fixed gpu core tests (added additional check for device's feature support)

added assertion on double types for old devices
This commit is contained in:
Vladislav Vinogradov
2012-03-26 14:33:43 +00:00
parent 98d7b10c16
commit 26691e00d4
6 changed files with 1039 additions and 525 deletions

View File

@@ -950,90 +950,26 @@ void cv::gpu::divide(double scale, const GpuMat& src, GpuMat& dst, int dtype, St
namespace cv { namespace gpu { namespace device
{
template <typename T>
void absdiff_gpu(const DevMem2Db& src1, const DevMem2Db& src2, const DevMem2Db& dst, cudaStream_t stream);
void absdiff_gpu(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
template <typename T>
void absdiff_gpu(const DevMem2Db& src1, double val, const DevMem2Db& dst, cudaStream_t stream);
void absdiff_gpu(const DevMem2Db src1, double val, DevMem2Db dst, cudaStream_t stream);
}}}
void cv::gpu::absdiff(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& s)
{
using namespace ::cv::gpu::device;
typedef void (*func_t)(const DevMem2Db& src1, const DevMem2Db& src2, const DevMem2Db& dst, cudaStream_t stream);
static const func_t funcs[] =
{
absdiff_gpu<unsigned char>, absdiff_gpu<signed char>, absdiff_gpu<unsigned short>, absdiff_gpu<short>, absdiff_gpu<int>, absdiff_gpu<float>, absdiff_gpu<double>
};
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
dst.create( src1.size(), src1.type() );
cudaStream_t stream = StreamAccessor::getStream(s);
NppiSize sz;
sz.width = src1.cols * src1.channels();
sz.height = src1.rows;
if (src1.depth() == CV_8U)
{
NppStreamHandler h(stream);
nppSafeCall( nppiAbsDiff_8u_C1R(src1.ptr<Npp8u>(), static_cast<int>(src1.step), src2.ptr<Npp8u>(), static_cast<int>(src2.step),
dst.ptr<Npp8u>(), static_cast<int>(dst.step), sz) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
else if (src1.depth() == CV_16U)
{
NppStreamHandler h(stream);
nppSafeCall( nppiAbsDiff_16u_C1R(src1.ptr<Npp16u>(), static_cast<int>(src1.step), src2.ptr<Npp16u>(), static_cast<int>(src2.step),
dst.ptr<Npp16u>(), static_cast<int>(dst.step), sz) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
else if (src1.depth() == CV_32F)
{
NppStreamHandler h(stream);
nppSafeCall( nppiAbsDiff_32f_C1R(src1.ptr<Npp32f>(), static_cast<int>(src1.step), src2.ptr<Npp32f>(), static_cast<int>(src2.step),
dst.ptr<Npp32f>(), static_cast<int>(dst.step), sz) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
else
{
const func_t func = funcs[src1.depth()];
CV_Assert(func != 0);
func(src1.reshape(1), src2.reshape(1), dst.reshape(1), stream);
}
}
namespace
{
template <int DEPTH> struct NppAbsDiffCFunc
template <int DEPTH> struct NppAbsDiffFunc
{
typedef typename NppTypeTraits<DEPTH>::npp_t npp_t;
typedef NppStatus (*func_t)(const npp_t* pSrc1, int nSrc1Step, npp_t* pDst, int nDstStep, NppiSize oSizeROI, npp_t nConstant);
};
template <> struct NppAbsDiffCFunc<CV_16U>
{
typedef NppStatus (*func_t)(const Npp16u* pSrc1, int nSrc1Step, Npp16u* pDst, int nDstStep, NppiSize oSizeROI, Npp32u nConstant);
typedef NppStatus (*func_t)(const npp_t* src1, int src1_step, const npp_t* src2, int src2_step, npp_t* dst, int dst_step, NppiSize sz);
};
template <int DEPTH, typename NppAbsDiffCFunc<DEPTH>::func_t func> struct NppAbsDiffC
template <int DEPTH, typename NppAbsDiffFunc<DEPTH>::func_t func> struct NppAbsDiff
{
typedef typename NppTypeTraits<DEPTH>::npp_t npp_t;
typedef typename NppAbsDiffFunc<DEPTH>::npp_t npp_t;
static void call(const DevMem2Db& src1, double val, const DevMem2Db& dst, cudaStream_t stream)
static void call(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream)
{
NppStreamHandler h(stream);
