, T2, D, false> : binary_function<T1, T2, D>
|
||||
{
|
||||
AddWeighted(double alpha_, double beta_, double gamma_) : alpha(static_cast<float>(alpha_)), beta(static_cast<float>(beta_)), gamma(static_cast<float>(gamma_)) {}
|
||||
|
||||
__device__ __forceinline__ D operator ()(T1 a, T2 b) const
|
||||
{
|
||||
return saturate_cast<D>(a * alpha + b * beta + gamma);
|
||||
}
|
||||
|
||||
const float alpha;
|
||||
const float beta;
|
||||
const float gamma;
|
||||
};
|
||||
template <typename T1, typename T2, typename D> struct AddWeighted<T1, T2, D, true> : binary_function<T1, T2, D>
|
||||
{
|
||||
AddWeighted(double alpha_, double beta_, double gamma_) : alpha(alpha_), beta(beta_), gamma(gamma_) {}
|
||||
|
||||
__device__ __forceinline__ D operator ()(T1 a, T2 b) const
|
||||
{
|
||||
return saturate_cast<D>(a * alpha + b * beta + gamma);
|
||||
}
|
||||
|
||||
const double alpha;
|
||||
const double beta;
|
||||
const double gamma;
|
||||
};
|
||||
}
|
||||
template <typename T1, typename T2, typename D> struct AddWeighted : detail::AddWeighted<T1, T2, D, UseDouble<T1, T2, D>::value>
|
||||
{
|
||||
AddWeighted(double alpha_, double beta_, double gamma_) : detail::AddWeighted<T1, T2, D, UseDouble<T1, T2, D>::value>(alpha_, beta_, gamma_) {}
|
||||
};
|
||||
|
||||
template <> struct TransformFunctorTraits< AddWeighted<ushort, ushort, ushort> > : DefaultTransformFunctorTraits< AddWeighted<ushort, ushort, ushort> >
|
||||
@ -1878,9 +1923,12 @@ namespace cv { namespace gpu { namespace device
|
||||
template <typename T1, typename T2, typename D>
|
||||
void addWeighted_gpu(const DevMem2Db& src1, double alpha, const DevMem2Db& src2, double beta, double gamma, const DevMem2Db& dst, cudaStream_t stream)
|
||||
{
|
||||
cudaSafeCall( cudaSetDoubleForDevice(&alpha) );
|
||||
cudaSafeCall( cudaSetDoubleForDevice(&beta) );
|
||||
cudaSafeCall( cudaSetDoubleForDevice(&gamma) );
|
||||
if (UseDouble<T1, T2, D>::value)
|
||||
{
|
||||
cudaSafeCall( cudaSetDoubleForDevice(&alpha) );
|
||||
cudaSafeCall( cudaSetDoubleForDevice(&beta) );
|
||||
cudaSafeCall( cudaSetDoubleForDevice(&gamma) );
|
||||
}
|
||||
|
||||
AddWeighted<T1, T2, D> op(alpha, beta, gamma);
|
||||
|
||||
|
@ -950,90 +950,26 @@ void cv::gpu::divide(double scale, const GpuMat& src, GpuMat& dst, int dtype, St
|
||||
namespace cv { namespace gpu { namespace device
|
||||
{
|
||||
template <typename T>
|
||||
void absdiff_gpu(const DevMem2Db& src1, const DevMem2Db& src2, const DevMem2Db& dst, cudaStream_t stream);
|
||||
void absdiff_gpu(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
|
||||
|
||||
template <typename T>
|
||||
void absdiff_gpu(const DevMem2Db& src1, double val, const DevMem2Db& dst, cudaStream_t stream);
|
||||
void absdiff_gpu(const DevMem2Db src1, double val, DevMem2Db dst, cudaStream_t stream);
|
||||
}}}
|
||||
|
||||
void cv::gpu::absdiff(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& s)
|
||||
{
|
||||
using namespace ::cv::gpu::device;
|
||||
|
||||
typedef void (*func_t)(const DevMem2Db& src1, const DevMem2Db& src2, const DevMem2Db& dst, cudaStream_t stream);
|
||||
|
||||
static const func_t funcs[] =
|
||||
{
|
||||
absdiff_gpu<unsigned char>, absdiff_gpu<signed char>, absdiff_gpu<unsigned short>, absdiff_gpu<short>, absdiff_gpu<int>, absdiff_gpu<float>, absdiff_gpu<double>
|
||||
};
|
||||
|
||||
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
|
||||
|
||||
dst.create( src1.size(), src1.type() );
|
||||
|
||||
cudaStream_t stream = StreamAccessor::getStream(s);
|
||||
|
||||
NppiSize sz;
|
||||
sz.width = src1.cols * src1.channels();
|
||||
sz.height = src1.rows;
|
||||
|
||||
if (src1.depth() == CV_8U)
|
||||
{
|
||||
NppStreamHandler h(stream);
|
||||
|
||||
nppSafeCall( nppiAbsDiff_8u_C1R(src1.ptr<Npp8u>(), static_cast<int>(src1.step), src2.ptr<Npp8u>(), static_cast<int>(src2.step),
|
||||
dst.ptr<Npp8u>(), static_cast<int>(dst.step), sz) );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
else if (src1.depth() == CV_16U)
|
||||
{
|
||||
NppStreamHandler h(stream);
|
||||
|
||||
nppSafeCall( nppiAbsDiff_16u_C1R(src1.ptr<Npp16u>(), static_cast<int>(src1.step), src2.ptr<Npp16u>(), static_cast<int>(src2.step),
|
||||
dst.ptr<Npp16u>(), static_cast<int>(dst.step), sz) );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
else if (src1.depth() == CV_32F)
|
||||
{
|
||||
NppStreamHandler h(stream);
|
||||
|
||||
nppSafeCall( nppiAbsDiff_32f_C1R(src1.ptr<Npp32f>(), static_cast<int>(src1.step), src2.ptr<Npp32f>(), static_cast<int>(src2.step),
|
||||
dst.ptr<Npp32f>(), static_cast<int>(dst.step), sz) );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
else
|
||||
{
|
||||
const func_t func = funcs[src1.depth()];
|
||||
CV_Assert(func != 0);
|
||||
|
||||
func(src1.reshape(1), src2.reshape(1), dst.reshape(1), stream);
|
||||
}
|
||||
}
|
||||
|
||||
namespace
|
||||
{
|
||||
template <int DEPTH> struct NppAbsDiffCFunc
|
||||
template <int DEPTH> struct NppAbsDiffFunc
|
||||
{
|
||||
typedef typename NppTypeTraits<DEPTH>::npp_t npp_t;
|
||||
|
||||
typedef NppStatus (*func_t)(const npp_t* pSrc1, int nSrc1Step, npp_t* pDst, int nDstStep, NppiSize oSizeROI, npp_t nConstant);
|
||||
};
|
||||
template <> struct NppAbsDiffCFunc<CV_16U>
|
||||
{
|
||||
typedef NppStatus (*func_t)(const Npp16u* pSrc1, int nSrc1Step, Npp16u* pDst, int nDstStep, NppiSize oSizeROI, Npp32u nConstant);
|
||||
typedef NppStatus (*func_t)(const npp_t* src1, int src1_step, const npp_t* src2, int src2_step, npp_t* dst, int dst_step, NppiSize sz);
|
||||
};
|
||||
|
||||
template <int DEPTH, typename NppAbsDiffCFunc<DEPTH>::func_t func> struct NppAbsDiffC
|
||||
template <int DEPTH, typename NppAbsDiffFunc<DEPTH>::func_t func> struct NppAbsDiff
|
||||
{
|
||||
typedef typename NppTypeTraits<DEPTH>::npp_t npp_t;
|
||||
typedef typename NppAbsDiffFunc<DEPTH>::npp_t npp_t;
|
||||
|
||||
static void call(const DevMem2Db& src1, double val, const DevMem2Db& dst, cudaStream_t stream)
|
||||
static void call(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream)
|
||||
{
|
||||
NppStreamHandler h(stream);
|
||||
|
||||
@ -1041,8 +977,44 @@ namespace
|
||||
sz.width = src1.cols;
|
||||
sz.height = src1.rows;
|
||||
|
||||
nppSafeCall( func((const npp_t*)src1.data, static_cast<int>(src1.step), (npp_t*)dst.data, static_cast<int>(dst.step),
|
||||
sz, static_cast<npp_t>(val)) );
|
||||
nppSafeCall( func((const npp_t*)src1.data, static_cast<int>(src1.step), (const npp_t*)src2.data, static_cast<int>(src2.step),
|
||||
(npp_t*)dst.data, static_cast<int>(dst.step), sz) );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
};
|
||||
|
||||
template <int DEPTH> struct NppAbsDiffCFunc
|
||||
{
|
||||
typedef typename NppTypeTraits<DEPTH>::npp_t npp_t;
|
||||
typedef npp_t scalar_t;
|
||||
|
||||
typedef NppStatus (*func_t)(const npp_t* pSrc1, int nSrc1Step, npp_t* pDst, int nDstStep, NppiSize oSizeROI, npp_t nConstant);
|
||||
};
|
||||
template <> struct NppAbsDiffCFunc<CV_16U>
|
||||
{
|
||||
typedef NppTypeTraits<CV_16U>::npp_t npp_t;
|
||||
typedef Npp32u scalar_t;
|
||||
|
||||
typedef NppStatus (*func_t)(const Npp16u* pSrc1, int nSrc1Step, Npp16u* pDst, int nDstStep, NppiSize oSizeROI, Npp32u nConstant);
|
||||
};
|
||||
|
||||
template <int DEPTH, typename NppAbsDiffCFunc<DEPTH>::func_t func> struct NppAbsDiffC
|
||||
{
|
||||
typedef typename NppAbsDiffCFunc<DEPTH>::npp_t npp_t;
|
||||
typedef typename NppAbsDiffCFunc<DEPTH>::scalar_t scalar_t;
|
||||
|
||||
static void call(const DevMem2Db src1, double val, DevMem2Db dst, cudaStream_t stream)
|
||||
{
|
||||
NppStreamHandler h(stream);
|
||||
|
||||
NppiSize sz;
|
||||
sz.width = src1.cols;
|
||||
sz.height = src1.rows;
|
||||
|
||||
nppSafeCall( func((const npp_t*)src1.data, static_cast<int>(src1.step),
|
||||
(npp_t*)dst.data, static_cast<int>(dst.step), sz, static_cast<scalar_t>(val)) );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
@ -1050,12 +1022,41 @@ namespace
|
||||
};
|
||||
}
|
||||
|
||||
void cv::gpu::absdiff(const GpuMat& src1, const Scalar& src2, GpuMat& dst, Stream& s)
|
||||
void cv::gpu::absdiff(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& stream)
|
||||
{
|
||||
using namespace cv::gpu::device;
|
||||
|
||||
typedef void (*func_t)(const DevMem2Db& src1, double val, const DevMem2Db& dst, cudaStream_t stream);
|
||||
typedef void (*func_t)(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
|
||||
static const func_t funcs[] =
|
||||
{
|
||||
NppAbsDiff<CV_8U, nppiAbsDiff_8u_C1R>::call,
|
||||
absdiff_gpu<signed char>,
|
||||
NppAbsDiff<CV_16U, nppiAbsDiff_16u_C1R>::call,
|
||||
absdiff_gpu<short>,
|
||||
absdiff_gpu<int>,
|
||||
NppAbsDiff<CV_32F, nppiAbsDiff_32f_C1R>::call,
|
||||
absdiff_gpu<double>
|
||||
};
|
||||
|
||||
CV_Assert(src1.depth() <= CV_64F);
|
||||
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
|
||||
|
||||
if (src1.depth() == CV_64F)
|
||||
{
|
||||
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
|
||||
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
|
||||
}
|
||||
|
||||
dst.create(src1.size(), src1.type());
|
||||
|
||||
funcs[src1.depth()](src1.reshape(1), src2.reshape(1), dst.reshape(1), StreamAccessor::getStream(stream));
|
||||
}
|
||||
|
||||
void cv::gpu::absdiff(const GpuMat& src1, const Scalar& src2, GpuMat& dst, Stream& stream)
|
||||
{
|
||||
using namespace cv::gpu::device;
|
||||
|
||||
typedef void (*func_t)(const DevMem2Db src1, double val, DevMem2Db dst, cudaStream_t stream);
|
||||
static const func_t funcs[] =
|
||||
{
|
||||
NppAbsDiffC<CV_8U, nppiAbsDiffC_8u_C1R>::call,
|
||||
@ -1067,13 +1068,18 @@ void cv::gpu::absdiff(const GpuMat& src1, const Scalar& src2, GpuMat& dst, Strea
|
||||
absdiff_gpu<double>
|
||||
};
|
||||
|
||||
CV_Assert(src1.depth() <= CV_64F);
|
||||
CV_Assert(src1.channels() == 1);
|
||||
|
||||
if (src1.depth() == CV_64F)
|
||||
{
|
||||
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
|
||||
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
|
||||
}
|
||||
|
||||
dst.create(src1.size(), src1.type());
|
||||
|
||||
cudaStream_t stream = StreamAccessor::getStream(s);
|
||||
|
||||
funcs[src1.depth()](src1, src2.val[0], dst, stream);
|
||||
funcs[src1.depth()](src1, src2.val[0], dst, StreamAccessor::getStream(stream));
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
@ -1359,34 +1365,38 @@ namespace cv { namespace gpu { namespace device
|
||||
|
||||
void cv::gpu::compare(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, int cmpop, Stream& stream)
|
||||
{
|
||||
using namespace ::cv::gpu::device;
|
||||
using namespace cv::gpu::device;
|
||||
|
||||
typedef void (*func_t)(const DevMem2Db& src1, const DevMem2Db& src2, const DevMem2Db& dst, cudaStream_t stream);
|
||||
|
||||
static const func_t funcs[7][4] =
|
||||
{
|
||||
{compare_eq<unsigned char>, compare_ne<unsigned char>, compare_lt<unsigned char>, compare_le<unsigned char>},
|
||||
