Refactored videostab module
This commit is contained in:
parent
9dfb1f77a0
commit
2270c2f5bd
@ -65,12 +65,12 @@ namespace videostab
|
|||||||
{
|
{
|
||||||
|
|
||||||
CV_EXPORTS Mat estimateGlobalMotionLeastSquares(
|
CV_EXPORTS Mat estimateGlobalMotionLeastSquares(
|
||||||
int npoints, Point2f *points0, Point2f *points1, int model = MM_AFFINE, float *rmse = 0);
|
InputOutputArray points0, InputOutputArray points1, int model = MM_AFFINE,
|
||||||
|
float *rmse = 0);
|
||||||
|
|
||||||
CV_EXPORTS Mat estimateGlobalMotionRobust(
|
CV_EXPORTS Mat estimateGlobalMotionRobust(
|
||||||
const std::vector<Point2f> &points0, const std::vector<Point2f> &points1,
|
InputArray points0, InputArray points1, int model = MM_AFFINE,
|
||||||
int model = MM_AFFINE, const RansacParams ¶ms = RansacParams::default2dMotion(MM_AFFINE),
|
const RansacParams ¶ms = RansacParams::default2dMotion(MM_AFFINE),
|
||||||
float *rmse = 0, int *ninliers = 0);
|
float *rmse = 0, int *ninliers = 0);
|
||||||
|
|
||||||
class CV_EXPORTS GlobalMotionEstimatorBase
|
class CV_EXPORTS GlobalMotionEstimatorBase
|
||||||
@ -181,7 +181,7 @@ private:
|
|||||||
gpu::GpuMat status_;
|
gpu::GpuMat status_;
|
||||||
|
|
||||||
Mat hostPointsPrev_, hostPoints_;
|
Mat hostPointsPrev_, hostPoints_;
|
||||||
std::vector<Point2f> hostPointsPrevGood_, hostPointsGood_;
|
std::vector<Point2f> hostPointsPrevTmp_, hostPointsTmp_;
|
||||||
std::vector<uchar> rejectionStatus_;
|
std::vector<uchar> rejectionStatus_;
|
||||||
};
|
};
|
||||||
#endif
|
#endif
|
||||||
|
@ -284,9 +284,12 @@ static Mat estimateGlobMotionLeastSquaresAffine(
|
|||||||
|
|
||||||
|
|
||||||
Mat estimateGlobalMotionLeastSquares(
|
Mat estimateGlobalMotionLeastSquares(
|
||||||
int npoints, Point2f *points0, Point2f *points1, int model, float *rmse)
|
InputOutputArray points0, InputOutputArray points1, int model, float *rmse)
|
||||||
{
|
{
|
||||||
CV_Assert(model <= MM_AFFINE);
|
CV_Assert(model <= MM_AFFINE);
|
||||||
|
CV_Assert(points0.type() == points1.type());
|
||||||
|
const int npoints = points0.getMat().checkVector(2);
|
||||||
|
CV_Assert(points1.getMat().checkVector(2) == npoints);
|
||||||
|
|
||||||
typedef Mat (*Impl)(int, Point2f*, Point2f*, float*);
|
typedef Mat (*Impl)(int, Point2f*, Point2f*, float*);
|
||||||
static Impl impls[] = { estimateGlobMotionLeastSquaresTranslation,
|
static Impl impls[] = { estimateGlobMotionLeastSquaresTranslation,
|
||||||
@ -295,16 +298,24 @@ Mat estimateGlobalMotionLeastSquares(
|
|||||||
estimateGlobMotionLeastSquaresSimilarity,
|
estimateGlobMotionLeastSquaresSimilarity,
|
||||||
estimateGlobMotionLeastSquaresAffine };
|
estimateGlobMotionLeastSquaresAffine };
|
||||||
|
|
||||||
return impls[model](npoints, points0, points1, rmse);
|
Point2f *points0_ = points0.getMat().ptr<Point2f>();
|
||||||
|
Point2f *points1_ = points1.getMat().ptr<Point2f>();