@@ -1041,8 +977,44 @@ namespace
sz.width = src1.cols;
sz.height = src1.rows;
nppSafeCall( func((const npp_t*)src1.data, static_cast<int>(src1.step), (npp_t*)dst.data, static_cast<int>(dst.step),
sz, static_cast<npp_t>(val)) );
nppSafeCall( func((const npp_t*)src1.data, static_cast<int>(src1.step), (const npp_t*)src2.data, static_cast<int>(src2.step),
(npp_t*)dst.data, static_cast<int>(dst.step), sz) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
};
template <int DEPTH> struct NppAbsDiffCFunc
{
typedef typename NppTypeTraits<DEPTH>::npp_t npp_t;
typedef npp_t scalar_t;
typedef NppStatus (*func_t)(const npp_t* pSrc1, int nSrc1Step, npp_t* pDst, int nDstStep, NppiSize oSizeROI, npp_t nConstant);
};
template <> struct NppAbsDiffCFunc<CV_16U>
{
typedef NppTypeTraits<CV_16U>::npp_t npp_t;
typedef Npp32u scalar_t;
typedef NppStatus (*func_t)(const Npp16u* pSrc1, int nSrc1Step, Npp16u* pDst, int nDstStep, NppiSize oSizeROI, Npp32u nConstant);
};
template <int DEPTH, typename NppAbsDiffCFunc<DEPTH>::func_t func> struct NppAbsDiffC
{
typedef typename NppAbsDiffCFunc<DEPTH>::npp_t npp_t;
typedef typename NppAbsDiffCFunc<DEPTH>::scalar_t scalar_t;
static void call(const DevMem2Db src1, double val, DevMem2Db dst, cudaStream_t stream)
{
NppStreamHandler h(stream);
NppiSize sz;
sz.width = src1.cols;
sz.height = src1.rows;
nppSafeCall( func((const npp_t*)src1.data, static_cast<int>(src1.step),
(npp_t*)dst.data, static_cast<int>(dst.step), sz, static_cast<scalar_t>(val)) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
@@ -1050,12 +1022,41 @@ namespace
};
}
void cv::gpu::absdiff(const GpuMat& src1, const Scalar& src2, GpuMat& dst, Stream& s)
void cv::gpu::absdiff(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& stream)
{
using namespace cv::gpu::device;
typedef void (*func_t)(const DevMem2Db& src1, double val, const DevMem2Db& dst, cudaStream_t stream);
typedef void (*func_t)(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
static const func_t funcs[] =
{
NppAbsDiff<CV_8U, nppiAbsDiff_8u_C1R>::call,
absdiff_gpu<signed char>,
NppAbsDiff<CV_16U, nppiAbsDiff_16u_C1R>::call,
absdiff_gpu<short>,
absdiff_gpu<int>,
NppAbsDiff<CV_32F, nppiAbsDiff_32f_C1R>::call,
absdiff_gpu<double>
};
CV_Assert(src1.depth() <= CV_64F);
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
if (src1.depth() == CV_64F)
{
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
dst.create(src1.size(), src1.type());
funcs[src1.depth()](src1.reshape(1), src2.reshape(1), dst.reshape(1), StreamAccessor::getStream(stream));
}
void cv::gpu::absdiff(const GpuMat& src1, const Scalar& src2, GpuMat& dst, Stream& stream)
{
using namespace cv::gpu::device;
typedef void (*func_t)(const DevMem2Db src1, double val, DevMem2Db dst, cudaStream_t stream);
static const func_t funcs[] =
{
NppAbsDiffC<CV_8U, nppiAbsDiffC_8u_C1R>::call,
@@ -1067,13 +1068,18 @@ void cv::gpu::absdiff(const GpuMat& src1, const Scalar& src2, GpuMat& dst, Strea
absdiff_gpu<double>
};
CV_Assert(src1.depth() <= CV_64F);
CV_Assert(src1.channels() == 1);
if (src1.depth() == CV_64F)
{
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
dst.create(src1.size(), src1.type());
cudaStream_t stream = StreamAccessor::getStream(s);
funcs[src1.depth()](src1, src2.val[0], dst, stream);
funcs[src1.depth()](src1, src2.val[0], dst, StreamAccessor::getStream(stream));
}
//////////////////////////////////////////////////////////////////////////////
@@ -1359,34 +1365,38 @@ namespace cv { namespace gpu { namespace device
void cv::gpu::compare(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, int cmpop, Stream& stream)
{
using namespace ::cv::gpu::device;