{compare_eq<signed char>, compare_ne<signed char>, compare_lt<signed char>, compare_le<signed char>},
|
||||
{compare_eq<unsigned char> , compare_ne<unsigned char> , compare_lt<unsigned char> , compare_le<unsigned char> },
|
||||
{compare_eq<signed char> , compare_ne<signed char> , compare_lt<signed char> , compare_le<signed char> },
|
||||
{compare_eq<unsigned short>, compare_ne<unsigned short>, compare_lt<unsigned short>, compare_le<unsigned short>},
|
||||
{compare_eq<short>, compare_ne<short>, compare_lt<short>, compare_le<short>},
|
||||
{compare_eq<int>, compare_ne<int>, compare_lt<int>, compare_le<int>},
|
||||
{compare_eq<float>, compare_ne<float>, compare_lt<float>, compare_le<float>},
|
||||
{compare_eq<double>, compare_ne<double>, compare_lt<double>, compare_le<double>}
|
||||
{compare_eq<short> , compare_ne<short> , compare_lt<short> , compare_le<short> },
|
||||
{compare_eq<int> , compare_ne<int> , compare_lt<int> , compare_le<int> },
|
||||
{compare_eq<float> , compare_ne<float> , compare_lt<float> , compare_le<float> },
|
||||
{compare_eq<double> , compare_ne<double> , compare_lt<double> , compare_le<double> }
|
||||
};
|
||||
|
||||
CV_Assert(src1.depth() <= CV_64F);
|
||||
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
|
||||
CV_Assert(cmpop >= CMP_EQ && cmpop <= CMP_NE);
|
||||
|
||||
if (src1.depth() == CV_64F)
|
||||
{
|
||||
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
|
||||
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
|
||||
}
|
||||
|
||||
static const int codes[] =
|
||||
{
|
||||
0, 2, 3, 2, 3, 1
|
||||
};
|
||||
|
||||
const GpuMat* psrc1[] =
|
||||
{
|
||||
&src1, &src2, &src2, &src1, &src1, &src1
|
||||
};
|
||||
|
||||
const GpuMat* psrc2[] =
|
||||
{
|
||||
&src2, &src1, &src1, &src2, &src2, &src2
|
||||
@ -1415,17 +1425,15 @@ namespace
|
||||
{
|
||||
dst.create(src.size(), src.type());
|
||||
|
||||
::cv::gpu::device::bitwiseNotCaller(src.rows, src.cols, src.elemSize1(), dst.channels(), src, dst, stream);
|
||||
cv::gpu::device::bitwiseNotCaller(src.rows, src.cols, src.elemSize1(), dst.channels(), src, dst, stream);
|
||||
}
|
||||
|
||||
|
||||
void bitwiseNotCaller(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream)
|
||||
{
|
||||
using namespace ::cv::gpu::device;
|
||||
using namespace cv::gpu::device;
|
||||
|
||||
typedef void (*Caller)(int, int, int, const PtrStepb, const PtrStepb, PtrStepb, cudaStream_t);
|
||||
|
||||
static Caller callers[] =
|
||||
typedef void (*func_t)(int, int, int, const PtrStepb, const PtrStepb, PtrStepb, cudaStream_t);
|
||||
static func_t funcs[] =
|
||||
{
|
||||
bitwiseMaskNotCaller<unsigned char>, bitwiseMaskNotCaller<unsigned char>,
|
||||
bitwiseMaskNotCaller<unsigned short>, bitwiseMaskNotCaller<unsigned short>,
|
||||
@ -1433,19 +1441,19 @@ namespace
|
||||
bitwiseMaskNotCaller<unsigned int>
|
||||
};
|
||||
|
||||
CV_Assert(src.depth() <= CV_64F);
|
||||
CV_Assert(mask.type() == CV_8U && mask.size() == src.size());
|
||||
|
||||
dst.create(src.size(), src.type());
|
||||
|
||||
Caller caller = callers[src.depth()];
|
||||
CV_Assert(caller);
|
||||
const func_t func = funcs[src.depth()];
|
||||
|
||||
int cn = src.depth() != CV_64F ? src.channels() : src.channels() * (sizeof(double) / sizeof(unsigned int));
|
||||
caller(src.rows, src.cols, cn, src, mask, dst, stream);
|
||||
|
||||
func(src.rows, src.cols, cn, src, mask, dst, stream);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
void cv::gpu::bitwise_not(const GpuMat& src, GpuMat& dst, const GpuMat& mask, Stream& stream)
|
||||
{
|
||||
if (mask.empty())
|
||||
@ -1454,7 +1462,6 @@ void cv::gpu::bitwise_not(const GpuMat& src, GpuMat& dst, const GpuMat& mask, St
|
||||
bitwiseNotCaller(src, dst, mask, StreamAccessor::getStream(stream));
|
||||
}
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
// Binary bitwise logical operations
|
||||
|
||||
@ -1481,18 +1488,18 @@ namespace
|
||||
void bitwiseOrCaller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream)
|
||||
{
|
||||
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
|
||||
|
||||
dst.create(src1.size(), src1.type());
|
||||
|
||||
::cv::gpu::device::bitwiseOrCaller(dst.rows, dst.cols, dst.elemSize1(), dst.channels(), src1, src2, dst, stream);
|
||||
cv::gpu::device::bitwiseOrCaller(dst.rows, dst.cols, dst.elemSize1(), dst.channels(), src1, src2, dst, stream);
|
||||
}
|
||||
|
||||
void bitwiseOrCaller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, cudaStream_t stream)
|
||||
{
|
||||
using namespace ::cv::gpu::device;
|
||||
using namespace cv::gpu::device;
|
||||
|
||||
typedef void (*Caller)(int, int, int, const PtrStepb, const PtrStepb, const PtrStepb, PtrStepb, cudaStream_t);
|
||||
|
||||
static Caller callers[] =
|
||||
typedef void (*func_t)(int, int, int, const PtrStepb, const PtrStepb, const PtrStepb, PtrStepb, cudaStream_t);
|
||||
static func_t funcs[] =
|
||||
{
|
||||
bitwiseMaskOrCaller<unsigned char>, bitwiseMaskOrCaller<unsigned char>,
|
||||
bitwiseMaskOrCaller<unsigned short>, bitwiseMaskOrCaller<unsigned short>,
|
||||
@ -1500,33 +1507,35 @@ namespace
|
||||
bitwiseMaskOrCaller<unsigned int>
|
||||
};
|
||||
|
||||
CV_Assert(src1.depth() <= CV_64F);
|
||||
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
|
||||
CV_Assert(mask.type() == CV_8U && mask.size() == src1.size());
|
||||
|
||||
dst.create(src1.size(), src1.type());
|
||||
|
||||
Caller caller = callers[src1.depth()];
|
||||
CV_Assert(caller);
|
||||
const func_t func = funcs[src1.depth()];
|
||||
|
||||
int cn = dst.depth() != CV_64F ? dst.channels() : dst.channels() * (sizeof(double) / sizeof(unsigned int));
|
||||
caller(dst.rows, dst.cols, cn, src1, src2, mask, dst, stream);
|
||||
|
||||
func(dst.rows, dst.cols, cn, src1, src2, mask, dst, stream);
|
||||
}
|
||||
|
||||
|
||||
void bitwiseAndCaller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream)
|
||||
{
|
||||
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
|
||||
|
||||
dst.create(src1.size(), src1.type());
|
||||
|
||||
::cv::gpu::device::bitwiseAndCaller(dst.rows, dst.cols, dst.elemSize1(), dst.channels(), src1, src2, dst, stream);
|
||||
cv::gpu::device::bitwiseAndCaller(dst.rows, dst.cols, dst.elemSize1(), dst.channels(), src1, src2, dst, stream);
|
||||
}
|
||||
|
||||
|
||||
void bitwiseAndCaller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, cudaStream_t stream)
|
||||
{
|
||||
using namespace ::cv::gpu::device;
|
||||
using namespace cv::gpu::device;
|
||||
|
||||
typedef void (*Caller)(int, int, int, const PtrStepb, const PtrStepb, const PtrStepb, PtrStepb, cudaStream_t);
|
||||
|
||||
static Caller callers[] =
|
||||
typedef void (*func_t)(int, int, int, const PtrStepb, const PtrStepb, const PtrStepb, PtrStepb, cudaStream_t);
|
||||
static func_t funcs[] =
|
||||
{
|
||||
bitwiseMaskAndCaller<unsigned char>, bitwiseMaskAndCaller<unsigned char>,
|
||||
bitwiseMaskAndCaller<unsigned short>, bitwiseMaskAndCaller<unsigned short>,
|
||||
@ -1534,33 +1543,35 @@ namespace
|
||||
bitwiseMaskAndCaller<unsigned int>
|
||||
};
|
||||
|
||||
CV_Assert(src1.depth() <= CV_64F);
|
||||
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
|
||||
CV_Assert(mask.type() == CV_8U && mask.size() == src1.size());
|
||||
|
||||
dst.create(src1.size(), src1.type());
|
||||
|
||||
Caller caller = callers[src1.depth()];
|
||||
CV_Assert(caller);
|
||||
const func_t func = funcs[src1.depth()];
|
||||
|
||||
int cn = dst.depth() != CV_64F ? dst.channels() : dst.channels() * (sizeof(double) / sizeof(unsigned int));
|
||||
caller(dst.rows, dst.cols, cn, src1, src2, mask, dst, stream);
|
||||
|
||||
func(dst.rows, dst.cols, cn, src1, src2, mask, dst, stream);
|
||||
}
|
||||
|
||||
|
||||
void bitwiseXorCaller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream)
|
||||
{
|
||||
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
|
||||
|
||||
dst.create(src1.size(), src1.type());
|
||||
|
||||
::cv::gpu::device::bitwiseXorCaller(dst.rows, dst.cols, dst.elemSize1(), dst.channels(), src1, src2, dst, stream);
|
||||
cv::gpu::device::bitwiseXorCaller(dst.rows, dst.cols, dst.elemSize1(), dst.channels(), src1, src2, dst, stream);
|
||||
}
|
||||
|
||||
|
||||
void bitwiseXorCaller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, cudaStream_t stream)
|
||||
{
|
||||
using namespace ::cv::gpu::device;
|
||||
using namespace cv::gpu::device;
|
||||
|
||||
typedef void (*Caller)(int, int, int, const PtrStepb, const PtrStepb, const PtrStepb, PtrStepb, cudaStream_t);
|
||||
|
||||
static Caller callers[] =
|
||||
typedef void (*func_t)(int, int, int, const PtrStepb, const PtrStepb, const PtrStepb, PtrStepb, cudaStream_t);
|
||||
static func_t funcs[] =
|
||||
{
|
||||
bitwiseMaskXorCaller<unsigned char>, bitwiseMaskXorCaller<unsigned char>,
|
||||
bitwiseMaskXorCaller<unsigned short>, bitwiseMaskXorCaller<unsigned short>,
|
||||
@ -1568,14 +1579,17 @@ namespace
|
||||
bitwiseMaskXorCaller<unsigned int>
|
||||
};
|
||||
|
||||
CV_Assert(src1.depth() <= CV_64F);
|
||||
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
|
||||
CV_Assert(mask.type() == CV_8U && mask.size() == src1.size());
|
||||
|
||||
dst.create(src1.size(), src1.type());
|
||||
|
||||
Caller caller = callers[src1.depth()];
|
||||
CV_Assert(caller);
|
||||
const func_t func = funcs[src1.depth()];
|
||||
|
||||
int cn = dst.depth() != CV_64F ? dst.channels() : dst.channels() * (sizeof(double) / sizeof(unsigned int));
|
||||
caller(dst.rows, dst.cols, cn, src1, src2, mask, dst, stream);
|
||||
|
||||
func(dst.rows, dst.cols, cn, src1, src2, mask, dst, stream);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1661,10 +1675,9 @@ namespace
|
||||
void cv::gpu::bitwise_or(const GpuMat& src, const Scalar& sc, GpuMat& dst, Stream& stream)
|
||||
{
|
||||
typedef void (*func_t)(const GpuMat& src, Scalar sc, GpuMat& dst, cudaStream_t stream);
|
||||
|
||||
static const func_t funcs[5][4] =
|
||||
{
|
||||
{NppBitwiseC<CV_8U, 1, nppiOrC_8u_C1R>::call, 0, NppBitwiseC<CV_8U, 3, nppiOrC_8u_C3R>::call, NppBitwiseC<CV_8U, 4, nppiOrC_8u_C4R>::call},
|
||||
{NppBitwiseC<CV_8U , 1, nppiOrC_8u_C1R >::call, 0, NppBitwiseC<CV_8U , 3, nppiOrC_8u_C3R >::call, NppBitwiseC<CV_8U , 4, nppiOrC_8u_C4R >::call},
|
||||
{0,0,0,0},
|
||||
{NppBitwiseC<CV_16U, 1, nppiOrC_16u_C1R>::call, 0, NppBitwiseC<CV_16U, 3, nppiOrC_16u_C3R>::call, NppBitwiseC<CV_16U, 4, nppiOrC_16u_C4R>::call},
|
||||
{0,0,0,0},
|
||||
@ -1682,10 +1695,9 @@ void cv::gpu::bitwise_or(const GpuMat& src, const Scalar& sc, GpuMat& dst, Strea
|
||||
void cv::gpu::bitwise_and(const GpuMat& src, const Scalar& sc, GpuMat& dst, Stream& stream)
|
||||
{
|
||||
typedef void (*func_t)(const GpuMat& src, Scalar sc, GpuMat& dst, cudaStream_t stream);
|
||||
|
||||
static const func_t funcs[5][4] =
|
||||
{
|
||||
{NppBitwiseC<CV_8U, 1, nppiAndC_8u_C1R>::call, 0, NppBitwiseC<CV_8U, 3, nppiAndC_8u_C3R>::call, NppBitwiseC<CV_8U, 4, nppiAndC_8u_C4R>::call},
|
||||