|
||||||
|
|
||||||
|
return impls[model](npoints, points0_, points1_, rmse);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
Mat estimateGlobalMotionRobust(
|
Mat estimateGlobalMotionRobust(
|
||||||
int npoints, const Point2f *points0, const Point2f *points1, int model,
|
InputArray points0, InputArray points1, int model, const RansacParams ¶ms,
|
||||||
const RansacParams ¶ms, float *rmse, int *ninliers)
|
float *rmse, int *ninliers)
|
||||||
{
|
{
|
||||||
CV_Assert(model <= MM_AFFINE);
|
CV_Assert(model <= MM_AFFINE);
|
||||||
|
CV_Assert(points0.type() == points1.type());
|
||||||
|
const int npoints = points0.getMat().checkVector(2);
|
||||||
|
CV_Assert(points1.getMat().checkVector(2) == npoints);
|
||||||
|
|
||||||
|
const Point2f *points0_ = points0.getMat().ptr<Point2f>();
|
||||||
|
const Point2f *points1_ = points1.getMat().ptr<Point2f>();
|
||||||
const int niters = params.niters();
|
const int niters = params.niters();
|
||||||
|
|
||||||
// current hypothesis
|
// current hypothesis
|
||||||
@ -338,17 +349,17 @@ Mat estimateGlobalMotionRobust(
|
|||||||
}
|
}
|
||||||
for (int i = 0; i < params.size; ++i)
|
for (int i = 0; i < params.size; ++i)
|
||||||
{
|
{
|
||||||
subset0[i] = points0[indices[i]];
|
subset0[i] = points0_[indices[i]];
|
||||||
subset1[i] = points1[indices[i]];
|
subset1[i] = points1_[indices[i]];
|
||||||
}
|
}
|
||||||
|
|
||||||
Mat_<float> M = estimateGlobalMotionLeastSquares(
|
Mat_<float> M = estimateGlobalMotionLeastSquares(subset0, subset1, model, 0);
|
||||||
params.size, &subset0[0], &subset1[0], model, 0);
|
|
||||||
|
|
||||||
int ninliers = 0;
|
int ninliers = 0;
|
||||||
for (int i = 0; i < npoints; ++i)
|
for (int i = 0; i < npoints; ++i)
|
||||||
{
|
{
|
||||||
p0 = points0[i]; p1 = points1[i];
|
p0 = points0_[i];
|
||||||
|
p1 = points1_[i];
|
||||||
x = M(0,0)*p0.x + M(0,1)*p0.y + M(0,2);
|
x = M(0,0)*p0.x + M(0,1)*p0.y + M(0,2);
|
||||||
y = M(1,0)*p0.x + M(1,1)*p0.y + M(1,2);
|
y = M(1,0)*p0.x + M(1,1)*p0.y + M(1,2);
|
||||||
if (sqr(x - p1.x) + sqr(y - p1.y) < params.thresh * params.thresh)
|
if (sqr(x - p1.x) + sqr(y - p1.y) < params.thresh * params.thresh)
|
||||||
@ -365,15 +376,15 @@ Mat estimateGlobalMotionRobust(
|
|||||||
|
|
||||||
if (ninliersMax < params.size)
|
if (ninliersMax < params.size)
|
||||||
// compute RMSE
|
// compute RMSE
|
||||||
bestM = estimateGlobalMotionLeastSquares(
|
bestM = estimateGlobalMotionLeastSquares(subset0best, subset1best, model, rmse);
|
||||||
params.size, &subset0best[0], &subset1best[0], model, rmse);
|
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
subset0.resize(ninliersMax);
|
subset0.resize(ninliersMax);
|
||||||
subset1.resize(ninliersMax);
|
subset1.resize(ninliersMax);
|
||||||
for (int i = 0, j = 0; i < npoints; ++i)
|
for (int i = 0, j = 0; i < npoints; ++i)
|
||||||
{
|
{
|