using namespace cv::gpu::device;
typedef void (*func_t)(const DevMem2Db& src1, const DevMem2Db& src2, const DevMem2Db& dst, cudaStream_t stream);
static const func_t funcs[7][4] =
{
{compare_eq<unsigned char>, compare_ne<unsigned char>, compare_lt<unsigned char>, compare_le<unsigned char>},
{compare_eq<signed char>, compare_ne<signed char>, compare_lt<signed char>, compare_le<signed char>},
{compare_eq<unsigned char> , compare_ne<unsigned char> , compare_lt<unsigned char> , compare_le<unsigned char> },
{compare_eq<signed char> , compare_ne<signed char> , compare_lt<signed char> , compare_le<signed char> },
{compare_eq<unsigned short>, compare_ne<unsigned short>, compare_lt<unsigned short>, compare_le<unsigned short>},
{compare_eq<short>, compare_ne<short>, compare_lt<short>, compare_le<short>},
{compare_eq<int>, compare_ne<int>, compare_lt<int>, compare_le<int>},
{compare_eq<float>, compare_ne<float>, compare_lt<float>, compare_le<float>},
{compare_eq<double>, compare_ne<double>, compare_lt<double>, compare_le<double>}
{compare_eq<short> , compare_ne<short> , compare_lt<short> , compare_le<short> },
{compare_eq<int> , compare_ne<int> , compare_lt<int> , compare_le<int> },
{compare_eq<float> , compare_ne<float> , compare_lt<float> , compare_le<float> },
{compare_eq<double> , compare_ne<double> , compare_lt<double> , compare_le<double> }
};
CV_Assert(src1.depth() <= CV_64F);
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
CV_Assert(cmpop >= CMP_EQ && cmpop <= CMP_NE);
if (src1.depth() == CV_64F)
{
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
static const int codes[] =
{
0, 2, 3, 2, 3, 1
};
const GpuMat* psrc1[] =
{
&src1, &src2, &src2, &src1, &src1, &src1
};
const GpuMat* psrc2[] =
{
&src2, &src1, &src1, &src2, &src2, &src2
@@ -1415,17 +1425,15 @@ namespace
{
dst.create(src.size(), src.type());
::cv::gpu::device::bitwiseNotCaller(src.rows, src.cols, src.elemSize1(), dst.channels(), src, dst, stream);
cv::gpu::device::bitwiseNotCaller(src.rows, src.cols, src.elemSize1(), dst.channels(), src, dst, stream);
}
void bitwiseNotCaller(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream)
{
using namespace ::cv::gpu::device;
using namespace cv::gpu::device;
typedef void (*Caller)(int, int, int, const PtrStepb, const PtrStepb, PtrStepb, cudaStream_t);
static Caller callers[] =
typedef void (*func_t)(int, int, int, const PtrStepb, const PtrStepb, PtrStepb, cudaStream_t);
static func_t funcs[] =
{
bitwiseMaskNotCaller<unsigned char>, bitwiseMaskNotCaller<unsigned char>,
bitwiseMaskNotCaller<unsigned short>, bitwiseMaskNotCaller<unsigned short>,
@@ -1433,19 +1441,19 @@ namespace
bitwiseMaskNotCaller<unsigned int>
};
CV_Assert(src.depth() <= CV_64F);
CV_Assert(mask.type() == CV_8U && mask.size() == src.size());
dst.create(src.size(), src.type());
Caller caller = callers[src.depth()];
CV_Assert(caller);
const func_t func = funcs[src.depth()];
int cn = src.depth() != CV_64F ? src.channels() : src.channels() * (sizeof(double) / sizeof(unsigned int));
caller(src.rows, src.cols, cn, src, mask, dst, stream);
func(src.rows, src.cols, cn, src, mask, dst, stream);
}
}
void cv::gpu::bitwise_not(const GpuMat& src, GpuMat& dst, const GpuMat& mask, Stream& stream)
{
if (mask.empty())
@@ -1454,7 +1462,6 @@ void cv::gpu::bitwise_not(const GpuMat& src, GpuMat& dst, const GpuMat& mask, St
bitwiseNotCaller(src, dst, mask, StreamAccessor::getStream(stream));
}
//////////////////////////////////////////////////////////////////////////////
// Binary bitwise logical operations
@@ -1481,18 +1488,18 @@ namespace
void bitwiseOrCaller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream)
