fixed gpu core tests (added additional check for device's feature support)

added assertion on double types for old devices
This commit is contained in:
Vladislav Vinogradov
2012-03-26 14:33:43 +00:00
parent 98d7b10c16
commit 26691e00d4
6 changed files with 1039 additions and 525 deletions

View File

@@ -132,7 +132,7 @@ void cv::gpu::meanStdDev(const GpuMat& src, Scalar& mean, Scalar& stddev, GpuMat
nppSafeCall( nppiMean_StdDev_8u_C1R(src.ptr<Npp8u>(), static_cast<int>(src.step), sz, buf.ptr<Npp8u>(), dbuf, (double*)dbuf + 1) );
cudaSafeCall( cudaDeviceSynchronize() );
double* ptrs[2] = {mean.val, stddev.val};
dbuf.download(ptrs);
}
@@ -148,6 +148,8 @@ double cv::gpu::norm(const GpuMat& src, int normType)
double cv::gpu::norm(const GpuMat& src, int normType, GpuMat& buf)
{
CV_Assert(normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2);
GpuMat src_single_channel = src.reshape(1);
if (normType == NORM_L1)
@@ -156,22 +158,16 @@ double cv::gpu::norm(const GpuMat& src, int normType, GpuMat& buf)
if (normType == NORM_L2)
return std::sqrt(sqrSum(src_single_channel, buf)[0]);
if (normType == NORM_INF)
{
double min_val, max_val;
minMax(src_single_channel, &min_val, &max_val, GpuMat(), buf);
return std::max(std::abs(min_val), std::abs(max_val));
}
CV_Error(CV_StsBadArg, "norm: unsupported norm type");
return 0;
// NORM_INF
double min_val, max_val;
minMax(src_single_channel, &min_val, &max_val, GpuMat(), buf);
return std::max(std::abs(min_val), std::abs(max_val));
}
double cv::gpu::norm(const GpuMat& src1, const GpuMat& src2, int normType)
{
CV_DbgAssert(src1.size() == src2.size() && src1.type() == src2.type());
CV_Assert(src1.type() == CV_8UC1);
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
CV_Assert(normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2);
typedef NppStatus (*npp_norm_diff_func_t)(const Npp8u* pSrc1, int nSrcStep1, const Npp8u* pSrc2, int nSrcStep2,
@@ -184,7 +180,7 @@ double cv::gpu::norm(const GpuMat& src1, const GpuMat& src2, int normType)
sz.height = src1.rows;
int funcIdx = normType >> 1;
double retVal;
DeviceBuffer dbuf;
@@ -192,7 +188,7 @@ double cv::gpu::norm(const GpuMat& src1, const GpuMat& src2, int normType)
nppSafeCall( npp_norm_diff_func[funcIdx](src1.ptr<Npp8u>(), static_cast<int>(src1.step), src2.ptr<Npp8u>(), static_cast<int>(src2.step), sz, dbuf) );
cudaSafeCall( cudaDeviceSynchronize() );
dbuf.download(&retVal);
return retVal;
@@ -201,9 +197,9 @@ double cv::gpu::norm(const GpuMat& src1, const GpuMat& src2, int normType)
////////////////////////////////////////////////////////////////////////
// Sum
namespace cv { namespace gpu { namespace device
namespace cv { namespace gpu { namespace device
{
namespace matrix_reductions
namespace matrix_reductions
{
namespace sum
{
@@ -230,34 +226,36 @@ namespace cv { namespace gpu { namespace device
}
}}}
Scalar cv::gpu::sum(const GpuMat& src)
Scalar cv::gpu::sum(const GpuMat& src)
{
GpuMat buf;
return sum(src, buf);
}
Scalar cv::gpu::sum(const GpuMat& src, GpuMat& buf)
Scalar cv::gpu::sum(const GpuMat& src, GpuMat& buf)
{
using namespace ::cv::gpu::device::matrix_reductions::sum;
using namespace cv::gpu::device::matrix_reductions::sum;