||||||
p0 = points0[i]; p1 = points1[i];
|
p0 = points0_[i];
|
||||||
|
p1 = points1_[i];
|
||||||
x = bestM(0,0)*p0.x + bestM(0,1)*p0.y + bestM(0,2);
|
x = bestM(0,0)*p0.x + bestM(0,1)*p0.y + bestM(0,2);
|
||||||
y = bestM(1,0)*p0.x + bestM(1,1)*p0.y + bestM(1,2);
|
y = bestM(1,0)*p0.x + bestM(1,1)*p0.y + bestM(1,2);
|
||||||
if (sqr(x - p1.x) + sqr(y - p1.y) < params.thresh * params.thresh)
|
if (sqr(x - p1.x) + sqr(y - p1.y) < params.thresh * params.thresh)
|
||||||
@ -383,8 +394,7 @@ Mat estimateGlobalMotionRobust(
|
|||||||
j++;
|
j++;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
bestM = estimateGlobalMotionLeastSquares(
|
bestM = estimateGlobalMotionLeastSquares(subset0, subset1, model, rmse);
|
||||||
ninliersMax, &subset0[0], &subset1[0], model, rmse);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
if (ninliers)
|
if (ninliers)
|
||||||
@ -520,8 +530,7 @@ Mat RansacMotionEstimator::estimate(const Mat &frame0, const Mat &frame1, bool *
|
|||||||
|
|
||||||
if (motionModel_ != MM_HOMOGRAPHY)
|
if (motionModel_ != MM_HOMOGRAPHY)
|
||||||
M = estimateGlobalMotionRobust(
|
M = estimateGlobalMotionRobust(
|
||||||
npoints, &pointsPrevGood_[0], &pointsGood_[0], motionModel_,
|
pointsPrevGood_, pointsGood_, motionModel_, ransacParams_, 0, &ninliers);
|
||||||
ransacParams_, 0, &ninliers);
|
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
vector<uchar> mask;
|
vector<uchar> mask;
|
||||||
@ -590,10 +599,6 @@ Mat RansacMotionEstimatorGpu::estimate(const gpu::GpuMat &frame0, const gpu::Gpu
|
|||||||
pointsPrev_.download(hostPointsPrev_);
|
pointsPrev_.download(hostPointsPrev_);
|
||||||
points_.download(hostPoints_);
|
points_.download(hostPoints_);
|
||||||
|
|
||||||
Point2f *points0 = hostPointsPrev_.ptr<Point2f>();
|
|
||||||
Point2f *points1 = hostPoints_.ptr<Point2f>();
|
|
||||||
int npoints = hostPointsPrev_.cols;
|
|
||||||
|
|
||||||
// perfrom outlier rejection
|
// perfrom outlier rejection
|
||||||
|
|
||||||
IOutlierRejector *outlierRejector = static_cast<IOutlierRejector*>(outlierRejector_);
|
IOutlierRejector *outlierRejector = static_cast<IOutlierRejector*>(outlierRejector_);
|
||||||
@ -601,37 +606,35 @@ Mat RansacMotionEstimatorGpu::estimate(const gpu::GpuMat &frame0, const gpu::Gpu
|
|||||||
{
|
{
|
||||||
outlierRejector_->process(frame0.size(), hostPointsPrev_, hostPoints_, rejectionStatus_);
|
outlierRejector_->process(frame0.size(), hostPointsPrev_, hostPoints_, rejectionStatus_);
|
||||||
|
|
||||||
hostPointsPrevGood_.clear(); hostPointsPrevGood_.reserve(hostPoints_.cols);
|
hostPointsPrevTmp_.clear(); hostPointsPrevTmp_.reserve(hostPoints_.cols);
|
||||||
hostPointsGood_.clear(); hostPointsGood_.reserve(hostPoints_.cols);
|
hostPointsTmp_.clear(); hostPointsTmp_.reserve(hostPoints_.cols);
|
||||||
|
|
||||||
for (int i = 0; i < hostPoints_.cols; ++i)
|