{NppBitwiseC<CV_8U , 1, nppiAndC_8u_C1R >::call, 0, NppBitwiseC<CV_8U , 3, nppiAndC_8u_C3R >::call, NppBitwiseC<CV_8U , 4, nppiAndC_8u_C4R >::call},
|
||||
{0,0,0,0},
|
||||
{NppBitwiseC<CV_16U, 1, nppiAndC_16u_C1R>::call, 0, NppBitwiseC<CV_16U, 3, nppiAndC_16u_C3R>::call, NppBitwiseC<CV_16U, 4, nppiAndC_16u_C4R>::call},
|
||||
{0,0,0,0},
|
||||
@ -1703,10 +1715,9 @@ void cv::gpu::bitwise_and(const GpuMat& src, const Scalar& sc, GpuMat& dst, Stre
|
||||
void cv::gpu::bitwise_xor(const GpuMat& src, const Scalar& sc, GpuMat& dst, Stream& stream)
|
||||
{
|
||||
typedef void (*func_t)(const GpuMat& src, Scalar sc, GpuMat& dst, cudaStream_t stream);
|
||||
|
||||
static const func_t funcs[5][4] =
|
||||
{
|
||||
{NppBitwiseC<CV_8U, 1, nppiXorC_8u_C1R>::call, 0, NppBitwiseC<CV_8U, 3, nppiXorC_8u_C3R>::call, NppBitwiseC<CV_8U, 4, nppiXorC_8u_C4R>::call},
|
||||
{NppBitwiseC<CV_8U , 1, nppiXorC_8u_C1R >::call, 0, NppBitwiseC<CV_8U , 3, nppiXorC_8u_C3R >::call, NppBitwiseC<CV_8U , 4, nppiXorC_8u_C4R >::call},
|
||||
{0,0,0,0},
|
||||
{NppBitwiseC<CV_16U, 1, nppiXorC_16u_C1R>::call, 0, NppBitwiseC<CV_16U, 3, nppiXorC_16u_C3R>::call, NppBitwiseC<CV_16U, 4, nppiXorC_16u_C4R>::call},
|
||||
{0,0,0,0},
|
||||
@ -1822,107 +1833,140 @@ void cv::gpu::lshift(const GpuMat& src, Scalar_<int> sc, GpuMat& dst, Stream& st
|
||||
|
||||
namespace cv { namespace gpu { namespace device
|
||||
{
|
||||
template <typename T>
|
||||
void min_gpu(const DevMem2D_<T>& src1, const DevMem2D_<T>& src2, const DevMem2D_<T>& dst, cudaStream_t stream);
|
||||
template <typename T> void min_gpu(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
|
||||
template <typename T> void max_gpu(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
|
||||
|
||||
template <typename T>
|
||||
void max_gpu(const DevMem2D_<T>& src1, const DevMem2D_<T>& src2, const DevMem2D_<T>& dst, cudaStream_t stream);
|
||||
|
||||
template <typename T>
|
||||
void min_gpu(const DevMem2D_<T>& src1, T src2, const DevMem2D_<T>& dst, cudaStream_t stream);
|
||||
|
||||
template <typename T>
|
||||
void max_gpu(const DevMem2D_<T>& src1, T src2, const DevMem2D_<T>& dst, cudaStream_t stream);
|
||||
template <typename T> void min_gpu(const DevMem2Db src, T val, DevMem2Db dst, cudaStream_t stream);
|
||||
template <typename T> void max_gpu(const DevMem2Db src, T val, DevMem2Db dst, cudaStream_t stream);
|
||||
}}}
|
||||
|
||||
namespace
|
||||
{
|
||||
template <typename T>
|
||||
void min_caller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream)
|
||||
{
|
||||
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
|
||||
dst.create(src1.size(), src1.type());
|
||||
::cv::gpu::device::min_gpu<T>(src1.reshape(1), src2.reshape(1), dst.reshape(1), stream);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void min_caller(const GpuMat& src1, double src2, GpuMat& dst, cudaStream_t stream)
|
||||
{
|
||||
dst.create(src1.size(), src1.type());
|
||||
::cv::gpu::device::min_gpu<T>(src1.reshape(1), saturate_cast<T>(src2), dst.reshape(1), stream);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void max_caller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream)
|
||||
{
|
||||
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
|
||||
dst.create(src1.size(), src1.type());
|
||||
::cv::gpu::device::max_gpu<T>(src1.reshape(1), src2.reshape(1), dst.reshape(1), stream);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void max_caller(const GpuMat& src1, double src2, GpuMat& dst, cudaStream_t stream)
|
||||
{
|
||||
dst.create(src1.size(), src1.type());
|
||||
::cv::gpu::device::max_gpu<T>(src1.reshape(1), saturate_cast<T>(src2), dst.reshape(1), stream);
|
||||
}
|
||||
}
|
||||
|
||||
void cv::gpu::min(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& stream)
|
||||
{
|
||||
using namespace cv::gpu::device;
|
||||
|
||||
typedef void (*func_t)(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
|
||||
static const func_t funcs[] =
|
||||
{
|
||||
min_gpu<unsigned char>,
|
||||
min_gpu<signed char>,
|
||||
min_gpu<unsigned short>,
|
||||
min_gpu<short>,
|
||||
min_gpu<int>,
|
||||
min_gpu<float>,
|
||||
min_gpu<double>
|
||||
};
|
||||
|
||||
CV_Assert(src1.depth() <= CV_64F);
|
||||
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
|
||||
CV_Assert((src1.depth() != CV_64F) ||
|
||||
(TargetArchs::builtWith(NATIVE_DOUBLE) && DeviceInfo().supports(NATIVE_DOUBLE)));
|
||||
|
||||
typedef void (*func_t)(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream);
|
||||
static const func_t funcs[] =
|
||||
if (src1.depth() == CV_64F)
|
||||
{
|
||||
min_caller<unsigned char>, min_caller<signed char>, min_caller<unsigned short>, min_caller<short>, min_caller<int>,
|
||||
min_caller<float>, min_caller<double>
|
||||
};
|
||||
funcs[src1.depth()](src1, src2, dst, StreamAccessor::getStream(stream));
|
||||
}
|
||||
void cv::gpu::min(const GpuMat& src1, double src2, GpuMat& dst, Stream& stream)
|
||||
{
|
||||
CV_Assert((src1.depth() != CV_64F) ||
|
||||
(TargetArchs::builtWith(NATIVE_DOUBLE) && DeviceInfo().supports(NATIVE_DOUBLE)));
|
||||
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
|
||||
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
|
||||
}
|
||||
|
||||
typedef void (*func_t)(const GpuMat& src1, double src2, GpuMat& dst, cudaStream_t stream);
|
||||
static const func_t funcs[] =
|
||||
{
|
||||
min_caller<unsigned char>, min_caller<signed char>, min_caller<unsigned short>, min_caller<short>, min_caller<int>,
|
||||
min_caller<float>, min_caller<double>
|
||||
};
|
||||
funcs[src1.depth()](src1, src2, dst, StreamAccessor::getStream(stream));
|
||||
dst.create(src1.size(), src1.type());
|
||||
|
||||
funcs[src1.depth()](src1.reshape(1), src2.reshape(1), dst.reshape(1), StreamAccessor::getStream(stream));
|
||||
}
|
||||
|
||||
void cv::gpu::max(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& stream)
|
||||
{
|
||||
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
|
||||
CV_Assert((src1.depth() != CV_64F) ||
|
||||
(TargetArchs::builtWith(NATIVE_DOUBLE) && DeviceInfo().supports(NATIVE_DOUBLE)));
|
||||
using namespace cv::gpu::device;
|
||||
|
||||
typedef void (*func_t)(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream);
|
||||
typedef void (*func_t)(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
|
||||
static const func_t funcs[] =
|
||||
{
|
||||
max_caller<unsigned char>, max_caller<signed char>, max_caller<unsigned short>, max_caller<short>, max_caller<int>,
|
||||
max_caller<float>, max_caller<double>
|
||||
max_gpu<unsigned char>,
|
||||
max_gpu<signed char>,
|
||||
max_gpu<unsigned short>,
|
||||
max_gpu<short>,
|
||||
max_gpu<int>,
|
||||
max_gpu<float>,
|
||||
max_gpu<double>
|
||||
};
|
||||
funcs[src1.depth()](src1, src2, dst, StreamAccessor::getStream(stream));
|
||||
|
||||
CV_Assert(src1.depth() <= CV_64F);
|
||||
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
|
||||
|
||||
if (src1.depth() == CV_64F)
|
||||
{
|
||||
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
|
||||
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
|
||||
}
|
||||
|
||||
dst.create(src1.size(), src1.type());
|
||||
|
||||
funcs[src1.depth()](src1.reshape(1), src2.reshape(1), dst.reshape(1), StreamAccessor::getStream(stream));
|
||||
}
|
||||
|
||||
void cv::gpu::max(const GpuMat& src1, double src2, GpuMat& dst, Stream& stream)
|
||||
namespace
|
||||
{
|
||||
CV_Assert((src1.depth() != CV_64F) ||
|
||||
(TargetArchs::builtWith(NATIVE_DOUBLE) && DeviceInfo().supports(NATIVE_DOUBLE)));
|
||||
template <typename T> void minScalar(const DevMem2Db src, double val, DevMem2Db dst, cudaStream_t stream)
|
||||
{
|
||||
cv::gpu::device::min_gpu(src, saturate_cast<T>(val), dst, stream);
|
||||
}
|
||||
|
||||
typedef void (*func_t)(const GpuMat& src1, double src2, GpuMat& dst, cudaStream_t stream);
|
||||
template <typename T> void maxScalar(const DevMem2Db src, double val, DevMem2Db dst, cudaStream_t stream)
|
||||
{
|
||||
cv::gpu::device::max_gpu(src, saturate_cast<T>(val), dst, stream);
|
||||
}
|
||||
}
|
||||
|
||||
void cv::gpu::min(const GpuMat& src, double val, GpuMat& dst, Stream& stream)
|
||||
{
|
||||
typedef void (*func_t)(const DevMem2Db src1, double src2, DevMem2Db dst, cudaStream_t stream);
|
||||
static const func_t funcs[] =
|
||||
{
|
||||
max_caller<unsigned char>, max_caller<signed char>, max_caller<unsigned short>, max_caller<short>, max_caller<int>,
|
||||
max_caller<float>, max_caller<double>
|
||||
minScalar<unsigned char>,
|
||||
minScalar<signed char>,
|
||||
minScalar<unsigned short>,
|
||||
minScalar<short>,
|
||||
minScalar<int>,
|
||||
minScalar<float>,
|
||||
minScalar<double>
|
||||
};
|
||||
funcs[src1.depth()](src1, src2, dst, StreamAccessor::getStream(stream));
|
||||
|
||||
CV_Assert(src.depth() <= CV_64F);
|
||||
CV_Assert(src.channels() == 1);
|
||||
|
||||
if (src.depth() == CV_64F)
|
||||
{
|
||||
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
|
||||
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
|
||||
}
|
||||
|
||||
dst.create(src.size(), src.type());
|
||||
|
||||
funcs[src.depth()](src, val, dst, StreamAccessor::getStream(stream));
|
||||
}
|
||||
|
||||
void cv::gpu::max(const GpuMat& src, double val, GpuMat& dst, Stream& stream)
|
||||
{
|
||||
typedef void (*func_t)(const DevMem2Db src1, double src2, DevMem2Db dst, cudaStream_t stream);
|
||||
static const func_t funcs[] =
|
||||
{
|
||||
maxScalar<unsigned char>,
|
||||
maxScalar<signed char>,
|
||||
maxScalar<unsigned short>,
|
||||
maxScalar<short>,
|
||||
maxScalar<int>,
|
||||
maxScalar<float>,
|
||||
maxScalar<double>
|
||||
};
|
||||
|
||||
CV_Assert(src.depth() <= CV_64F);
|
||||
CV_Assert(src.channels() == 1);
|
||||
|
||||
if (src.depth() == CV_64F)
|
||||
{
|
||||
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
|
||||
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
|
||||
}
|
||||
|
||||
dst.create(src.size(), src.type());
|
||||
|
||||
funcs[src.depth()](src, val, dst, StreamAccessor::getStream(stream));
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
@ -1947,6 +1991,12 @@ double cv::gpu::threshold(const GpuMat& src, GpuMat& dst, double thresh, double
|
||||
CV_Assert(src.channels() == 1 && src.depth() <= CV_64F);
|
||||
CV_Assert(type <= THRESH_TOZERO_INV);
|
||||
|
||||
if (src.depth() == CV_64F)
|
||||
{
|
||||
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
|
||||
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
|
||||
}
|
||||
|
||||
dst.create(src.size(), src.type());
|
||||
|
||||
cudaStream_t stream = StreamAccessor::getStream(s);
|
||||
@ -1967,9 +2017,8 @@ double cv::gpu::threshold(const GpuMat& src, GpuMat& dst, double thresh, double
|
||||
}
|
||||
else
|
||||
{
|
||||
typedef void (*caller_t)(const GpuMat& src, GpuMat& dst, double thresh, double maxVal, int type, cudaStream_t stream);
|
||||
|
||||
static const caller_t callers[] =
|
||||