{
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
dst.create(src1.size(), src1.type());
::cv::gpu::device::bitwiseOrCaller(dst.rows, dst.cols, dst.elemSize1(), dst.channels(), src1, src2, dst, stream);
cv::gpu::device::bitwiseOrCaller(dst.rows, dst.cols, dst.elemSize1(), dst.channels(), src1, src2, dst, stream);
}
void bitwiseOrCaller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, cudaStream_t stream)
{
using namespace ::cv::gpu::device;
using namespace cv::gpu::device;
typedef void (*Caller)(int, int, int, const PtrStepb, const PtrStepb, const PtrStepb, PtrStepb, cudaStream_t);
static Caller callers[] =
typedef void (*func_t)(int, int, int, const PtrStepb, const PtrStepb, const PtrStepb, PtrStepb, cudaStream_t);
static func_t funcs[] =
{
bitwiseMaskOrCaller<unsigned char>, bitwiseMaskOrCaller<unsigned char>,
bitwiseMaskOrCaller<unsigned short>, bitwiseMaskOrCaller<unsigned short>,
@@ -1500,33 +1507,35 @@ namespace
bitwiseMaskOrCaller<unsigned int>
};
CV_Assert(src1.depth() <= CV_64F);
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
CV_Assert(mask.type() == CV_8U && mask.size() == src1.size());
dst.create(src1.size(), src1.type());
Caller caller = callers[src1.depth()];
CV_Assert(caller);
const func_t func = funcs[src1.depth()];
int cn = dst.depth() != CV_64F ? dst.channels() : dst.channels() * (sizeof(double) / sizeof(unsigned int));
caller(dst.rows, dst.cols, cn, src1, src2, mask, dst, stream);
func(dst.rows, dst.cols, cn, src1, src2, mask, dst, stream);
}
void bitwiseAndCaller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream)
{
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
dst.create(src1.size(), src1.type());
::cv::gpu::device::bitwiseAndCaller(dst.rows, dst.cols, dst.elemSize1(), dst.channels(), src1, src2, dst, stream);
cv::gpu::device::bitwiseAndCaller(dst.rows, dst.cols, dst.elemSize1(), dst.channels(), src1, src2, dst, stream);
}
void bitwiseAndCaller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, cudaStream_t stream)
{
using namespace ::cv::gpu::device;
using namespace cv::gpu::device;
typedef void (*Caller)(int, int, int, const PtrStepb, const PtrStepb, const PtrStepb, PtrStepb, cudaStream_t);
static Caller callers[] =
typedef void (*func_t)(int, int, int, const PtrStepb, const PtrStepb, const PtrStepb, PtrStepb, cudaStream_t);
static func_t funcs[] =
{
bitwiseMaskAndCaller<unsigned char>, bitwiseMaskAndCaller<unsigned char>,
bitwiseMaskAndCaller<unsigned short>, bitwiseMaskAndCaller<unsigned short>,
@@ -1534,33 +1543,35 @@ namespace
bitwiseMaskAndCaller<unsigned int>
};
CV_Assert(src1.depth() <= CV_64F);
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
CV_Assert(mask.type() == CV_8U && mask.size() == src1.size());
dst.create(src1.size(), src1.type());
Caller caller = callers[src1.depth()];
CV_Assert(caller);
const func_t func = funcs[src1.depth()];
int cn = dst.depth() != CV_64F ? dst.channels() : dst.channels() * (sizeof(double) / sizeof(unsigned int));
caller(dst.rows, dst.cols, cn, src1, src2, mask, dst, stream);
func(dst.rows, dst.cols, cn, src1, src2, mask, dst, stream);
}
void bitwiseXorCaller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream)
{
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
dst.create(src1.size(), src1.type());
::cv::gpu::device::bitwiseXorCaller(dst.rows, dst.cols, dst.elemSize1(), dst.channels(), src1, src2, dst, stream);
cv::gpu::device::bitwiseXorCaller(dst.rows, dst.cols, dst.elemSize1(), dst.channels(), src1, src2, dst, stream);
}
void bitwiseXorCaller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, cudaStream_t stream)
{