for (int i = 0; i < hostPoints_.cols; ++i)
|
||||||
{
|
{
|
||||||
if (rejectionStatus_[i])
|
if (rejectionStatus_[i])
|
||||||
{
|
{
|
||||||
hostPointsPrevGood_.push_back(hostPointsPrev_.at<Point2f>(0,i));
|
hostPointsPrevTmp_.push_back(hostPointsPrev_.at<Point2f>(0,i));
|
||||||
hostPointsGood_.push_back(hostPoints_.at<Point2f>(0,i));
|
hostPointsTmp_.push_back(hostPoints_.at<Point2f>(0,i));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
points0 = &hostPointsPrevGood_[0];
|
hostPointsPrev_ = Mat(1, hostPointsPrevTmp_.size(), CV_32FC2, &hostPointsPrevTmp_[0]);
|
||||||
points1 = &hostPointsGood_[0];
|
hostPoints_ = Mat(1, hostPointsTmp_.size(), CV_32FC2, &hostPointsTmp_[0]);
|
||||||
npoints = static_cast<int>(hostPointsGood_.size());
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// find motion
|
// find motion
|
||||||
|
|
||||||
|
int npoints = hostPoints_.cols;
|
||||||
int ninliers = 0;
|
int ninliers = 0;
|
||||||
Mat_<float> M;
|
Mat_<float> M;
|
||||||
|
|
||||||
if (motionModel_ != MM_HOMOGRAPHY)
|
if (motionModel_ != MM_HOMOGRAPHY)
|
||||||
M = estimateGlobalMotionRobust(
|
M = estimateGlobalMotionRobust(
|
||||||
npoints, points0, points1, motionModel_, ransacParams_, 0, &ninliers);
|
hostPointsPrev_, hostPoints_, motionModel_, ransacParams_, 0, &ninliers);
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
vector<uchar> mask;
|
vector<uchar> mask;
|
||||||
M = findHomography(
|
M = findHomography(hostPointsPrev_, hostPoints_, mask, CV_RANSAC, ransacParams_.thresh);
|
||||||
Mat(1, npoints, CV_32FC2, points0), Mat(1, npoints, CV_32FC2, points1),
|
|
||||||
mask, CV_RANSAC, ransacParams_.thresh);
|
|
||||||
for (int i = 0; i < npoints; ++i)
|
for (int i = 0; i < npoints; ++i)
|
||||||
if (mask[i]) ninliers++;
|
if (mask[i]) ninliers++;
|
||||||
}
|
}
|
||||||
@ -713,8 +716,6 @@ Mat LpBasedMotionEstimator::estimate(const Mat &frame0, const Mat &frame1, bool
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
int npoints = static_cast<int>(pointsGood_.size());
|
|
||||||
|
|
||||||
// prepare LP problem
|
// prepare LP problem
|
||||||
|
|
||||||
#ifndef HAVE_CLP
|
#ifndef HAVE_CLP
|
||||||
@ -727,6 +728,7 @@ Mat LpBasedMotionEstimator::estimate(const Mat &frame0, const Mat &frame1, bool
|
|||||||
|
|
||||||
CV_Assert(motionModel_ <= MM_AFFINE && motionModel_ != MM_RIGID);
|
CV_Assert(motionModel_ <= MM_AFFINE && motionModel_ != MM_RIGID);
|
||||||
|
|
||||||
|
int npoints = static_cast<int>(pointsGood_.size());
|
||||||
int ncols = 6 + 2*npoints;
|
int ncols = 6 + 2*npoints;
|
||||||
int nrows = 4*npoints;
|
int nrows = 4*npoints;
|
||||||
|
|
||||||
@ -852,3 +854,4 @@ Mat getMotion(int from, int to, const vector<Mat> &motions)
|
|||||||
} // namespace videostab
|
} // namespace videostab
|
||||||
} // namespace cv
|
} // namespace cv
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user