typedef void (*Caller)(const DevMem2Db, PtrStepb, double*, int);
static Caller multipass_callers[7] =
{
sumMultipassCaller<unsigned char>, sumMultipassCaller<char>,
sumMultipassCaller<unsigned short>, sumMultipassCaller<short>,
sumMultipassCaller<int>, sumMultipassCaller<float>, 0
static Caller multipass_callers[] =
{
sumMultipassCaller<unsigned char>, sumMultipassCaller<char>,
sumMultipassCaller<unsigned short>, sumMultipassCaller<short>,
sumMultipassCaller<int>, sumMultipassCaller<float>
};
static Caller singlepass_callers[7] = {
sumCaller<unsigned char>, sumCaller<char>,
sumCaller<unsigned short>, sumCaller<short>,
sumCaller<int>, sumCaller<float>, 0
static Caller singlepass_callers[] = {
sumCaller<unsigned char>, sumCaller<char>,
sumCaller<unsigned short>, sumCaller<short>,
sumCaller<int>, sumCaller<float>
};
CV_Assert(src.depth() <= CV_32F);
Size buf_size;
getBufSizeRequired(src.cols, src.rows, src.channels(), buf_size.width, buf_size.height);
getBufSizeRequired(src.cols, src.rows, src.channels(), buf_size.width, buf_size.height);
ensureSizeIsEnough(buf_size, CV_8U, buf);
Caller* callers = multipass_callers;
@@ -265,7 +263,6 @@ Scalar cv::gpu::sum(const GpuMat& src, GpuMat& buf)
callers = singlepass_callers;
Caller caller = callers[src.depth()];
if (!caller) CV_Error(CV_StsBadArg, "sum: unsupported type");
double result[4];
caller(src, buf, result, src.channels());
@@ -273,35 +270,37 @@ Scalar cv::gpu::sum(const GpuMat& src, GpuMat& buf)
}
Scalar cv::gpu::absSum(const GpuMat& src)
Scalar cv::gpu::absSum(const GpuMat& src)
{
GpuMat buf;
return absSum(src, buf);
}
Scalar cv::gpu::absSum(const GpuMat& src, GpuMat& buf)
Scalar cv::gpu::absSum(const GpuMat& src, GpuMat& buf)
{
using namespace ::cv::gpu::device::matrix_reductions::sum;
using namespace cv::gpu::device::matrix_reductions::sum;
typedef void (*Caller)(const DevMem2Db, PtrStepb, double*, int);
static Caller multipass_callers[7] =
{
absSumMultipassCaller<unsigned char>, absSumMultipassCaller<char>,
absSumMultipassCaller<unsigned short>, absSumMultipassCaller<short>,
absSumMultipassCaller<int>, absSumMultipassCaller<float>, 0
static Caller multipass_callers[] =
{
absSumMultipassCaller<unsigned char>, absSumMultipassCaller<char>,
absSumMultipassCaller<unsigned short>, absSumMultipassCaller<short>,
absSumMultipassCaller<int>, absSumMultipassCaller<float>
};
static Caller singlepass_callers[7] =
{
absSumCaller<unsigned char>, absSumCaller<char>,
absSumCaller<unsigned short>, absSumCaller<short>,
absSumCaller<int>, absSumCaller<float>, 0
static Caller singlepass_callers[] =
{
absSumCaller<unsigned char>, absSumCaller<char>,
absSumCaller<unsigned short>, absSumCaller<short>,
absSumCaller<int>, absSumCaller<float>
};
CV_Assert(src.depth() <= CV_32F);
Size buf_size;
getBufSizeRequired(src.cols, src.rows, src.channels(), buf_size.width, buf_size.height);
getBufSizeRequired(src.cols, src.rows, src.channels(), buf_size.width, buf_size.height);
ensureSizeIsEnough(buf_size, CV_8U, buf);
Caller* callers = multipass_callers;
@@ -309,7 +308,6 @@ Scalar cv::gpu::absSum(const GpuMat& src, GpuMat& buf)
callers = singlepass_callers;
Caller caller = callers[src.depth()];