typedef void (*func_t)(const GpuMat& src, GpuMat& dst, double thresh, double maxVal, int type, cudaStream_t stream);
|
||||
static const func_t funcs[] =
|
||||
{
|
||||
threshold_caller<unsigned char>, threshold_caller<signed char>,
|
||||
threshold_caller<unsigned short>, threshold_caller<short>,
|
||||
@ -1982,7 +2031,7 @@ double cv::gpu::threshold(const GpuMat& src, GpuMat& dst, double thresh, double
|
||||
maxVal = cvRound(maxVal);
|
||||
}
|
||||
|
||||
callers[src.depth()](src, dst, thresh, maxVal, type, stream);
|
||||
funcs[src.depth()](src, dst, thresh, maxVal, type, stream);
|
||||
}
|
||||
|
||||
return thresh;
|
||||
@ -1993,8 +2042,7 @@ double cv::gpu::threshold(const GpuMat& src, GpuMat& dst, double thresh, double
|
||||
|
||||
namespace cv { namespace gpu { namespace device
|
||||
{
|
||||
template<typename T>
|
||||
void pow_caller(DevMem2Db src, double power, DevMem2Db dst, cudaStream_t stream);
|
||||
template<typename T> void pow_caller(DevMem2Db src, double power, DevMem2Db dst, cudaStream_t stream);
|
||||
}}}
|
||||
|
||||
void cv::gpu::pow(const GpuMat& src, double power, GpuMat& dst, Stream& stream)
|
||||
@ -2002,7 +2050,6 @@ void cv::gpu::pow(const GpuMat& src, double power, GpuMat& dst, Stream& stream)
|
||||
using namespace cv::gpu::device;
|
||||
|
||||
typedef void (*func_t)(DevMem2Db src, double power, DevMem2Db dst, cudaStream_t stream);
|
||||
|
||||
static const func_t funcs[] =
|
||||
{
|
||||
pow_caller<unsigned char>, pow_caller<signed char>,
|
||||
@ -2010,6 +2057,14 @@ void cv::gpu::pow(const GpuMat& src, double power, GpuMat& dst, Stream& stream)
|
||||
pow_caller<int>, pow_caller<float>, pow_caller<double>
|
||||
};
|
||||
|
||||
CV_Assert(src.depth() <= CV_64F);
|
||||
|
||||
if (src.depth() == CV_64F)
|
||||
{
|
||||
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
|
||||
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
|
||||
}
|
||||
|
||||
dst.create(src.size(), src.type());
|
||||
|
||||
funcs[src.depth()](src.reshape(1), power, dst.reshape(1), StreamAccessor::getStream(stream));
|
||||
@ -2075,8 +2130,7 @@ void cv::gpu::alphaComp(const GpuMat& img1, const GpuMat& img2, GpuMat& dst, int
|
||||
NppAlphaComp<CV_16U, nppiAlphaComp_16u_AC4R>::call,
|
||||
0,
|
||||
NppAlphaComp<CV_32S, nppiAlphaComp_32s_AC4R>::call,
|
||||
NppAlphaComp<CV_32F, nppiAlphaComp_32f_AC4R>::call,
|
||||
0
|
||||
NppAlphaComp<CV_32F, nppiAlphaComp_32f_AC4R>::call
|
||||
};
|
||||
|
||||
CV_Assert(img1.type() == CV_8UC4 || img1.type() == CV_16UC4 || img1.type() == CV_32SC4 || img1.type() == CV_32FC4);
|
||||
@ -2085,7 +2139,6 @@ void cv::gpu::alphaComp(const GpuMat& img1, const GpuMat& img2, GpuMat& dst, int
|
||||
dst.create(img1.size(), img1.type());
|
||||
|
||||
const func_t func = funcs[img1.depth()];
|
||||
CV_Assert(func != 0);
|
||||
|
||||
func(img1, img2, dst, npp_alpha_ops[alpha_op], StreamAccessor::getStream(stream));
|
||||
}
|
||||
@ -2569,6 +2622,14 @@ void cv::gpu::addWeighted(const GpuMat& src1, double alpha, const GpuMat& src2,
|
||||
|
||||
dtype = dtype >= 0 ? CV_MAKETYPE(dtype, src1.channels()) : src1.type();
|
||||
|
||||
CV_Assert(src1.depth() <= CV_64F && src2.depth() <= CV_64F && CV_MAT_DEPTH(dtype) <= CV_64F);
|
||||
|
||||
if (src1.depth() == CV_64F || src2.depth() == CV_64F || CV_MAT_DEPTH(dtype) == CV_64F)
|
||||
{
|
||||
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
|
||||
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
|
||||
}
|
||||
|
||||
dst.create(src1.size(), dtype);
|
||||
|
||||
const GpuMat* psrc1 = &src1;
|
||||
@ -2581,7 +2642,9 @@ void cv::gpu::addWeighted(const GpuMat& src1, double alpha, const GpuMat& src2,
|
||||
}
|
||||
|
||||
const func_t func = funcs[psrc1->depth()][psrc2->depth()][dst.depth()];
|
||||
CV_Assert(func != 0);
|
||||
|
||||
if (!func)
|
||||
CV_Error(CV_StsUnsupportedFormat, "Unsupported combination of source and destination types");
|
||||
|
||||
func(psrc1->reshape(1), alpha, psrc2->reshape(1), beta, gamma, dst.reshape(1), StreamAccessor::getStream(stream));
|
||||
}
|
||||
|
@ -132,7 +132,7 @@ void cv::gpu::meanStdDev(const GpuMat& src, Scalar& mean, Scalar& stddev, GpuMat
|
||||
nppSafeCall( nppiMean_StdDev_8u_C1R(src.ptr<Npp8u>(), static_cast<int>(src.step), sz, buf.ptr<Npp8u>(), dbuf, (double*)dbuf + 1) );
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
|
||||
|
||||
double* ptrs[2] = {mean.val, stddev.val};
|
||||
dbuf.download(ptrs);
|
||||
}
|
||||
@ -148,6 +148,8 @@ double cv::gpu::norm(const GpuMat& src, int normType)
|
||||
|
||||
double cv::gpu::norm(const GpuMat& src, int normType, GpuMat& buf)
|
||||
{
|
||||
CV_Assert(normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2);
|
||||
|
||||
GpuMat src_single_channel = src.reshape(1);
|
||||
|
||||
if (normType == NORM_L1)
|
||||
@ -156,22 +158,16 @@ double cv::gpu::norm(const GpuMat& src, int normType, GpuMat& buf)
|
||||
if (normType == NORM_L2)
|
||||
return std::sqrt(sqrSum(src_single_channel, buf)[0]);
|
||||
|
||||
if (normType == NORM_INF)
|
||||
{
|
||||
double min_val, max_val;
|
||||
minMax(src_single_channel, &min_val, &max_val, GpuMat(), buf);
|
||||
return std::max(std::abs(min_val), std::abs(max_val));
|
||||
}
|
||||
|
||||
CV_Error(CV_StsBadArg, "norm: unsupported norm type");
|
||||
return 0;
|
||||
// NORM_INF
|
||||
double min_val, max_val;
|
||||
minMax(src_single_channel, &min_val, &max_val, GpuMat(), buf);
|
||||
return std::max(std::abs(min_val), std::abs(max_val));
|
||||
}
|
||||
|
||||
double cv::gpu::norm(const GpuMat& src1, const GpuMat& src2, int normType)
|
||||
{
|
||||
CV_DbgAssert(src1.size() == src2.size() && src1.type() == src2.type());
|
||||
|
||||
CV_Assert(src1.type() == CV_8UC1);
|
||||
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
|
||||
CV_Assert(normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2);
|
||||
|
||||
typedef NppStatus (*npp_norm_diff_func_t)(const Npp8u* pSrc1, int nSrcStep1, const Npp8u* pSrc2, int nSrcStep2,
|
||||
@ -184,7 +180,7 @@ double cv::gpu::norm(const GpuMat& src1, const GpuMat& src2, int normType)
|
||||
sz.height = src1.rows;
|
||||
|
||||
int funcIdx = normType >> 1;
|
||||
|
||||
|
||||
double retVal;
|
||||
|
||||
DeviceBuffer dbuf;
|
||||
@ -192,7 +188,7 @@ double cv::gpu::norm(const GpuMat& src1, const GpuMat& src2, int normType)
|
||||
nppSafeCall( npp_norm_diff_func[funcIdx](src1.ptr<Npp8u>(), static_cast<int>(src1.step), src2.ptr<Npp8u>(), static_cast<int>(src2.step), sz, dbuf) );
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
|
||||
|
||||
dbuf.download(&retVal);
|
||||
|
||||
return retVal;
|
||||
@ -201,9 +197,9 @@ double cv::gpu::norm(const GpuMat& src1, const GpuMat& src2, int normType)
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Sum
|
||||
|
||||
namespace cv { namespace gpu { namespace device
|
||||
namespace cv { namespace gpu { namespace device
|
||||
{
|
||||
namespace matrix_reductions
|
||||
namespace matrix_reductions
|
||||
{
|
||||
namespace sum
|
||||
{
|
||||
@ -230,34 +226,36 @@ namespace cv { namespace gpu { namespace device
|
||||
}
|
||||
}}}
|
||||
|
||||
Scalar cv::gpu::sum(const GpuMat& src)
|
||||
Scalar cv::gpu::sum(const GpuMat& src)
|
||||
{
|
||||
GpuMat buf;
|
||||
return sum(src, buf);
|
||||
}
|
||||
|
||||
|
||||
Scalar cv::gpu::sum(const GpuMat& src, GpuMat& buf)
|
||||
Scalar cv::gpu::sum(const GpuMat& src, GpuMat& buf)
|
||||
{
|
||||
using namespace ::cv::gpu::device::matrix_reductions::sum;
|
||||
using namespace cv::gpu::device::matrix_reductions::sum;
|
||||
|
||||
typedef void (*Caller)(const DevMem2Db, PtrStepb, double*, int);
|
||||
|
||||
static Caller multipass_callers[7] =
|
||||
{
|
||||
sumMultipassCaller<unsigned char>, sumMultipassCaller<char>,
|
||||
sumMultipassCaller<unsigned short>, sumMultipassCaller<short>,
|
||||
sumMultipassCaller<int>, sumMultipassCaller<float>, 0
|
||||
static Caller multipass_callers[] =
|
||||
{
|
||||
sumMultipassCaller<unsigned char>, sumMultipassCaller<char>,
|
||||
sumMultipassCaller<unsigned short>, sumMultipassCaller<short>,
|
||||
sumMultipassCaller<int>, sumMultipassCaller<float>
|
||||
};
|
||||
|
||||
static Caller singlepass_callers[7] = {
|
||||
sumCaller<unsigned char>, sumCaller<char>,
|
||||
sumCaller<unsigned short>, sumCaller<short>,
|
||||
sumCaller<int>, sumCaller<float>, 0
|
||||
static Caller singlepass_callers[] = {
|
||||
sumCaller<unsigned char>, sumCaller<char>,
|
||||
sumCaller<unsigned short>, sumCaller<short>,
|
||||
sumCaller<int>, sumCaller<float>
|
||||
};
|
||||
|
||||
CV_Assert(src.depth() <= CV_32F);
|
||||
|
||||
Size buf_size;
|
||||
getBufSizeRequired(src.cols, src.rows, src.channels(), buf_size.width, buf_size.height);
|
||||
getBufSizeRequired(src.cols, src.rows, src.channels(), buf_size.width, buf_size.height);
|
||||
ensureSizeIsEnough(buf_size, CV_8U, buf);
|
||||
|
||||
Caller* callers = multipass_callers;
|
||||
@ -265,7 +263,6 @@ Scalar cv::gpu::sum(const GpuMat& src, GpuMat& buf)
|
||||
callers = singlepass_callers;
|
||||
|
||||
Caller caller = callers[src.depth()];
|
||||
if (!caller) CV_Error(CV_StsBadArg, "sum: unsupported type");
|
||||
|
||||
double result[4];
|
||||
caller(src, buf, result, src.channels());
|
||||
@ -273,35 +270,37 @@ Scalar cv::gpu::sum(const GpuMat& src, GpuMat& buf)
|
||||
}
|
||||
|
||||
|
||||
Scalar cv::gpu::absSum(const GpuMat& src)
|
||||
Scalar cv::gpu::absSum(const GpuMat& src)
|
||||
{
|
||||
GpuMat buf;
|
||||
return absSum(src, buf);
|
||||
}
|
||||
|
||||
|
||||
Scalar cv::gpu::absSum(const GpuMat& src, GpuMat& buf)
|
||||
Scalar cv::gpu::absSum(const GpuMat& src, GpuMat& buf)
|
||||
{
|
||||
using namespace ::cv::gpu::device::matrix_reductions::sum;
|
||||
using namespace cv::gpu::device::matrix_reductions::sum;
|
||||
|
||||
typedef void (*Caller)(const DevMem2Db, PtrStepb, double*, int);
|
||||
|
||||
static Caller multipass_callers[7] =
|
||||
{
|
||||
absSumMultipassCaller<unsigned char>, absSumMultipassCaller<char>,
|
||||
absSumMultipassCaller<unsigned short>, absSumMultipassCaller<short>,
|
||||
absSumMultipassCaller<int>, absSumMultipassCaller<float>, 0
|
||||
static Caller multipass_callers[] =
|
||||
{
|
||||
absSumMultipassCaller<unsigned char>, absSumMultipassCaller<char>,
|
||||
absSumMultipassCaller<unsigned short>, absSumMultipassCaller<short>,
|
||||
absSumMultipassCaller<int>, absSumMultipassCaller<float>
|
||||
};
|
||||
|
||||
static Caller singlepass_callers[7] =
|
||||
{
|
||||
absSumCaller<unsigned char>, absSumCaller<char>,
|
||||
absSumCaller<unsigned short>, absSumCaller<short>,
|
||||
absSumCaller<int>, absSumCaller<float>, 0
|
||||
static Caller singlepass_callers[] =
|
||||
{
|
||||
absSumCaller<unsigned char>, absSumCaller<char>,
|
||||
absSumCaller<unsigned short>, absSumCaller<short>,
|
||||
absSumCaller<int>, absSumCaller<float>
|
||||
};
|
||||
|
||||
CV_Assert(src.depth() <= CV_32F);
|
||||
|
||||
Size buf_size;
|
||||
getBufSizeRequired(src.cols, src.rows, src.channels(), buf_size.width, buf_size.height);