using namespace ::cv::gpu::device;
using namespace cv::gpu::device;
typedef void (*Caller)(int, int, int, const PtrStepb, const PtrStepb, const PtrStepb, PtrStepb, cudaStream_t);
static Caller callers[] =
typedef void (*func_t)(int, int, int, const PtrStepb, const PtrStepb, const PtrStepb, PtrStepb, cudaStream_t);
static func_t funcs[] =
{
bitwiseMaskXorCaller<unsigned char>, bitwiseMaskXorCaller<unsigned char>,
bitwiseMaskXorCaller<unsigned short>, bitwiseMaskXorCaller<unsigned short>,
@@ -1568,14 +1579,17 @@ namespace
bitwiseMaskXorCaller<unsigned int>
};
CV_Assert(src1.depth() <= CV_64F);
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
CV_Assert(mask.type() == CV_8U && mask.size() == src1.size());
dst.create(src1.size(), src1.type());
Caller caller = callers[src1.depth()];
CV_Assert(caller);
const func_t func = funcs[src1.depth()];
int cn = dst.depth() != CV_64F ? dst.channels() : dst.channels() * (sizeof(double) / sizeof(unsigned int));
caller(dst.rows, dst.cols, cn, src1, src2, mask, dst, stream);
func(dst.rows, dst.cols, cn, src1, src2, mask, dst, stream);
}
}
@@ -1661,10 +1675,9 @@ namespace
void cv::gpu::bitwise_or(const GpuMat& src, const Scalar& sc, GpuMat& dst, Stream& stream)
{
typedef void (*func_t)(const GpuMat& src, Scalar sc, GpuMat& dst, cudaStream_t stream);
static const func_t funcs[5][4] =
{
{NppBitwiseC<CV_8U, 1, nppiOrC_8u_C1R>::call, 0, NppBitwiseC<CV_8U, 3, nppiOrC_8u_C3R>::call, NppBitwiseC<CV_8U, 4, nppiOrC_8u_C4R>::call},
{NppBitwiseC<CV_8U , 1, nppiOrC_8u_C1R >::call, 0, NppBitwiseC<CV_8U , 3, nppiOrC_8u_C3R >::call, NppBitwiseC<CV_8U , 4, nppiOrC_8u_C4R >::call},
{0,0,0,0},
{NppBitwiseC<CV_16U, 1, nppiOrC_16u_C1R>::call, 0, NppBitwiseC<CV_16U, 3, nppiOrC_16u_C3R>::call, NppBitwiseC<CV_16U, 4, nppiOrC_16u_C4R>::call},
{0,0,0,0},
@@ -1682,10 +1695,9 @@ void cv::gpu::bitwise_or(const GpuMat& src, const Scalar& sc, GpuMat& dst, Strea
void cv::gpu::bitwise_and(const GpuMat& src, const Scalar& sc, GpuMat& dst, Stream& stream)
{
typedef void (*func_t)(const GpuMat& src, Scalar sc, GpuMat& dst, cudaStream_t stream);
static const func_t funcs[5][4] =
{
{NppBitwiseC<CV_8U, 1, nppiAndC_8u_C1R>::call, 0, NppBitwiseC<CV_8U, 3, nppiAndC_8u_C3R>::call, NppBitwiseC<CV_8U, 4, nppiAndC_8u_C4R>::call},
{NppBitwiseC<CV_8U , 1, nppiAndC_8u_C1R >::call, 0, NppBitwiseC<CV_8U , 3, nppiAndC_8u_C3R >::call, NppBitwiseC<CV_8U , 4, nppiAndC_8u_C4R >::call},
{0,0,0,0},
{NppBitwiseC<CV_16U, 1, nppiAndC_16u_C1R>::call, 0, NppBitwiseC<CV_16U, 3, nppiAndC_16u_C3R>::call, NppBitwiseC<CV_16U, 4, nppiAndC_16u_C4R>::call},
{0,0,0,0},
@@ -1703,10 +1715,9 @@ void cv::gpu::bitwise_and(const GpuMat& src, const Scalar& sc, GpuMat& dst, Stre
void cv::gpu::bitwise_xor(const GpuMat& src, const Scalar& sc, GpuMat& dst, Stream& stream)
{
typedef void (*func_t)(const GpuMat& src, Scalar sc, GpuMat& dst, cudaStream_t stream);
static const func_t funcs[5][4] =
{
{NppBitwiseC<CV_8U, 1, nppiXorC_8u_C1R>::call, 0, NppBitwiseC<CV_8U, 3, nppiXorC_8u_C3R>::call, NppBitwiseC<CV_8U, 4, nppiXorC_8u_C4R>::call},
{NppBitwiseC<CV_8U , 1, nppiXorC_8u_C1R >::call, 0, NppBitwiseC<CV_8U , 3, nppiXorC_8u_C3R >::call, NppBitwiseC<CV_8U , 4, nppiXorC_8u_C4R >::call},
{0,0,0,0},
{NppBitwiseC<CV_16U, 1, nppiXorC_16u_C1R>::call, 0, NppBitwiseC<CV_16U, 3, nppiXorC_16u_C3R>::call, NppBitwiseC<CV_16U, 4, nppiXorC_16u_C4R>::call},
{0,0,0,0},
@@ -1822,107 +1833,140 @@ void cv::gpu::lshift(const GpuMat& src, Scalar_<int> sc, GpuMat& dst, Stream& st
namespace cv { namespace gpu { namespace device
{
template <typename T>
void min_gpu(const DevMem2D_<T>& src1, const DevMem2D_<T>& src2, const DevMem2D_<T>& dst, cudaStream_t stream);