if (!caller) CV_Error(CV_StsBadArg, "absSum: unsupported type");
double result[4];
caller(src, buf, result, src.channels());
@@ -317,43 +315,44 @@ Scalar cv::gpu::absSum(const GpuMat& src, GpuMat& buf)
}
Scalar cv::gpu::sqrSum(const GpuMat& src)
Scalar cv::gpu::sqrSum(const GpuMat& src)
{
GpuMat buf;
return sqrSum(src, buf);
}
Scalar cv::gpu::sqrSum(const GpuMat& src, GpuMat& buf)
Scalar cv::gpu::sqrSum(const GpuMat& src, GpuMat& buf)
{
using namespace ::cv::gpu::device::matrix_reductions::sum;
using namespace cv::gpu::device::matrix_reductions::sum;
typedef void (*Caller)(const DevMem2Db, PtrStepb, double*, int);
static Caller multipass_callers[7] =
{
sqrSumMultipassCaller<unsigned char>, sqrSumMultipassCaller<char>,
sqrSumMultipassCaller<unsigned short>, sqrSumMultipassCaller<short>,
sqrSumMultipassCaller<int>, sqrSumMultipassCaller<float>, 0
static Caller multipass_callers[] =
{
sqrSumMultipassCaller<unsigned char>, sqrSumMultipassCaller<char>,
sqrSumMultipassCaller<unsigned short>, sqrSumMultipassCaller<short>,
sqrSumMultipassCaller<int>, sqrSumMultipassCaller<float>
};
static Caller singlepass_callers[7] =
{
sqrSumCaller<unsigned char>, sqrSumCaller<char>,
sqrSumCaller<unsigned short>, sqrSumCaller<short>,
sqrSumCaller<int>, sqrSumCaller<float>, 0
static Caller singlepass_callers[7] =
{
sqrSumCaller<unsigned char>, sqrSumCaller<char>,
sqrSumCaller<unsigned short>, sqrSumCaller<short>,
sqrSumCaller<int>, sqrSumCaller<float>
};
CV_Assert(src.depth() <= CV_32F);
Caller* callers = multipass_callers;
if (TargetArchs::builtWith(GLOBAL_ATOMICS) && DeviceInfo().supports(GLOBAL_ATOMICS))
callers = singlepass_callers;
Size buf_size;
getBufSizeRequired(src.cols, src.rows, src.channels(), buf_size.width, buf_size.height);
getBufSizeRequired(src.cols, src.rows, src.channels(), buf_size.width, buf_size.height);
ensureSizeIsEnough(buf_size, CV_8U, buf);
Caller caller = callers[src.depth()];
if (!caller) CV_Error(CV_StsBadArg, "sqrSum: unsupported type");
double result[4];
caller(src, buf, result, src.channels());
@@ -363,24 +362,24 @@ Scalar cv::gpu::sqrSum(const GpuMat& src, GpuMat& buf)
////////////////////////////////////////////////////////////////////////
// Find min or max
namespace cv { namespace gpu { namespace device
namespace cv { namespace gpu { namespace device
{
namespace matrix_reductions
namespace matrix_reductions
{
namespace minmax
namespace minmax
{
void getBufSizeRequired(int cols, int rows, int elem_size, int& bufcols, int& bufrows);
template <typename T>
template <typename T>
void minMaxCaller(const DevMem2Db src, double* minval, double* maxval, PtrStepb buf);
template <typename T>
template <typename T>
void minMaxMaskCaller(const DevMem2Db src, const PtrStepb mask, double* minval, double* maxval, PtrStepb buf);
template <typename T>
template <typename T>
void minMaxMultipassCaller(const DevMem2Db src, double* minval, double* maxval, PtrStepb buf);
template <typename T>
template <typename T>
void minMaxMaskMultipassCaller(const DevMem2Db src, const PtrStepb mask, double* minval, double* maxval, PtrStepb buf);
}
}
@@ -401,41 +400,47 @@ void cv::gpu::minMax(const GpuMat& src, double* minVal, double* maxVal, const Gp