|
||||
getBufSizeRequired(src.cols, src.rows, src.channels(), buf_size.width, buf_size.height);
|
||||
ensureSizeIsEnough(buf_size, CV_8U, buf);
|
||||
|
||||
Caller* callers = multipass_callers;
|
||||
@ -309,7 +308,6 @@ Scalar cv::gpu::absSum(const GpuMat& src, GpuMat& buf)
|
||||
callers = singlepass_callers;
|
||||
|
||||
Caller caller = callers[src.depth()];
|
||||
if (!caller) CV_Error(CV_StsBadArg, "absSum: unsupported type");
|
||||
|
||||
double result[4];
|
||||
caller(src, buf, result, src.channels());
|
||||
@ -317,43 +315,44 @@ Scalar cv::gpu::absSum(const GpuMat& src, GpuMat& buf)
|
||||
}
|
||||
|
||||
|
||||
Scalar cv::gpu::sqrSum(const GpuMat& src)
|
||||
Scalar cv::gpu::sqrSum(const GpuMat& src)
|
||||
{
|
||||
GpuMat buf;
|
||||
return sqrSum(src, buf);
|
||||
}
|
||||
|
||||
|
||||
Scalar cv::gpu::sqrSum(const GpuMat& src, GpuMat& buf)
|
||||
Scalar cv::gpu::sqrSum(const GpuMat& src, GpuMat& buf)
|
||||
{
|
||||
using namespace ::cv::gpu::device::matrix_reductions::sum;
|
||||
using namespace cv::gpu::device::matrix_reductions::sum;
|
||||
|
||||
typedef void (*Caller)(const DevMem2Db, PtrStepb, double*, int);
|
||||
|
||||
static Caller multipass_callers[7] =
|
||||
{
|
||||
sqrSumMultipassCaller<unsigned char>, sqrSumMultipassCaller<char>,
|
||||
sqrSumMultipassCaller<unsigned short>, sqrSumMultipassCaller<short>,
|
||||
sqrSumMultipassCaller<int>, sqrSumMultipassCaller<float>, 0
|
||||
static Caller multipass_callers[] =
|
||||
{
|
||||
sqrSumMultipassCaller<unsigned char>, sqrSumMultipassCaller<char>,
|
||||
sqrSumMultipassCaller<unsigned short>, sqrSumMultipassCaller<short>,
|
||||
sqrSumMultipassCaller<int>, sqrSumMultipassCaller<float>
|
||||
};
|
||||
|
||||
static Caller singlepass_callers[7] =
|
||||
{
|
||||
sqrSumCaller<unsigned char>, sqrSumCaller<char>,
|
||||
sqrSumCaller<unsigned short>, sqrSumCaller<short>,
|
||||
sqrSumCaller<int>, sqrSumCaller<float>, 0
|
||||
static Caller singlepass_callers[7] =
|
||||
{
|
||||
sqrSumCaller<unsigned char>, sqrSumCaller<char>,
|
||||
sqrSumCaller<unsigned short>, sqrSumCaller<short>,
|
||||
sqrSumCaller<int>, sqrSumCaller<float>
|
||||
};
|
||||
|
||||
CV_Assert(src.depth() <= CV_32F);
|
||||
|
||||
Caller* callers = multipass_callers;
|
||||
if (TargetArchs::builtWith(GLOBAL_ATOMICS) && DeviceInfo().supports(GLOBAL_ATOMICS))
|
||||
callers = singlepass_callers;
|
||||
|
||||
Size buf_size;
|
||||
getBufSizeRequired(src.cols, src.rows, src.channels(), buf_size.width, buf_size.height);
|
||||
getBufSizeRequired(src.cols, src.rows, src.channels(), buf_size.width, buf_size.height);
|
||||
ensureSizeIsEnough(buf_size, CV_8U, buf);
|
||||
|
||||
Caller caller = callers[src.depth()];
|
||||
if (!caller) CV_Error(CV_StsBadArg, "sqrSum: unsupported type");
|
||||
|
||||
double result[4];
|
||||
caller(src, buf, result, src.channels());
|
||||
@ -363,24 +362,24 @@ Scalar cv::gpu::sqrSum(const GpuMat& src, GpuMat& buf)
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Find min or max
|
||||
|
||||
namespace cv { namespace gpu { namespace device
|
||||
namespace cv { namespace gpu { namespace device
|
||||
{
|
||||
namespace matrix_reductions
|
||||
namespace matrix_reductions
|
||||
{
|
||||
namespace minmax
|
||||
namespace minmax
|
||||
{
|
||||
void getBufSizeRequired(int cols, int rows, int elem_size, int& bufcols, int& bufrows);
|
||||
|
||||
template <typename T>
|
||||
|
||||
template <typename T>
|
||||
void minMaxCaller(const DevMem2Db src, double* minval, double* maxval, PtrStepb buf);
|
||||
|
||||
template <typename T>
|
||||
template <typename T>
|
||||
void minMaxMaskCaller(const DevMem2Db src, const PtrStepb mask, double* minval, double* maxval, PtrStepb buf);
|
||||
|
||||
template <typename T>
|
||||
template <typename T>
|
||||
void minMaxMultipassCaller(const DevMem2Db src, double* minval, double* maxval, PtrStepb buf);
|
||||
|
||||
template <typename T>
|
||||
template <typename T>
|
||||
void minMaxMaskMultipassCaller(const DevMem2Db src, const PtrStepb mask, double* minval, double* maxval, PtrStepb buf);
|
||||
}
|
||||
}
|
||||
@ -401,41 +400,47 @@ void cv::gpu::minMax(const GpuMat& src, double* minVal, double* maxVal, const Gp
|
||||
typedef void (*Caller)(const DevMem2Db, double*, double*, PtrStepb);
|
||||
typedef void (*MaskedCaller)(const DevMem2Db, const PtrStepb, double*, double*, PtrStepb);
|
||||
|
||||
static Caller multipass_callers[7] =
|
||||
{
|
||||
minMaxMultipassCaller<unsigned char>, minMaxMultipassCaller<char>,
|
||||
minMaxMultipassCaller<unsigned short>, minMaxMultipassCaller<short>,
|
||||
minMaxMultipassCaller<int>, minMaxMultipassCaller<float>, 0
|
||||
static Caller multipass_callers[] =
|
||||
{
|
||||
minMaxMultipassCaller<unsigned char>, minMaxMultipassCaller<char>,
|
||||
minMaxMultipassCaller<unsigned short>, minMaxMultipassCaller<short>,
|
||||
minMaxMultipassCaller<int>, minMaxMultipassCaller<float>, 0
|
||||
};
|
||||
|
||||
static Caller singlepass_callers[7] =
|
||||
{
|
||||
minMaxCaller<unsigned char>, minMaxCaller<char>,
|
||||
minMaxCaller<unsigned short>, minMaxCaller<short>,
|
||||
minMaxCaller<int>, minMaxCaller<float>, minMaxCaller<double>
|
||||
static Caller singlepass_callers[] =
|
||||
{
|
||||
minMaxCaller<unsigned char>, minMaxCaller<char>,
|
||||
minMaxCaller<unsigned short>, minMaxCaller<short>,
|
||||
minMaxCaller<int>, minMaxCaller<float>, minMaxCaller<double>
|
||||
};
|
||||
|
||||
static MaskedCaller masked_multipass_callers[7] =
|
||||
{
|
||||
minMaxMaskMultipassCaller<unsigned char>, minMaxMaskMultipassCaller<char>,
|
||||
static MaskedCaller masked_multipass_callers[] =
|
||||
{
|
||||
minMaxMaskMultipassCaller<unsigned char>, minMaxMaskMultipassCaller<char>,
|
||||
minMaxMaskMultipassCaller<unsigned short>, minMaxMaskMultipassCaller<short>,
|
||||
minMaxMaskMultipassCaller<int>, minMaxMaskMultipassCaller<float>, 0
|
||||
};
|
||||
|
||||
static MaskedCaller masked_singlepass_callers[7] =
|
||||
{
|
||||
minMaxMaskCaller<unsigned char>, minMaxMaskCaller<char>,
|
||||
minMaxMaskCaller<unsigned short>, minMaxMaskCaller<short>,
|
||||
minMaxMaskCaller<int>, minMaxMaskCaller<float>, minMaxMaskCaller<double>
|
||||
static MaskedCaller masked_singlepass_callers[] =
|
||||
{
|
||||
minMaxMaskCaller<unsigned char>, minMaxMaskCaller<char>,
|
||||
minMaxMaskCaller<unsigned short>, minMaxMaskCaller<short>,
|
||||
minMaxMaskCaller<int>, minMaxMaskCaller<float>, minMaxMaskCaller<double>
|
||||
};
|
||||
|
||||
CV_Assert(src.depth() <= CV_64F);
|
||||
CV_Assert(src.channels() == 1);
|
||||
|
||||
CV_Assert(mask.empty() || (mask.type() == CV_8U && src.size() == mask.size()));
|
||||
|
||||
if (src.depth() == CV_64F)
|
||||
{
|
||||
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
|
||||
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
|
||||
}
|
||||
|
||||
double minVal_; if (!minVal) minVal = &minVal_;
|
||||
double maxVal_; if (!maxVal) maxVal = &maxVal_;
|
||||
|
||||
|
||||
Size buf_size;
|
||||
getBufSizeRequired(src.cols, src.rows, static_cast<int>(src.elemSize()), buf_size.width, buf_size.height);
|
||||
ensureSizeIsEnough(buf_size, CV_8U, buf);
|
||||
@ -447,7 +452,7 @@ void cv::gpu::minMax(const GpuMat& src, double* minVal, double* maxVal, const Gp
|
||||
callers = singlepass_callers;
|
||||
|
||||
Caller caller = callers[src.type()];
|
||||
if (!caller) CV_Error(CV_StsBadArg, "minMax: unsupported type");
|
||||
CV_Assert(caller != 0);
|
||||
caller(src, minVal, maxVal, buf);
|
||||
}
|
||||
else
|
||||
@ -457,7 +462,7 @@ void cv::gpu::minMax(const GpuMat& src, double* minVal, double* maxVal, const Gp
|
||||
callers = masked_singlepass_callers;
|
||||
|
||||
MaskedCaller caller = callers[src.type()];
|
||||
if (!caller) CV_Error(CV_StsBadArg, "minMax: unsupported type");
|
||||
CV_Assert(caller != 0);
|
||||
caller(src, mask, minVal, maxVal, buf);
|
||||
}
|
||||
}
|
||||
@ -466,36 +471,36 @@ void cv::gpu::minMax(const GpuMat& src, double* minVal, double* maxVal, const Gp
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Locate min and max
|
||||
|
||||
namespace cv { namespace gpu { namespace device
|
||||
namespace cv { namespace gpu { namespace device
|
||||
{
|
||||
namespace matrix_reductions
|
||||
namespace matrix_reductions
|
||||
{
|
||||
namespace minmaxloc
|
||||
namespace minmaxloc
|
||||
{
|
||||
void getBufSizeRequired(int cols, int rows, int elem_size, int& b1cols,
|
||||
void getBufSizeRequired(int cols, int rows, int elem_size, int& b1cols,
|
||||
int& b1rows, int& b2cols, int& b2rows);
|
||||
|
||||
template <typename T>
|
||||
void minMaxLocCaller(const DevMem2Db src, double* minval, double* maxval,
|
||||
template <typename T>
|
||||
void minMaxLocCaller(const DevMem2Db src, double* minval, double* maxval,
|
||||
int minloc[2], int maxloc[2], PtrStepb valBuf, PtrStepb locBuf);
|
||||
|
||||
template <typename T>
|
||||
void minMaxLocMaskCaller(const DevMem2Db src, const PtrStepb mask, double* minval, double* maxval,
|
||||
template <typename T>
|
||||
void minMaxLocMaskCaller(const DevMem2Db src, const PtrStepb mask, double* minval, double* maxval,
|
||||
int minloc[2], int maxloc[2], PtrStepb valBuf, PtrStepb locBuf);
|
||||
|
||||
template <typename T>
|
||||
void minMaxLocMultipassCaller(const DevMem2Db src, double* minval, double* maxval,
|
||||
template <typename T>
|
||||
void minMaxLocMultipassCaller(const DevMem2Db src, double* minval, double* maxval,
|
||||
int minloc[2], int maxloc[2], PtrStepb valBuf, PtrStepb locBuf);
|
||||
|
||||
template <typename T>
|
||||
void minMaxLocMaskMultipassCaller(const DevMem2Db src, const PtrStepb mask, double* minval, double* maxval,
|
||||
template <typename T>
|
||||
void minMaxLocMaskMultipassCaller(const DevMem2Db src, const PtrStepb mask, double* minval, double* maxval,
|
||||
int minloc[2], int maxloc[2], PtrStepb valBuf, PtrStepb locBuf);
|
||||
}
|
||||
}
|
||||
}}}
|
||||
|
||||
void cv::gpu::minMaxLoc(const GpuMat& src, double* minVal, double* maxVal, Point* minLoc, Point* maxLoc, const GpuMat& mask)
|
||||
{
|
||||
{
|
||||
GpuMat valBuf, locBuf;
|
||||
minMaxLoc(src, minVal, maxVal, minLoc, maxLoc, mask, valBuf, locBuf);
|
||||
}
|
||||
@ -508,45 +513,51 @@ void cv::gpu::minMaxLoc(const GpuMat& src, double* minVal, double* maxVal, Point
|
||||
typedef void (*Caller)(const DevMem2Db, double*, double*, int[2], int[2], PtrStepb, PtrStepb);
|
||||
typedef void (*MaskedCaller)(const DevMem2Db, const PtrStepb, double*, double*, int[2], int[2], PtrStepb, PtrStepb);
|
||||
|
||||
static Caller multipass_callers[7] =
|
||||
static Caller multipass_callers[] =
|
||||
{
|
||||
minMaxLocMultipassCaller<unsigned char>, minMaxLocMultipassCaller<char>,
|
||||
minMaxLocMultipassCaller<unsigned short>, minMaxLocMultipassCaller<short>,
|
||||
minMaxLocMultipassCaller<int>, minMaxLocMultipassCaller<float>, 0
|
||||
minMaxLocMultipassCaller<unsigned char>, minMaxLocMultipassCaller<char>,