template <typename T> void min_gpu(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
template <typename T> void max_gpu(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
template <typename T>
void max_gpu(const DevMem2D_<T>& src1, const DevMem2D_<T>& src2, const DevMem2D_<T>& dst, cudaStream_t stream);
template <typename T>
void min_gpu(const DevMem2D_<T>& src1, T src2, const DevMem2D_<T>& dst, cudaStream_t stream);
template <typename T>
void max_gpu(const DevMem2D_<T>& src1, T src2, const DevMem2D_<T>& dst, cudaStream_t stream);
template <typename T> void min_gpu(const DevMem2Db src, T val, DevMem2Db dst, cudaStream_t stream);
template <typename T> void max_gpu(const DevMem2Db src, T val, DevMem2Db dst, cudaStream_t stream);
}}}
namespace
{
template <typename T>
void min_caller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream)
{
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
dst.create(src1.size(), src1.type());
::cv::gpu::device::min_gpu<T>(src1.reshape(1), src2.reshape(1), dst.reshape(1), stream);
}
template <typename T>
void min_caller(const GpuMat& src1, double src2, GpuMat& dst, cudaStream_t stream)
{
dst.create(src1.size(), src1.type());
::cv::gpu::device::min_gpu<T>(src1.reshape(1), saturate_cast<T>(src2), dst.reshape(1), stream);
}
template <typename T>
void max_caller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream)
{
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
dst.create(src1.size(), src1.type());
::cv::gpu::device::max_gpu<T>(src1.reshape(1), src2.reshape(1), dst.reshape(1), stream);
}
template <typename T>
void max_caller(const GpuMat& src1, double src2, GpuMat& dst, cudaStream_t stream)
{
dst.create(src1.size(), src1.type());
::cv::gpu::device::max_gpu<T>(src1.reshape(1), saturate_cast<T>(src2), dst.reshape(1), stream);
}
}
void cv::gpu::min(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& stream)
{
using namespace cv::gpu::device;
typedef void (*func_t)(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
static const func_t funcs[] =
{
min_gpu<unsigned char>,
min_gpu<signed char>,
min_gpu<unsigned short>,
min_gpu<short>,
min_gpu<int>,
min_gpu<float>,
min_gpu<double>
};
CV_Assert(src1.depth() <= CV_64F);
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
CV_Assert((src1.depth() != CV_64F) ||
(TargetArchs::builtWith(NATIVE_DOUBLE) && DeviceInfo().supports(NATIVE_DOUBLE)));
typedef void (*func_t)(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream);
static const func_t funcs[] =
if (src1.depth() == CV_64F)
{
min_caller<unsigned char>, min_caller<signed char>, min_caller<unsigned short>, min_caller<short>, min_caller<int>,
min_caller<float>, min_caller<double>
};
funcs[src1.depth()](src1, src2, dst, StreamAccessor::getStream(stream));
}
void cv::gpu::min(const GpuMat& src1, double src2, GpuMat& dst, Stream& stream)
{
CV_Assert((src1.depth() != CV_64F) ||
(TargetArchs::builtWith(NATIVE_DOUBLE) && DeviceInfo().supports(NATIVE_DOUBLE)));
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
typedef void (*func_t)(const GpuMat& src1, double src2, GpuMat& dst, cudaStream_t stream);
static const func_t funcs[] =
{
min_caller<unsigned char>, min_caller<signed char>, min_caller<unsigned short>, min_caller<short>, min_caller<int>,
min_caller<float>, min_caller<double>
};
funcs[src1.depth()](src1, src2, dst, StreamAccessor::getStream(stream));
dst.create(src1.size(), src1.type());
funcs[src1.depth()](src1.reshape(1), src2.reshape(1), dst.reshape(1), StreamAccessor::getStream(stream));
}
void cv::gpu::max(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& stream)
{