typedef void (*Caller)(const DevMem2Db, double*, double*, PtrStepb);
typedef void (*MaskedCaller)(const DevMem2Db, const PtrStepb, double*, double*, PtrStepb);
static Caller multipass_callers[7] =
{
minMaxMultipassCaller<unsigned char>, minMaxMultipassCaller<char>,
minMaxMultipassCaller<unsigned short>, minMaxMultipassCaller<short>,
minMaxMultipassCaller<int>, minMaxMultipassCaller<float>, 0
static Caller multipass_callers[] =
{
minMaxMultipassCaller<unsigned char>, minMaxMultipassCaller<char>,
minMaxMultipassCaller<unsigned short>, minMaxMultipassCaller<short>,
minMaxMultipassCaller<int>, minMaxMultipassCaller<float>, 0
};
static Caller singlepass_callers[7] =
{
minMaxCaller<unsigned char>, minMaxCaller<char>,
minMaxCaller<unsigned short>, minMaxCaller<short>,
minMaxCaller<int>, minMaxCaller<float>, minMaxCaller<double>
static Caller singlepass_callers[] =
{
minMaxCaller<unsigned char>, minMaxCaller<char>,
minMaxCaller<unsigned short>, minMaxCaller<short>,
minMaxCaller<int>, minMaxCaller<float>, minMaxCaller<double>
};
static MaskedCaller masked_multipass_callers[7] =
{
minMaxMaskMultipassCaller<unsigned char>, minMaxMaskMultipassCaller<char>,
static MaskedCaller masked_multipass_callers[] =
{
minMaxMaskMultipassCaller<unsigned char>, minMaxMaskMultipassCaller<char>,
minMaxMaskMultipassCaller<unsigned short>, minMaxMaskMultipassCaller<short>,
minMaxMaskMultipassCaller<int>, minMaxMaskMultipassCaller<float>, 0
};
static MaskedCaller masked_singlepass_callers[7] =
{
minMaxMaskCaller<unsigned char>, minMaxMaskCaller<char>,
minMaxMaskCaller<unsigned short>, minMaxMaskCaller<short>,
minMaxMaskCaller<int>, minMaxMaskCaller<float>, minMaxMaskCaller<double>
static MaskedCaller masked_singlepass_callers[] =
{
minMaxMaskCaller<unsigned char>, minMaxMaskCaller<char>,
minMaxMaskCaller<unsigned short>, minMaxMaskCaller<short>,
minMaxMaskCaller<int>, minMaxMaskCaller<float>, minMaxMaskCaller<double>
};
CV_Assert(src.depth() <= CV_64F);
CV_Assert(src.channels() == 1);
CV_Assert(mask.empty() || (mask.type() == CV_8U && src.size() == mask.size()));
if (src.depth() == CV_64F)
{
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
double minVal_; if (!minVal) minVal = &minVal_;
double maxVal_; if (!maxVal) maxVal = &maxVal_;
Size buf_size;
getBufSizeRequired(src.cols, src.rows, static_cast<int>(src.elemSize()), buf_size.width, buf_size.height);
ensureSizeIsEnough(buf_size, CV_8U, buf);
@@ -447,7 +452,7 @@ void cv::gpu::minMax(const GpuMat& src, double* minVal, double* maxVal, const Gp
callers = singlepass_callers;
Caller caller = callers[src.type()];
if (!caller) CV_Error(CV_StsBadArg, "minMax: unsupported type");
CV_Assert(caller != 0);
caller(src, minVal, maxVal, buf);
}
else
@@ -457,7 +462,7 @@ void cv::gpu::minMax(const GpuMat& src, double* minVal, double* maxVal, const Gp
callers = masked_singlepass_callers;
MaskedCaller caller = callers[src.type()];
if (!caller) CV_Error(CV_StsBadArg, "minMax: unsupported type");
CV_Assert(caller != 0);
caller(src, mask, minVal, maxVal, buf);
}
}
@@ -466,36 +471,36 @@ void cv::gpu::minMax(const GpuMat& src, double* minVal, double* maxVal, const Gp