|
||||
minMaxLocMultipassCaller<unsigned short>, minMaxLocMultipassCaller<short>,
|
||||
minMaxLocMultipassCaller<int>, minMaxLocMultipassCaller<float>, 0
|
||||
};
|
||||
|
||||
static Caller singlepass_callers[7] =
|
||||
static Caller singlepass_callers[] =
|
||||
{
|
||||
minMaxLocCaller<unsigned char>, minMaxLocCaller<char>,
|
||||
minMaxLocCaller<unsigned short>, minMaxLocCaller<short>,
|
||||
minMaxLocCaller<int>, minMaxLocCaller<float>, minMaxLocCaller<double>
|
||||
minMaxLocCaller<unsigned char>, minMaxLocCaller<char>,
|
||||
minMaxLocCaller<unsigned short>, minMaxLocCaller<short>,
|
||||
minMaxLocCaller<int>, minMaxLocCaller<float>, minMaxLocCaller<double>
|
||||
};
|
||||
|
||||
static MaskedCaller masked_multipass_callers[7] =
|
||||
static MaskedCaller masked_multipass_callers[] =
|
||||
{
|
||||
minMaxLocMaskMultipassCaller<unsigned char>, minMaxLocMaskMultipassCaller<char>,
|
||||
minMaxLocMaskMultipassCaller<unsigned short>, minMaxLocMaskMultipassCaller<short>,
|
||||
minMaxLocMaskMultipassCaller<int>, minMaxLocMaskMultipassCaller<float>, 0
|
||||
minMaxLocMaskMultipassCaller<unsigned short>, minMaxLocMaskMultipassCaller<short>,
|
||||
minMaxLocMaskMultipassCaller<int>, minMaxLocMaskMultipassCaller<float>, 0
|
||||
};
|
||||
|
||||
static MaskedCaller masked_singlepass_callers[7] =
|
||||
{
|
||||
minMaxLocMaskCaller<unsigned char>, minMaxLocMaskCaller<char>,
|
||||
minMaxLocMaskCaller<unsigned short>, minMaxLocMaskCaller<short>,
|
||||
minMaxLocMaskCaller<int>, minMaxLocMaskCaller<float>, minMaxLocMaskCaller<double>
|
||||
static MaskedCaller masked_singlepass_callers[] =
|
||||
{
|
||||
minMaxLocMaskCaller<unsigned char>, minMaxLocMaskCaller<char>,
|
||||
minMaxLocMaskCaller<unsigned short>, minMaxLocMaskCaller<short>,
|
||||
minMaxLocMaskCaller<int>, minMaxLocMaskCaller<float>, minMaxLocMaskCaller<double>
|
||||
};
|
||||
|
||||
CV_Assert(src.depth() <= CV_64F);
|
||||
CV_Assert(src.channels() == 1);
|
||||
|
||||
CV_Assert(mask.empty() || (mask.type() == CV_8U && src.size() == mask.size()));
|
||||
|
||||
if (src.depth() == CV_64F)
|
||||
{
|
||||
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
|
||||
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
|
||||
}
|
||||
|
||||
double minVal_; if (!minVal) minVal = &minVal_;
|
||||
double maxVal_; if (!maxVal) maxVal = &maxVal_;
|
||||
int minLoc_[2];
|
||||
int maxLoc_[2];
|
||||
|
||||
Size valbuf_size, locbuf_size;
|
||||
getBufSizeRequired(src.cols, src.rows, static_cast<int>(src.elemSize()), valbuf_size.width,
|
||||
getBufSizeRequired(src.cols, src.rows, static_cast<int>(src.elemSize()), valbuf_size.width,
|
||||
valbuf_size.height, locbuf_size.width, locbuf_size.height);
|
||||
ensureSizeIsEnough(valbuf_size, CV_8U, valBuf);
|
||||
ensureSizeIsEnough(locbuf_size, CV_8U, locBuf);
|
||||
@ -558,7 +569,7 @@ void cv::gpu::minMaxLoc(const GpuMat& src, double* minVal, double* maxVal, Point
|
||||
callers = singlepass_callers;
|
||||
|
||||
Caller caller = callers[src.type()];
|
||||
if (!caller) CV_Error(CV_StsBadArg, "minMaxLoc: unsupported type");
|
||||
CV_Assert(caller != 0);
|
||||
caller(src, minVal, maxVal, minLoc_, maxLoc_, valBuf, locBuf);
|
||||
}
|
||||
else
|
||||
@ -568,7 +579,7 @@ void cv::gpu::minMaxLoc(const GpuMat& src, double* minVal, double* maxVal, Point
|
||||
callers = masked_singlepass_callers;
|
||||
|
||||
MaskedCaller caller = callers[src.type()];
|
||||
if (!caller) CV_Error(CV_StsBadArg, "minMaxLoc: unsupported type");
|
||||
CV_Assert(caller != 0);
|
||||
caller(src, mask, minVal, maxVal, minLoc_, maxLoc_, valBuf, locBuf);
|
||||
}
|
||||
|
||||
@ -579,18 +590,18 @@ void cv::gpu::minMaxLoc(const GpuMat& src, double* minVal, double* maxVal, Point
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
// Count non-zero elements
|
||||
|
||||
namespace cv { namespace gpu { namespace device
|
||||
namespace cv { namespace gpu { namespace device
|
||||
{
|
||||
namespace matrix_reductions
|
||||
namespace matrix_reductions
|
||||
{
|
||||
namespace countnonzero
|
||||
namespace countnonzero
|
||||
{
|
||||
void getBufSizeRequired(int cols, int rows, int& bufcols, int& bufrows);
|
||||
|
||||
template <typename T>
|
||||
template <typename T>
|
||||
int countNonZeroCaller(const DevMem2Db src, PtrStepb buf);
|
||||
|
||||
template <typename T>
|
||||
template <typename T>
|
||||
int countNonZeroMultipassCaller(const DevMem2Db src, PtrStepb buf);
|
||||
}
|
||||
}
|
||||
@ -609,21 +620,28 @@ int cv::gpu::countNonZero(const GpuMat& src, GpuMat& buf)
|
||||
|
||||
typedef int (*Caller)(const DevMem2Db src, PtrStepb buf);
|
||||
|
||||
static Caller multipass_callers[7] =
|
||||
static Caller multipass_callers[7] =
|
||||
{
|
||||
countNonZeroMultipassCaller<unsigned char>, countNonZeroMultipassCaller<char>,
|
||||
countNonZeroMultipassCaller<unsigned short>, countNonZeroMultipassCaller<short>,
|
||||
countNonZeroMultipassCaller<int>, countNonZeroMultipassCaller<float>, 0
|
||||
countNonZeroMultipassCaller<int>, countNonZeroMultipassCaller<float>, 0
|
||||
};
|
||||
|
||||
static Caller singlepass_callers[7] =
|
||||
static Caller singlepass_callers[7] =
|
||||
{
|
||||
countNonZeroCaller<unsigned char>, countNonZeroCaller<char>,
|
||||
countNonZeroCaller<unsigned short>, countNonZeroCaller<short>,
|
||||
countNonZeroCaller<int>, countNonZeroCaller<float>, countNonZeroCaller<double> };
|
||||
|
||||
CV_Assert(src.depth() <= CV_64F);
|
||||
CV_Assert(src.channels() == 1);
|
||||
|
||||
if (src.depth() == CV_64F)
|
||||
{
|
||||
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
|
||||
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
|
||||
}
|
||||
|
||||
Size buf_size;
|
||||
getBufSizeRequired(src.cols, src.rows, buf_size.width, buf_size.height);
|
||||
ensureSizeIsEnough(buf_size, CV_8U, buf);
|
||||
@ -633,16 +651,16 @@ int cv::gpu::countNonZero(const GpuMat& src, GpuMat& buf)
|
||||
callers = singlepass_callers;
|
||||
|
||||
Caller caller = callers[src.type()];
|
||||
if (!caller) CV_Error(CV_StsBadArg, "countNonZero: unsupported type");
|
||||
CV_Assert(caller != 0);
|
||||
return caller(src, buf);
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
// reduce
|
||||
|
||||
namespace cv { namespace gpu { namespace device
|
||||
namespace cv { namespace gpu { namespace device
|
||||
{
|
||||
namespace matrix_reductions
|
||||
namespace matrix_reductions
|
||||
{
|
||||
template <typename T, typename S, typename D> void reduceRows_gpu(const DevMem2Db& src, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
template <typename T, typename S, typename D> void reduceCols_gpu(const DevMem2Db& src, int cn, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
@ -666,7 +684,7 @@ void cv::gpu::reduce(const GpuMat& src, GpuMat& dst, int dim, int reduceOp, int
|
||||
{
|
||||
typedef void (*caller_t)(const DevMem2Db& src, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
|
||||
static const caller_t callers[6][6] =
|
||||
static const caller_t callers[6][6] =
|
||||
{
|
||||
{
|
||||
reduceRows_gpu<unsigned char, int, unsigned char>,
|
||||
@ -719,6 +737,7 @@ void cv::gpu::reduce(const GpuMat& src, GpuMat& dst, int dim, int reduceOp, int
|
||||
};
|
||||
|
||||
const caller_t func = callers[src.depth()][dst.depth()];
|
||||
|
||||
if (!func)
|
||||
CV_Error(CV_StsUnsupportedFormat, "Unsupported combination of input and output array formats");
|
||||
|
||||
@ -728,7 +747,7 @@ void cv::gpu::reduce(const GpuMat& src, GpuMat& dst, int dim, int reduceOp, int
|
||||
{
|
||||
typedef void (*caller_t)(const DevMem2Db& src, int cn, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
|
||||
static const caller_t callers[6][6] =
|
||||
static const caller_t callers[6][6] =
|
||||
{
|
||||
{
|
||||
reduceCols_gpu<unsigned char, int, unsigned char>,
|
||||
@ -781,10 +800,11 @@ void cv::gpu::reduce(const GpuMat& src, GpuMat& dst, int dim, int reduceOp, int
|
||||
};
|
||||
|
||||
const caller_t func = callers[src.depth()][dst.depth()];
|
||||
|
||||
if (!func)
|
||||
CV_Error(CV_StsUnsupportedFormat, "Unsupported combination of input and output array formats");
|
||||
|
||||
func(src, src.channels(), dst, reduceOp, StreamAccessor::getStream(stream));
|
||||
func(src, src.channels(), dst, reduceOp, StreamAccessor::getStream(stream));
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -74,7 +74,7 @@
|
||||
#include "cuda.h"
|
||||
#include "cuda_runtime_api.h"
|
||||
#include "npp.h"
|
||||
|
||||
|
||||
#ifdef HAVE_CUFFT
|
||||
#include "cufft.h"
|
||||
#endif
|
||||
@ -85,7 +85,7 @@
|
||||
|
||||
#include "internal_shared.hpp"
|
||||
#include "opencv2/gpu/stream_accessor.hpp"
|
||||
|
||||
|
||||
#include "nvidia/core/NCV.hpp"
|
||||
#include "nvidia/NPP_staging/NPP_staging.hpp"
|
||||
#include "nvidia/NCVHaarObjectDetection.hpp"
|
||||
@ -106,7 +106,7 @@
|
||||
#error "OpenCV GPU module doesn't support NVIDIA compute capability 1.0"
|
||||
#endif
|
||||
|
||||
static inline void throw_nogpu() { CV_Error(CV_GpuNotSupported, "The called functionality is disabled for current build or platform"); }
|
||||
static inline void throw_nogpu() { CV_Error(CV_StsNotImplemented, "The called functionality is disabled for current build or platform"); }
|
||||
|
||||
#else /* defined(HAVE_CUDA) */
|
||||
|
||||
|
@ -995,13 +995,28 @@ TEST_P(AbsDiff, Array)
|
||||
cv::Mat src1 = randomMat(size, depth);
|
||||
cv::Mat src2 = randomMat(size, depth);
|
||||
|
||||
cv::gpu::GpuMat dst = createMat(size, depth, useRoi);
|
||||
cv::gpu::absdiff(loadMat(src1, useRoi), loadMat(src2, useRoi), dst);
|
||||
if (depth == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
|
||||
{
|
||||
try
|
||||
{
|
||||
cv::gpu::GpuMat dst;
|
||||
cv::gpu::absdiff(loadMat(src1), loadMat(src2), dst);
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
ASSERT_EQ(CV_StsUnsupportedFormat, e.code);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
cv::gpu::GpuMat dst = createMat(size, depth, useRoi);
|
||||
cv::gpu::absdiff(loadMat(src1, useRoi), loadMat(src2, useRoi), dst);
|
||||
|
||||
cv::Mat dst_gold;
|
||||
cv::absdiff(src1, src2, dst_gold);
|
||||
cv::Mat dst_gold;
|
||||
cv::absdiff(src1, src2, dst_gold);
|
||||
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_P(AbsDiff, Scalar)
|
||||
@ -1009,13 +1024,28 @@ TEST_P(AbsDiff, Scalar)
|
||||
cv::Mat src = randomMat(size, depth);
|
||||
cv::Scalar val = randomScalar(0.0, 255.0);
|
||||
|
||||
cv::gpu::GpuMat dst = createMat(size, depth, useRoi);
|
||||
cv::gpu::absdiff(loadMat(src, useRoi), val, dst);
|
||||
if (depth == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
|
||||
{
|
||||
try
|
||||
{
|
||||
cv::gpu::GpuMat dst;
|
||||
cv::gpu::absdiff(loadMat(src), val, dst);
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
ASSERT_EQ(CV_StsUnsupportedFormat, e.code);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
cv::gpu::GpuMat dst = createMat(size, depth, useRoi);
|
||||