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
CV_Assert((src1.depth() != CV_64F) ||
(TargetArchs::builtWith(NATIVE_DOUBLE) && DeviceInfo().supports(NATIVE_DOUBLE)));
using namespace cv::gpu::device;
typedef void (*func_t)(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream);
typedef void (*func_t)(const DevMem2Db src1, const DevMem2Db src2, DevMem2Db dst, cudaStream_t stream);
static const func_t funcs[] =
{
max_caller<unsigned char>, max_caller<signed char>, max_caller<unsigned short>, max_caller<short>, max_caller<int>,
max_caller<float>, max_caller<double>
max_gpu<unsigned char>,
max_gpu<signed char>,
max_gpu<unsigned short>,
max_gpu<short>,
max_gpu<int>,
max_gpu<float>,
max_gpu<double>
};
funcs[src1.depth()](src1, src2, dst, StreamAccessor::getStream(stream));
CV_Assert(src1.depth() <= CV_64F);
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
if (src1.depth() == CV_64F)
{
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
dst.create(src1.size(), src1.type());
funcs[src1.depth()](src1.reshape(1), src2.reshape(1), dst.reshape(1), StreamAccessor::getStream(stream));
}
void cv::gpu::max(const GpuMat& src1, double src2, GpuMat& dst, Stream& stream)
namespace
{
CV_Assert((src1.depth() != CV_64F) ||
(TargetArchs::builtWith(NATIVE_DOUBLE) && DeviceInfo().supports(NATIVE_DOUBLE)));
template <typename T> void minScalar(const DevMem2Db src, double val, DevMem2Db dst, cudaStream_t stream)
{
cv::gpu::device::min_gpu(src, saturate_cast<T>(val), dst, stream);
}
typedef void (*func_t)(const GpuMat& src1, double src2, GpuMat& dst, cudaStream_t stream);
template <typename T> void maxScalar(const DevMem2Db src, double val, DevMem2Db dst, cudaStream_t stream)
{
cv::gpu::device::max_gpu(src, saturate_cast<T>(val), dst, stream);
}
}
void cv::gpu::min(const GpuMat& src, double val, GpuMat& dst, Stream& stream)
{
typedef void (*func_t)(const DevMem2Db src1, double src2, DevMem2Db dst, cudaStream_t stream);
static const func_t funcs[] =
{
max_caller<unsigned char>, max_caller<signed char>, max_caller<unsigned short>, max_caller<short>, max_caller<int>,
max_caller<float>, max_caller<double>
minScalar<unsigned char>,
minScalar<signed char>,
minScalar<unsigned short>,
minScalar<short>,
minScalar<int>,
minScalar<float>,
minScalar<double>
};
funcs[src1.depth()](src1, src2, dst, StreamAccessor::getStream(stream));
CV_Assert(src.depth() <= CV_64F);
CV_Assert(src.channels() == 1);
if (src.depth() == CV_64F)
{
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
dst.create(src.size(), src.type());
funcs[src.depth()](src, val, dst, StreamAccessor::getStream(stream));
}
void cv::gpu::max(const GpuMat& src, double val, GpuMat& dst, Stream& stream)
{
typedef void (*func_t)(const DevMem2Db src1, double src2, DevMem2Db dst, cudaStream_t stream);
static const func_t funcs[] =
{
maxScalar<unsigned char>,
maxScalar<signed char>,
maxScalar<unsigned short>,
maxScalar<short>,
maxScalar<int>,
maxScalar<float>,
maxScalar<double>
};
CV_Assert(src.depth() <= CV_64F);
CV_Assert(src.channels() == 1);
if (src.depth() == CV_64F)
{
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
dst.create(src.size(), src.type());
funcs[src.depth()](src, val, dst, StreamAccessor::getStream(stream));
}
////////////////////////////////////////////////////////////////////////
@@ -1947,6 +1991,12 @@ double cv::gpu::threshold(const GpuMat& src, GpuMat& dst, double thresh, double
CV_Assert(src.channels() == 1 && src.depth() <= CV_64F);
CV_Assert(type <= THRESH_TOZERO_INV);
if (src.depth() == CV_64F)
{
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
dst.create(src.size(), src.type());