////////////////////////////////////////////////////////////////////////
// Locate min and max
namespace cv { namespace gpu { namespace device
namespace cv { namespace gpu { namespace device
{
namespace matrix_reductions
namespace matrix_reductions
{
namespace minmaxloc
namespace minmaxloc
{
void getBufSizeRequired(int cols, int rows, int elem_size, int& b1cols,
void getBufSizeRequired(int cols, int rows, int elem_size, int& b1cols,
int& b1rows, int& b2cols, int& b2rows);
template <typename T>
void minMaxLocCaller(const DevMem2Db src, double* minval, double* maxval,
template <typename T>
void minMaxLocCaller(const DevMem2Db src, double* minval, double* maxval,
int minloc[2], int maxloc[2], PtrStepb valBuf, PtrStepb locBuf);
template <typename T>
void minMaxLocMaskCaller(const DevMem2Db src, const PtrStepb mask, double* minval, double* maxval,
template <typename T>
void minMaxLocMaskCaller(const DevMem2Db src, const PtrStepb mask, double* minval, double* maxval,
int minloc[2], int maxloc[2], PtrStepb valBuf, PtrStepb locBuf);
template <typename T>
void minMaxLocMultipassCaller(const DevMem2Db src, double* minval, double* maxval,
template <typename T>
void minMaxLocMultipassCaller(const DevMem2Db src, double* minval, double* maxval,
int minloc[2], int maxloc[2], PtrStepb valBuf, PtrStepb locBuf);
template <typename T>
void minMaxLocMaskMultipassCaller(const DevMem2Db src, const PtrStepb mask, double* minval, double* maxval,
template <typename T>
void minMaxLocMaskMultipassCaller(const DevMem2Db src, const PtrStepb mask, double* minval, double* maxval,
int minloc[2], int maxloc[2], PtrStepb valBuf, PtrStepb locBuf);
}
}
}}}
void cv::gpu::minMaxLoc(const GpuMat& src, double* minVal, double* maxVal, Point* minLoc, Point* maxLoc, const GpuMat& mask)
{
{
GpuMat valBuf, locBuf;
minMaxLoc(src, minVal, maxVal, minLoc, maxLoc, mask, valBuf, locBuf);
}
@@ -508,45 +513,51 @@ void cv::gpu::minMaxLoc(const GpuMat& src, double* minVal, double* maxVal, Point
typedef void (*Caller)(const DevMem2Db, double*, double*, int[2], int[2], PtrStepb, PtrStepb);
typedef void (*MaskedCaller)(const DevMem2Db, const PtrStepb, double*, double*, int[2], int[2], PtrStepb, PtrStepb);
static Caller multipass_callers[7] =
static Caller multipass_callers[] =
{
minMaxLocMultipassCaller<unsigned char>, minMaxLocMultipassCaller<char>,
minMaxLocMultipassCaller<unsigned short>, minMaxLocMultipassCaller<short>,
minMaxLocMultipassCaller<int>, minMaxLocMultipassCaller<float>, 0
minMaxLocMultipassCaller<unsigned char>, minMaxLocMultipassCaller<char>,
minMaxLocMultipassCaller<unsigned short>, minMaxLocMultipassCaller<short>,
minMaxLocMultipassCaller<int>, minMaxLocMultipassCaller<float>, 0
};
static Caller singlepass_callers[7] =
static Caller singlepass_callers[] =
{
minMaxLocCaller<unsigned char>, minMaxLocCaller<char>,
minMaxLocCaller<unsigned short>, minMaxLocCaller<short>,
minMaxLocCaller<int>, minMaxLocCaller<float>, minMaxLocCaller<double>
minMaxLocCaller<unsigned char>, minMaxLocCaller<char>,
minMaxLocCaller<unsigned short>, minMaxLocCaller<short>,
minMaxLocCaller<int>, minMaxLocCaller<float>, minMaxLocCaller<double>
};
static MaskedCaller masked_multipass_callers[7] =