cv::gpu::absdiff(loadMat(src, useRoi), val, dst);
|
||||
|
||||
cv::Mat dst_gold;
|
||||
cv::absdiff(src, val, dst_gold);
|
||||
cv::Mat dst_gold;
|
||||
cv::absdiff(src, val, dst_gold);
|
||||
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, depth <= CV_32F ? 1.0 : 1e-5);
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, depth <= CV_32F ? 1.0 : 1e-5);
|
||||
}
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_Core, AbsDiff, testing::Combine(
|
||||
@ -1243,6 +1273,40 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, Log, testing::Combine(
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Exp
|
||||
|
||||
template <typename T> void expImpl(const cv::Mat& src, cv::Mat& dst)
|
||||
{
|
||||
dst.create(src.size(), src.type());
|
||||
|
||||
for (int y = 0; y < src.rows; ++y)
|
||||
{
|
||||
for (int x = 0; x < src.cols; ++x)
|
||||
dst.at<T>(y, x) = cv::saturate_cast<T>(static_cast<int>(std::exp(static_cast<float>(src.at<T>(y, x)))));
|
||||
}
|
||||
}
|
||||
void expImpl_float(const cv::Mat& src, cv::Mat& dst)
|
||||
{
|
||||
dst.create(src.size(), src.type());
|
||||
|
||||
for (int y = 0; y < src.rows; ++y)
|
||||
{
|
||||
for (int x = 0; x < src.cols; ++x)
|
||||
dst.at<float>(y, x) = std::exp(static_cast<float>(src.at<float>(y, x)));
|
||||
}
|
||||
}
|
||||
|
||||
void expGold(const cv::Mat& src, cv::Mat& dst)
|
||||
{
|
||||
typedef void (*func_t)(const cv::Mat& src, cv::Mat& dst);
|
||||
|
||||
const func_t funcs[] =
|
||||
{
|
||||
expImpl<uchar>, expImpl<schar>, expImpl<ushort>, expImpl<short>,
|
||||
expImpl<int>, expImpl_float
|
||||
};
|
||||
|
||||
funcs[src.depth()](src, dst);
|
||||
}
|
||||
|
||||
PARAM_TEST_CASE(Exp, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi)
|
||||
{
|
||||
cv::gpu::DeviceInfo devInfo;
|
||||
@ -1269,7 +1333,7 @@ TEST_P(Exp, Accuracy)
|
||||
cv::gpu::exp(loadMat(src, useRoi), dst);
|
||||
|
||||
cv::Mat dst_gold;
|
||||
cv::exp(src, dst_gold);
|
||||
expGold(src, dst_gold);
|
||||
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, 1e-2);
|
||||
}
|
||||
@ -1277,7 +1341,10 @@ TEST_P(Exp, Accuracy)
|
||||
INSTANTIATE_TEST_CASE_P(GPU_Core, Exp, testing::Combine(
|
||||
ALL_DEVICES,
|
||||
DIFFERENT_SIZES,
|
||||
testing::Values(MatType(CV_32FC1)),
|
||||
testing::Values(MatType(CV_8UC1),
|
||||
MatType(CV_16UC1),
|
||||
MatType(CV_16SC1),
|
||||
MatType(CV_32FC1)),
|
||||
WHOLE_SUBMAT));
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
@ -1311,13 +1378,28 @@ TEST_P(Compare, Accuracy)
|
||||
cv::Mat src1 = randomMat(size, depth);
|
||||
cv::Mat src2 = randomMat(size, depth);
|
||||
|
||||
cv::gpu::GpuMat dst = createMat(size, CV_8UC1, useRoi);
|
||||
cv::gpu::compare(loadMat(src1, useRoi), loadMat(src2, useRoi), dst, cmp_code);
|
||||
if (depth == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
|
||||
{
|
||||
try
|
||||
{
|
||||
cv::gpu::GpuMat dst;
|
||||
cv::gpu::compare(loadMat(src1), loadMat(src2), dst, cmp_code);
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
ASSERT_EQ(CV_StsUnsupportedFormat, e.code);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
cv::gpu::GpuMat dst = createMat(size, CV_8UC1, useRoi);
|
||||
cv::gpu::compare(loadMat(src1, useRoi), loadMat(src2, useRoi), dst, cmp_code);
|
||||
|
||||
cv::Mat dst_gold;
|
||||
cv::compare(src1, src2, dst_gold, cmp_code);
|
||||
cv::Mat dst_gold;
|
||||
cv::compare(src1, src2, dst_gold, cmp_code);
|
||||
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
|
||||
}
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_Core, Compare, testing::Combine(
|
||||
@ -1635,17 +1717,60 @@ PARAM_TEST_CASE(Min, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi)
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(Min, Accuracy)
|
||||
TEST_P(Min, Array)
|
||||
{
|
||||
cv::Mat src1 = randomMat(size, depth);
|
||||
cv::Mat src2 = randomMat(size, depth);
|
||||
|
||||
cv::gpu::GpuMat dst = createMat(size, depth, useRoi);
|
||||
cv::gpu::min(loadMat(src1, useRoi), loadMat(src2, useRoi), dst);
|
||||
if (depth == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
|
||||
{
|
||||
try
|
||||
{
|
||||
cv::gpu::GpuMat dst;
|
||||
cv::gpu::min(loadMat(src1), loadMat(src2), dst);
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
ASSERT_EQ(CV_StsUnsupportedFormat, e.code);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
cv::gpu::GpuMat dst = createMat(size, depth, useRoi);
|
||||
cv::gpu::min(loadMat(src1, useRoi), loadMat(src2, useRoi), dst);
|
||||
|
||||
cv::Mat dst_gold = cv::min(src1, src2);
|
||||
cv::Mat dst_gold = cv::min(src1, src2);
|
||||
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_P(Min, Scalar)
|
||||
{
|
||||
cv::Mat src = randomMat(size, depth);
|
||||
double val = randomDouble(0.0, 255.0);
|
||||
|
||||
if (depth == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
|
||||
{
|
||||
try
|
||||
{
|
||||
cv::gpu::GpuMat dst;
|
||||
cv::gpu::min(loadMat(src), val, dst);
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
ASSERT_EQ(CV_StsUnsupportedFormat, e.code);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
cv::gpu::GpuMat dst = createMat(size, depth, useRoi);
|
||||
cv::gpu::min(loadMat(src, useRoi), val, dst);
|
||||
|
||||
cv::Mat dst_gold = cv::min(src, val);
|
||||
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
|
||||
}
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_Core, Min, testing::Combine(
|
||||
@ -1675,17 +1800,60 @@ PARAM_TEST_CASE(Max, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi)
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(Max, Accuracy)
|
||||
TEST_P(Max, Array)
|
||||
{
|
||||
cv::Mat src1 = randomMat(size, depth);
|
||||
cv::Mat src2 = randomMat(size, depth);
|
||||
|
||||
cv::gpu::GpuMat dst = createMat(size, depth, useRoi);
|
||||
cv::gpu::max(loadMat(src1, useRoi), loadMat(src2, useRoi), dst);
|
||||
if (depth == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
|
||||
{
|
||||
try
|
||||
{
|
||||
cv::gpu::GpuMat dst;
|
||||
cv::gpu::max(loadMat(src1), loadMat(src2), dst);
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
ASSERT_EQ(CV_StsUnsupportedFormat, e.code);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
cv::gpu::GpuMat dst = createMat(size, depth, useRoi);
|
||||
cv::gpu::max(loadMat(src1, useRoi), loadMat(src2, useRoi), dst);
|
||||
|
||||
cv::Mat dst_gold = cv::max(src1, src2);
|
||||
cv::Mat dst_gold = cv::max(src1, src2);
|
||||
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_P(Max, Scalar)
|
||||
{
|
||||
cv::Mat src = randomMat(size, depth);
|
||||
double val = randomDouble(0.0, 255.0);
|
||||
|
||||
if (depth == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
|
||||
{
|
||||
try
|
||||
{
|
||||
cv::gpu::GpuMat dst;
|
||||
cv::gpu::max(loadMat(src), val, dst);
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
ASSERT_EQ(CV_StsUnsupportedFormat, e.code);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
cv::gpu::GpuMat dst = createMat(size, depth, useRoi);
|
||||
cv::gpu::max(loadMat(src, useRoi), val, dst);
|
||||
|
||||
cv::Mat dst_gold = cv::max(src, val);
|
||||
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
|
||||
}
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_Core, Max, testing::Combine(
|
||||
@ -1723,13 +1891,28 @@ TEST_P(Pow, Accuracy)
|
||||
if (src.depth() < CV_32F)
|
||||
power = static_cast<int>(power);
|
||||
|
||||
cv::gpu::GpuMat dst = createMat(size, depth, useRoi);
|
||||
cv::gpu::pow(loadMat(src, useRoi), power, dst);
|
||||
if (depth == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
|
||||
{
|
||||
try
|
||||
{
|
||||
cv::gpu::GpuMat dst;
|
||||
cv::gpu::pow(loadMat(src), power, dst);
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
ASSERT_EQ(CV_StsUnsupportedFormat, e.code);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
cv::gpu::GpuMat dst = createMat(size, depth, useRoi);
|
||||
cv::gpu::pow(loadMat(src, useRoi), power, dst);
|
||||
|
||||
cv::Mat dst_gold;
|
||||
cv::pow(src, power, dst_gold);
|
||||
cv::Mat dst_gold;
|
||||
cv::pow(src, power, dst_gold);
|
||||
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, depth < CV_32F ? 0.0 : 1e-1);
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, depth < CV_32F ? 0.0 : 1e-1);
|
||||
}
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_Core, Pow, testing::Combine(
|
||||
@ -1750,7 +1933,6 @@ PARAM_TEST_CASE(AddWeighted, cv::gpu::DeviceInfo, cv::Size, MatDepth, MatDepth,
|
||||
int dst_depth;
|
||||
bool useRoi;
|
||||
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
devInfo = GET_PARAM(0);
|
||||
@ -1772,13 +1954,28 @@ TEST_P(AddWeighted, Accuracy)
|
||||
double beta = randomDouble(-10.0, 10.0);
|
||||
double gamma = randomDouble(-10.0, 10.0);
|
||||
|
||||
cv::gpu::GpuMat dst = createMat(size, dst_depth, useRoi);
|
||||
cv::gpu::addWeighted(loadMat(src1, useRoi), alpha, loadMat(src2, useRoi), beta, gamma, dst, dst_depth);
|
||||
if ((depth1 == CV_64F || depth2 == CV_64F || dst_depth == CV_64F) && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
|
||||
{
|
||||
try
|
||||
{
|
||||
cv::gpu::GpuMat dst;
|
||||
cv::gpu::addWeighted(loadMat(src1), alpha, loadMat(src2), beta, gamma, dst, dst_depth);
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
ASSERT_EQ(CV_StsUnsupportedFormat, e.code);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
cv::gpu::GpuMat dst = createMat(size, dst_depth, useRoi);
|
||||
cv::gpu::addWeighted(loadMat(src1, useRoi), alpha, loadMat(src2, useRoi), beta, gamma, dst, dst_depth);
|
||||
|
||||
cv::Mat dst_gold;
|
||||
cv::addWeighted(src1, alpha, src2, beta, gamma, dst_gold, dst_depth);
|
||||
cv::Mat dst_gold;
|
||||
cv::addWeighted(src1, alpha, src2, beta, gamma, dst_gold, dst_depth);
|
||||
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, dst_depth < CV_32F ? 1.0 : 1e-12);
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, dst_depth < CV_32F ? 1.0 : 1e-12);
|
||||
}
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_Core, AddWeighted, testing::Combine(
|
||||
@ -1823,13 +2020,52 @@ TEST_P(GEMM, Accuracy)
|
||||
double alpha = randomDouble(-10.0, 10.0);
|
||||
double beta = randomDouble(-10.0, 10.0);
|
||||
|
||||
cv::gpu::GpuMat dst = createMat(size, type, useRoi);
|
||||
cv::gpu::gemm(loadMat(src1, useRoi), loadMat(src2, useRoi), alpha, loadMat(src3, useRoi), beta, dst, flags);
|
||||
#ifndef HAVE_CUBLAS
|
||||
try
|
||||
{
|
||||
cv::gpu::GpuMat dst;
|
||||
cv::gpu::gemm(loadMat(src1), loadMat(src2), alpha, loadMat(src3), beta, dst, flags);
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
ASSERT_EQ(CV_StsNotImplemented, e.code);
|
||||
}
|
||||
#else
|
||||
if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
|
||||
{
|
||||
try
|
||||
{
|
||||
cv::gpu::GpuMat dst;
|
||||
cv::gpu::gemm(loadMat(src1), loadMat(src2), alpha, loadMat(src3), beta, dst, flags);
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
ASSERT_EQ(CV_StsUnsupportedFormat, e.code);
|
||||
}
|
||||
}
|
||||
else if (type == CV_64FC2 && flags != 0)