cudaStream_t stream = StreamAccessor::getStream(s);
@@ -1967,9 +2017,8 @@ double cv::gpu::threshold(const GpuMat& src, GpuMat& dst, double thresh, double
}
else
{
typedef void (*caller_t)(const GpuMat& src, GpuMat& dst, double thresh, double maxVal, int type, cudaStream_t stream);
static const caller_t callers[] =
typedef void (*func_t)(const GpuMat& src, GpuMat& dst, double thresh, double maxVal, int type, cudaStream_t stream);
static const func_t funcs[] =
{
threshold_caller<unsigned char>, threshold_caller<signed char>,
threshold_caller<unsigned short>, threshold_caller<short>,
@@ -1982,7 +2031,7 @@ double cv::gpu::threshold(const GpuMat& src, GpuMat& dst, double thresh, double
maxVal = cvRound(maxVal);
}
callers[src.depth()](src, dst, thresh, maxVal, type, stream);
funcs[src.depth()](src, dst, thresh, maxVal, type, stream);
}
return thresh;
@@ -1993,8 +2042,7 @@ double cv::gpu::threshold(const GpuMat& src, GpuMat& dst, double thresh, double
namespace cv { namespace gpu { namespace device
{
template<typename T>
void pow_caller(DevMem2Db src, double power, DevMem2Db dst, cudaStream_t stream);
template<typename T> void pow_caller(DevMem2Db src, double power, DevMem2Db dst, cudaStream_t stream);
}}}
void cv::gpu::pow(const GpuMat& src, double power, GpuMat& dst, Stream& stream)
@@ -2002,7 +2050,6 @@ void cv::gpu::pow(const GpuMat& src, double power, GpuMat& dst, Stream& stream)
using namespace cv::gpu::device;
typedef void (*func_t)(DevMem2Db src, double power, DevMem2Db dst, cudaStream_t stream);
static const func_t funcs[] =
{
pow_caller<unsigned char>, pow_caller<signed char>,
@@ -2010,6 +2057,14 @@ void cv::gpu::pow(const GpuMat& src, double power, GpuMat& dst, Stream& stream)
pow_caller<int>, pow_caller<float>, pow_caller<double>
};
CV_Assert(src.depth() <= CV_64F);
if (src.depth() == CV_64F)
{
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
dst.create(src.size(), src.type());
funcs[src.depth()](src.reshape(1), power, dst.reshape(1), StreamAccessor::getStream(stream));
@@ -2075,8 +2130,7 @@ void cv::gpu::alphaComp(const GpuMat& img1, const GpuMat& img2, GpuMat& dst, int
NppAlphaComp<CV_16U, nppiAlphaComp_16u_AC4R>::call,
0,
NppAlphaComp<CV_32S, nppiAlphaComp_32s_AC4R>::call,
NppAlphaComp<CV_32F, nppiAlphaComp_32f_AC4R>::call,
0
NppAlphaComp<CV_32F, nppiAlphaComp_32f_AC4R>::call
};
CV_Assert(img1.type() == CV_8UC4 || img1.type() == CV_16UC4 || img1.type() == CV_32SC4 || img1.type() == CV_32FC4);
@@ -2085,7 +2139,6 @@ void cv::gpu::alphaComp(const GpuMat& img1, const GpuMat& img2, GpuMat& dst, int
dst.create(img1.size(), img1.type());
const func_t func = funcs[img1.depth()];
CV_Assert(func != 0);
func(img1, img2, dst, npp_alpha_ops[alpha_op], StreamAccessor::getStream(stream));
}
@@ -2569,6 +2622,14 @@ void cv::gpu::addWeighted(const GpuMat& src1, double alpha, const GpuMat& src2,
dtype = dtype >= 0 ? CV_MAKETYPE(dtype, src1.channels()) : src1.type();
CV_Assert(src1.depth() <= CV_64F && src2.depth() <= CV_64F && CV_MAT_DEPTH(dtype) <= CV_64F);
if (src1.depth() == CV_64F || src2.depth() == CV_64F || CV_MAT_DEPTH(dtype) == CV_64F)
{
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
dst.create(src1.size(), dtype);
const GpuMat* psrc1 = &src1;
@@ -2581,7 +2642,9 @@ void cv::gpu::addWeighted(const GpuMat& src1, double alpha, const GpuMat& src2,
}
const func_t func = funcs[psrc1->depth()][psrc2->depth()][dst.depth()];
CV_Assert(func != 0);
if (!func)
CV_Error(CV_StsUnsupportedFormat, "Unsupported combination of source and destination types");
func(psrc1->reshape(1), alpha, psrc2->reshape(1), beta, gamma, dst.reshape(1), StreamAccessor::getStream(stream));
}