static MaskedCaller masked_multipass_callers[] =
{
minMaxLocMaskMultipassCaller<unsigned char>, minMaxLocMaskMultipassCaller<char>,
minMaxLocMaskMultipassCaller<unsigned short>, minMaxLocMaskMultipassCaller<short>,
minMaxLocMaskMultipassCaller<int>, minMaxLocMaskMultipassCaller<float>, 0
minMaxLocMaskMultipassCaller<unsigned short>, minMaxLocMaskMultipassCaller<short>,
minMaxLocMaskMultipassCaller<int>, minMaxLocMaskMultipassCaller<float>, 0
};
static MaskedCaller masked_singlepass_callers[7] =
{
minMaxLocMaskCaller<unsigned char>, minMaxLocMaskCaller<char>,
minMaxLocMaskCaller<unsigned short>, minMaxLocMaskCaller<short>,
minMaxLocMaskCaller<int>, minMaxLocMaskCaller<float>, minMaxLocMaskCaller<double>
static MaskedCaller masked_singlepass_callers[] =
{
minMaxLocMaskCaller<unsigned char>, minMaxLocMaskCaller<char>,
minMaxLocMaskCaller<unsigned short>, minMaxLocMaskCaller<short>,
minMaxLocMaskCaller<int>, minMaxLocMaskCaller<float>, minMaxLocMaskCaller<double>
};
CV_Assert(src.depth() <= CV_64F);
CV_Assert(src.channels() == 1);
CV_Assert(mask.empty() || (mask.type() == CV_8U && src.size() == mask.size()));
if (src.depth() == CV_64F)
{
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
double minVal_; if (!minVal) minVal = &minVal_;
double maxVal_; if (!maxVal) maxVal = &maxVal_;
int minLoc_[2];
int maxLoc_[2];
Size valbuf_size, locbuf_size;
getBufSizeRequired(src.cols, src.rows, static_cast<int>(src.elemSize()), valbuf_size.width,
getBufSizeRequired(src.cols, src.rows, static_cast<int>(src.elemSize()), valbuf_size.width,
valbuf_size.height, locbuf_size.width, locbuf_size.height);
ensureSizeIsEnough(valbuf_size, CV_8U, valBuf);
ensureSizeIsEnough(locbuf_size, CV_8U, locBuf);
@@ -558,7 +569,7 @@ void cv::gpu::minMaxLoc(const GpuMat& src, double* minVal, double* maxVal, Point
callers = singlepass_callers;
Caller caller = callers[src.type()];
if (!caller) CV_Error(CV_StsBadArg, "minMaxLoc: unsupported type");
CV_Assert(caller != 0);
caller(src, minVal, maxVal, minLoc_, maxLoc_, valBuf, locBuf);
}
else
@@ -568,7 +579,7 @@ void cv::gpu::minMaxLoc(const GpuMat& src, double* minVal, double* maxVal, Point
callers = masked_singlepass_callers;
MaskedCaller caller = callers[src.type()];
if (!caller) CV_Error(CV_StsBadArg, "minMaxLoc: unsupported type");
CV_Assert(caller != 0);
caller(src, mask, minVal, maxVal, minLoc_, maxLoc_, valBuf, locBuf);
}
@@ -579,18 +590,18 @@ void cv::gpu::minMaxLoc(const GpuMat& src, double* minVal, double* maxVal, Point
//////////////////////////////////////////////////////////////////////////////
// Count non-zero elements
namespace cv { namespace gpu { namespace device
namespace cv { namespace gpu { namespace device
{
namespace matrix_reductions
namespace matrix_reductions
{
namespace countnonzero
namespace countnonzero
{
void getBufSizeRequired(int cols, int rows, int& bufcols, int& bufrows);
template <typename T>
template <typename T>
int countNonZeroCaller(const DevMem2Db src, PtrStepb buf);
template <typename T>
template <typename T>
int countNonZeroMultipassCaller(const DevMem2Db src, PtrStepb buf);
}
}
@@ -609,21 +620,28 @@ int cv::gpu::countNonZero(const GpuMat& src, GpuMat& buf)