|
||||
{
|
||||
try
|
||||
{
|
||||
cv::gpu::GpuMat dst;
|
||||
cv::gpu::gemm(loadMat(src1), loadMat(src2), alpha, loadMat(src3), beta, dst, flags);
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
ASSERT_EQ(CV_StsNotImplemented, e.code);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
cv::gpu::GpuMat dst = createMat(size, type, useRoi);
|
||||
cv::gpu::gemm(loadMat(src1, useRoi), loadMat(src2, useRoi), alpha, loadMat(src3, useRoi), beta, dst, flags);
|
||||
|
||||
cv::Mat dst_gold;
|
||||
cv::gemm(src1, src2, alpha, src3, beta, dst_gold, flags);
|
||||
cv::Mat dst_gold;
|
||||
cv::gemm(src1, src2, alpha, src3, beta, dst_gold, flags);
|
||||
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, CV_MAT_DEPTH(type) == CV_32F ? 1e-1 : 1e-10);
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, CV_MAT_DEPTH(type) == CV_32F ? 1e-1 : 1e-10);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_Core, GEMM, testing::Combine(
|
||||
@ -1864,13 +2100,28 @@ TEST_P(Transpose, Accuracy)
|
||||
{
|
||||
cv::Mat src = randomMat(size, type);
|
||||
|
||||
cv::gpu::GpuMat dst = createMat(cv::Size(size.height, size.width), type, useRoi);
|
||||
cv::gpu::transpose(loadMat(src, useRoi), dst);
|
||||
if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
|
||||
{
|
||||
try
|
||||
{
|
||||
cv::gpu::GpuMat dst;
|
||||
cv::gpu::transpose(loadMat(src), dst);
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
ASSERT_EQ(CV_StsUnsupportedFormat, e.code);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
cv::gpu::GpuMat dst = createMat(cv::Size(size.height, size.width), type, useRoi);
|
||||
cv::gpu::transpose(loadMat(src, useRoi), dst);
|
||||
|
||||
cv::Mat dst_gold;
|
||||
cv::transpose(src, dst_gold);
|
||||
cv::Mat dst_gold;
|
||||
cv::transpose(src, dst_gold);
|
||||
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
|
||||
}
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_Core, Transpose, testing::Combine(
|
||||
@ -2498,14 +2749,29 @@ TEST_P(MinMax, WithoutMask)
|
||||
{
|
||||
cv::Mat src = randomMat(size, depth);
|
||||
|
||||
double minVal, maxVal;
|
||||
cv::gpu::minMax(loadMat(src, useRoi), &minVal, &maxVal);
|
||||
if (depth == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
|
||||
{
|
||||
try
|
||||
{
|
||||
double minVal, maxVal;
|
||||
cv::gpu::minMax(loadMat(src), &minVal, &maxVal);
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
ASSERT_EQ(CV_StsUnsupportedFormat, e.code);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
double minVal, maxVal;
|
||||
cv::gpu::minMax(loadMat(src, useRoi), &minVal, &maxVal);
|
||||
|
||||
double minVal_gold, maxVal_gold;
|
||||
minMaxLocGold(src, &minVal_gold, &maxVal_gold);
|
||||
double minVal_gold, maxVal_gold;
|
||||
minMaxLocGold(src, &minVal_gold, &maxVal_gold);
|
||||
|
||||
EXPECT_DOUBLE_EQ(minVal_gold, minVal);
|
||||
EXPECT_DOUBLE_EQ(maxVal_gold, maxVal);
|
||||
EXPECT_DOUBLE_EQ(minVal_gold, minVal);
|
||||
EXPECT_DOUBLE_EQ(maxVal_gold, maxVal);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_P(MinMax, WithMask)
|
||||
@ -2513,21 +2779,60 @@ TEST_P(MinMax, WithMask)
|
||||
cv::Mat src = randomMat(size, depth);
|
||||
cv::Mat mask = randomMat(size, CV_8UC1, 0.0, 2.0);
|
||||
|
||||
double minVal, maxVal;
|
||||
cv::gpu::minMax(loadMat(src, useRoi), &minVal, &maxVal, loadMat(mask, useRoi));
|
||||
if (depth == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
|
||||
{
|
||||
try
|
||||
{
|
||||
double minVal, maxVal;
|
||||
cv::gpu::minMax(loadMat(src), &minVal, &maxVal, loadMat(mask));
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
ASSERT_EQ(CV_StsUnsupportedFormat, e.code);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
double minVal, maxVal;
|
||||
cv::gpu::minMax(loadMat(src, useRoi), &minVal, &maxVal, loadMat(mask, useRoi));
|
||||
|
||||
double minVal_gold, maxVal_gold;
|
||||
minMaxLocGold(src, &minVal_gold, &maxVal_gold, 0, 0, mask);
|
||||
double minVal_gold, maxVal_gold;
|
||||
minMaxLocGold(src, &minVal_gold, &maxVal_gold, 0, 0, mask);
|
||||
|
||||
EXPECT_DOUBLE_EQ(minVal_gold, minVal);
|
||||
EXPECT_DOUBLE_EQ(maxVal_gold, maxVal);
|
||||
EXPECT_DOUBLE_EQ(minVal_gold, minVal);
|
||||
EXPECT_DOUBLE_EQ(maxVal_gold, maxVal);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_P(MinMax, NullPtr)
|
||||
{
|
||||
cv::Mat src = randomMat(size, depth);
|
||||
|
||||
cv::gpu::minMax(loadMat(src, useRoi), 0, 0);
|
||||
if (depth == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
|
||||
{
|
||||
try
|
||||
{
|
||||
double minVal, maxVal;
|
||||
cv::gpu::minMax(loadMat(src), &minVal, 0);
|
||||
cv::gpu::minMax(loadMat(src), 0, &maxVal);
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
ASSERT_EQ(CV_StsUnsupportedFormat, e.code);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
double minVal, maxVal;
|
||||
cv::gpu::minMax(loadMat(src, useRoi), &minVal, 0);
|
||||
cv::gpu::minMax(loadMat(src, useRoi), 0, &maxVal);
|
||||
|
||||
double minVal_gold, maxVal_gold;
|
||||
minMaxLocGold(src, &minVal_gold, &maxVal_gold, 0, 0);
|
||||
|
||||
EXPECT_DOUBLE_EQ(minVal_gold, minVal);
|
||||
EXPECT_DOUBLE_EQ(maxVal_gold, maxVal);
|
||||
}
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_Core, MinMax, testing::Combine(
|
||||
@ -2585,19 +2890,35 @@ TEST_P(MinMaxLoc, WithoutMask)
|
||||
{
|
||||
cv::Mat src = randomMat(size, depth);
|
||||
|
||||
double minVal, maxVal;
|
||||
cv::Point minLoc, maxLoc;
|
||||
cv::gpu::minMaxLoc(loadMat(src, useRoi), &minVal, &maxVal, &minLoc, &maxLoc);
|
||||
if (depth == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
|
||||
{
|
||||
try
|
||||
{
|
||||
double minVal, maxVal;
|
||||
cv::Point minLoc, maxLoc;
|
||||
cv::gpu::minMaxLoc(loadMat(src), &minVal, &maxVal, &minLoc, &maxLoc);
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
ASSERT_EQ(CV_StsUnsupportedFormat, e.code);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
double minVal, maxVal;
|
||||
cv::Point minLoc, maxLoc;
|
||||
cv::gpu::minMaxLoc(loadMat(src, useRoi), &minVal, &maxVal, &minLoc, &maxLoc);
|
||||
|
||||
double minVal_gold, maxVal_gold;
|
||||
cv::Point minLoc_gold, maxLoc_gold;
|
||||
minMaxLocGold(src, &minVal_gold, &maxVal_gold, &minLoc_gold, &maxLoc_gold);
|
||||
double minVal_gold, maxVal_gold;
|
||||
cv::Point minLoc_gold, maxLoc_gold;
|
||||
minMaxLocGold(src, &minVal_gold, &maxVal_gold, &minLoc_gold, &maxLoc_gold);
|
||||
|
||||
EXPECT_DOUBLE_EQ(minVal_gold, minVal);
|
||||
EXPECT_DOUBLE_EQ(maxVal_gold, maxVal);
|
||||
EXPECT_DOUBLE_EQ(minVal_gold, minVal);
|
||||
EXPECT_DOUBLE_EQ(maxVal_gold, maxVal);
|
||||
|
||||
expectEqual(src, minLoc_gold, minLoc);
|
||||
expectEqual(src, maxLoc_gold, maxLoc);
|
||||
expectEqual(src, minLoc_gold, minLoc);
|
||||
expectEqual(src, maxLoc_gold, maxLoc);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_P(MinMaxLoc, WithMask)
|
||||
@ -2605,26 +2926,76 @@ TEST_P(MinMaxLoc, WithMask)
|
||||
cv::Mat src = randomMat(size, depth);
|
||||
cv::Mat mask = randomMat(size, CV_8UC1, 0.0, 2.0);
|
||||
|
||||
double minVal, maxVal;
|
||||
cv::Point minLoc, maxLoc;
|
||||
cv::gpu::minMaxLoc(loadMat(src, useRoi), &minVal, &maxVal, &minLoc, &maxLoc, loadMat(mask, useRoi));
|
||||
if (depth == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
|
||||
{
|
||||
try
|
||||
{
|
||||
double minVal, maxVal;
|
||||
cv::Point minLoc, maxLoc;
|
||||
cv::gpu::minMaxLoc(loadMat(src), &minVal, &maxVal, &minLoc, &maxLoc, loadMat(mask));
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
ASSERT_EQ(CV_StsUnsupportedFormat, e.code);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
double minVal, maxVal;
|
||||
cv::Point minLoc, maxLoc;
|
||||
cv::gpu::minMaxLoc(loadMat(src, useRoi), &minVal, &maxVal, &minLoc, &maxLoc, loadMat(mask, useRoi));
|
||||
|
||||
double minVal_gold, maxVal_gold;
|
||||
cv::Point minLoc_gold, maxLoc_gold;
|
||||
minMaxLocGold(src, &minVal_gold, &maxVal_gold, &minLoc_gold, &maxLoc_gold, mask);
|
||||
double minVal_gold, maxVal_gold;
|
||||
cv::Point minLoc_gold, maxLoc_gold;
|
||||
minMaxLocGold(src, &minVal_gold, &maxVal_gold, &minLoc_gold, &maxLoc_gold, mask);
|
||||
|
||||
EXPECT_DOUBLE_EQ(minVal_gold, minVal);
|
||||
EXPECT_DOUBLE_EQ(maxVal_gold, maxVal);
|
||||
EXPECT_DOUBLE_EQ(minVal_gold, minVal);
|
||||
EXPECT_DOUBLE_EQ(maxVal_gold, maxVal);
|
||||
|
||||
expectEqual(src, minLoc_gold, minLoc);
|
||||
expectEqual(src, maxLoc_gold, maxLoc);
|
||||
expectEqual(src, minLoc_gold, minLoc);
|
||||
expectEqual(src, maxLoc_gold, maxLoc);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_P(MinMaxLoc, NullPtr)
|
||||
{
|
||||
cv::Mat src = randomMat(size, depth);
|
||||
|
||||
cv::gpu::minMaxLoc(loadMat(src, useRoi), 0, 0, 0, 0);
|
||||
if (depth == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
|
||||
{
|
||||
try
|
||||
{
|
||||
double minVal, maxVal;
|
||||
cv::Point minLoc, maxLoc;
|
||||
cv::gpu::minMaxLoc(loadMat(src, useRoi), &minVal, 0, 0, 0);
|
||||
cv::gpu::minMaxLoc(loadMat(src, useRoi), 0, &maxVal, 0, 0);
|
||||
cv::gpu::minMaxLoc(loadMat(src, useRoi), 0, 0, &minLoc, 0);
|
||||
cv::gpu::minMaxLoc(loadMat(src, useRoi), 0, 0, 0, &maxLoc);
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
ASSERT_EQ(CV_StsUnsupportedFormat, e.code);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
double minVal, maxVal;
|
||||
cv::Point minLoc, maxLoc;
|
||||
cv::gpu::minMaxLoc(loadMat(src, useRoi), &minVal, 0, 0, 0);
|
||||
cv::gpu::minMaxLoc(loadMat(src, useRoi), 0, &maxVal, 0, 0);
|
||||
cv::gpu::minMaxLoc(loadMat(src, useRoi), 0, 0, &minLoc, 0);
|
||||
cv::gpu::minMaxLoc(loadMat(src, useRoi), 0, 0, 0, &maxLoc);
|
||||
|
||||
double minVal_gold, maxVal_gold;
|
||||
cv::Point minLoc_gold, maxLoc_gold;
|
||||
minMaxLocGold(src, &minVal_gold, &maxVal_gold, &minLoc_gold, &maxLoc_gold);
|
||||
|
||||
EXPECT_DOUBLE_EQ(minVal_gold, minVal);
|
||||
EXPECT_DOUBLE_EQ(maxVal_gold, maxVal);
|
||||
|
||||
expectEqual(src, minLoc_gold, minLoc);
|
||||
expectEqual(src, maxLoc_gold, maxLoc);
|
||||
}
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_Core, MinMaxLoc, testing::Combine(
|
||||
@ -2661,12 +3032,25 @@ TEST_P(CountNonZero, Accuracy)
|
||||
cv::Mat src;
|
||||
srcBase.convertTo(src, depth);
|
||||
|
||||
int val = cv::gpu::countNonZero(loadMat(src, useRoi));
|
||||
if (depth == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE))
|
||||
{
|
||||
try
|
||||
{
|
||||
cv::gpu::countNonZero(loadMat(src));
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
ASSERT_EQ(CV_StsUnsupportedFormat, e.code);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
int val = cv::gpu::countNonZero(loadMat(src, useRoi));
|
||||
|
||||
int val_gold = cv::countNonZero(src);
|
||||
int val_gold = cv::countNonZero(src);
|
||||
|
||||
|
||||
ASSERT_EQ(val_gold, val);
|
||||
ASSERT_EQ(val_gold, val);
|
||||
}
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_Core, CountNonZero, testing::Combine(
|
||||
|
Loading…
x
Reference in New Issue
Block a user