typedef int (*Caller)(const DevMem2Db src, PtrStepb buf);
static Caller multipass_callers[7] =
static Caller multipass_callers[7] =
{
countNonZeroMultipassCaller<unsigned char>, countNonZeroMultipassCaller<char>,
countNonZeroMultipassCaller<unsigned short>, countNonZeroMultipassCaller<short>,
countNonZeroMultipassCaller<int>, countNonZeroMultipassCaller<float>, 0
countNonZeroMultipassCaller<int>, countNonZeroMultipassCaller<float>, 0
};
static Caller singlepass_callers[7] =
static Caller singlepass_callers[7] =
{
countNonZeroCaller<unsigned char>, countNonZeroCaller<char>,
countNonZeroCaller<unsigned short>, countNonZeroCaller<short>,
countNonZeroCaller<int>, countNonZeroCaller<float>, countNonZeroCaller<double> };
CV_Assert(src.depth() <= CV_64F);
CV_Assert(src.channels() == 1);
if (src.depth() == CV_64F)
{
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
Size buf_size;
getBufSizeRequired(src.cols, src.rows, buf_size.width, buf_size.height);
ensureSizeIsEnough(buf_size, CV_8U, buf);
@@ -633,16 +651,16 @@ int cv::gpu::countNonZero(const GpuMat& src, GpuMat& buf)
callers = singlepass_callers;
Caller caller = callers[src.type()];
if (!caller) CV_Error(CV_StsBadArg, "countNonZero: unsupported type");
CV_Assert(caller != 0);
return caller(src, buf);
}
//////////////////////////////////////////////////////////////////////////////
// reduce
namespace cv { namespace gpu { namespace device
namespace cv { namespace gpu { namespace device
{
namespace matrix_reductions
namespace matrix_reductions
{
template <typename T, typename S, typename D> void reduceRows_gpu(const DevMem2Db& src, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
template <typename T, typename S, typename D> void reduceCols_gpu(const DevMem2Db& src, int cn, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
@@ -666,7 +684,7 @@ void cv::gpu::reduce(const GpuMat& src, GpuMat& dst, int dim, int reduceOp, int
{
typedef void (*caller_t)(const DevMem2Db& src, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
static const caller_t callers[6][6] =
static const caller_t callers[6][6] =
{
{
reduceRows_gpu<unsigned char, int, unsigned char>,
@@ -719,6 +737,7 @@ void cv::gpu::reduce(const GpuMat& src, GpuMat& dst, int dim, int reduceOp, int
};
const caller_t func = callers[src.depth()][dst.depth()];
if (!func)
CV_Error(CV_StsUnsupportedFormat, "Unsupported combination of input and output array formats");
@@ -728,7 +747,7 @@ void cv::gpu::reduce(const GpuMat& src, GpuMat& dst, int dim, int reduceOp, int
{
typedef void (*caller_t)(const DevMem2Db& src, int cn, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
static const caller_t callers[6][6] =
static const caller_t callers[6][6] =
{
{
reduceCols_gpu<unsigned char, int, unsigned char>,
@@ -781,10 +800,11 @@ void cv::gpu::reduce(const GpuMat& src, GpuMat& dst, int dim, int reduceOp, int
};
const caller_t func = callers[src.depth()][dst.depth()];
if (!func)
CV_Error(CV_StsUnsupportedFormat, "Unsupported combination of input and output array formats");
func(src, src.channels(), dst, reduceOp, StreamAccessor::getStream(stream));
func(src, src.channels(), dst, reduceOp, StreamAccessor::getStream(stream));
}
}