new/improved Python samples by Alexander Mordvintsev
This commit is contained in:
parent
2c2d6fa5fd
commit
2013118971
@ -1,200 +1,212 @@
|
||||
import numpy as np
|
||||
import cv2
|
||||
import os
|
||||
from contextlib import contextmanager
|
||||
import itertools as it
|
||||
|
||||
image_extensions = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.tiff', '.pbm', '.pgm', '.ppm']
|
||||
|
||||
def splitfn(fn):
|
||||
path, fn = os.path.split(fn)
|
||||
name, ext = os.path.splitext(fn)
|
||||
return path, name, ext
|
||||
|
||||
def anorm2(a):
|
||||
return (a*a).sum(-1)
|
||||
def anorm(a):
|
||||
return np.sqrt( anorm2(a) )
|
||||
|
||||
def homotrans(H, x, y):
|
||||
xs = H[0, 0]*x + H[0, 1]*y + H[0, 2]
|
||||
ys = H[1, 0]*x + H[1, 1]*y + H[1, 2]
|
||||
s = H[2, 0]*x + H[2, 1]*y + H[2, 2]
|
||||
return xs/s, ys/s
|
||||
|
||||
def to_rect(a):
|
||||
a = np.ravel(a)
|
||||
if len(a) == 2:
|
||||
a = (0, 0, a[0], a[1])
|
||||
return np.array(a, np.float64).reshape(2, 2)
|
||||
|
||||
def rect2rect_mtx(src, dst):
|
||||
src, dst = to_rect(src), to_rect(dst)
|
||||
cx, cy = (dst[1] - dst[0]) / (src[1] - src[0])
|
||||
tx, ty = dst[0] - src[0] * (cx, cy)
|
||||
M = np.float64([[ cx, 0, tx],
|
||||
[ 0, cy, ty],
|
||||
[ 0, 0, 1]])
|
||||
return M
|
||||
|
||||
|
||||
def lookat(eye, target, up = (0, 0, 1)):
|
||||
fwd = np.asarray(target, np.float64) - eye
|
||||
fwd /= anorm(fwd)
|
||||
right = np.cross(fwd, up)
|
||||
right /= anorm(right)
|
||||
down = np.cross(fwd, right)
|
||||
R = np.float64([right, down, fwd])
|
||||
tvec = -np.dot(R, eye)
|
||||
return R, tvec
|
||||
|
||||
def mtx2rvec(R):
|
||||
w, u, vt = cv2.SVDecomp(R - np.eye(3))
|
||||
p = vt[0] + u[:,0]*w[0] # same as np.dot(R, vt[0])
|
||||
c = np.dot(vt[0], p)
|
||||
s = np.dot(vt[1], p)
|
||||
axis = np.cross(vt[0], vt[1])
|
||||
return axis * np.arctan2(s, c)
|
||||
|
||||
def draw_str(dst, (x, y), s):
|
||||
cv2.putText(dst, s, (x+1, y+1), cv2.FONT_HERSHEY_PLAIN, 1.0, (0, 0, 0), thickness = 2, lineType=cv2.CV_AA)
|
||||
cv2.putText(dst, s, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.0, (255, 255, 255), lineType=cv2.CV_AA)
|
||||
|
||||
class Sketcher:
|
||||
def __init__(self, windowname, dests, colors_func):
|
||||
self.prev_pt = None
|
||||
self.windowname = windowname
|
||||
self.dests = dests
|
||||
self.colors_func = colors_func
|
||||
self.dirty = False
|
||||
self.show()
|
||||
cv2.setMouseCallback(self.windowname, self.on_mouse)
|
||||
|
||||
def show(self):
|
||||
cv2.imshow(self.windowname, self.dests[0])
|
||||
|
||||
def on_mouse(self, event, x, y, flags, param):
|
||||
pt = (x, y)
|
||||
if event == cv2.EVENT_LBUTTONDOWN:
|
||||
self.prev_pt = pt
|
||||
if self.prev_pt and flags & cv2.EVENT_FLAG_LBUTTON:
|
||||
for dst, color in zip(self.dests, self.colors_func()):
|
||||
cv2.line(dst, self.prev_pt, pt, color, 5)
|
||||
self.dirty = True
|
||||
self.prev_pt = pt
|
||||
self.show()
|
||||
else:
|
||||
self.prev_pt = None
|
||||
|
||||
|
||||
# palette data from matplotlib/_cm.py
|
||||
_jet_data = {'red': ((0., 0, 0), (0.35, 0, 0), (0.66, 1, 1), (0.89,1, 1),
|
||||
(1, 0.5, 0.5)),
|
||||
'green': ((0., 0, 0), (0.125,0, 0), (0.375,1, 1), (0.64,1, 1),
|
||||
(0.91,0,0), (1, 0, 0)),
|
||||
'blue': ((0., 0.5, 0.5), (0.11, 1, 1), (0.34, 1, 1), (0.65,0, 0),
|
||||
(1, 0, 0))}
|
||||
|
||||
cmap_data = { 'jet' : _jet_data }
|
||||
|
||||
def make_cmap(name, n=256):
|
||||
data = cmap_data[name]
|
||||
xs = np.linspace(0.0, 1.0, n)
|
||||
channels = []
|
||||
eps = 1e-6
|
||||
for ch_name in ['blue', 'green', 'red']:
|
||||
ch_data = data[ch_name]
|
||||
xp, yp = [], []
|
||||
for x, y1, y2 in ch_data:
|
||||
xp += [x, x+eps]
|
||||
yp += [y1, y2]
|
||||
ch = np.interp(xs, xp, yp)
|
||||
channels.append(ch)
|
||||
return np.uint8(np.array(channels).T*255)
|
||||
|
||||
def nothing(*arg, **kw):
|
||||
pass
|
||||
|
||||
def clock():
|
||||
return cv2.getTickCount() / cv2.getTickFrequency()
|
||||
|
||||
@contextmanager
|
||||
def Timer(msg):
|
||||
print msg, '...',
|
||||
start = clock()
|
||||
try:
|
||||
yield
|
||||
finally:
|
||||
print "%.2f ms" % ((clock()-start)*1000)
|
||||
|
||||
class StatValue:
|
||||
def __init__(self, smooth_coef = 0.5):
|
||||
self.value = None
|
||||
self.smooth_coef = smooth_coef
|
||||
def update(self, v):
|
||||
if self.value is None:
|
||||
self.value = v
|
||||
else:
|
||||
c = self.smooth_coef
|
||||
self.value = c * self.value + (1.0-c) * v
|
||||
|
||||
class RectSelector:
|
||||
def __init__(self, win, callback):
|
||||
self.win = win
|
||||
self.callback = callback
|
||||
cv2.setMouseCallback(win, self.onmouse)
|
||||
self.drag_start = None
|
||||
self.drag_rect = None
|
||||
def onmouse(self, event, x, y, flags, param):
|
||||
x, y = np.int16([x, y]) # BUG
|
||||
if event == cv2.EVENT_LBUTTONDOWN:
|
||||
self.drag_start = (x, y)
|
||||
if self.drag_start:
|
||||
if flags & cv2.EVENT_FLAG_LBUTTON:
|
||||
xo, yo = self.drag_start
|
||||
x0, y0 = np.minimum([xo, yo], [x, y])
|
||||
x1, y1 = np.maximum([xo, yo], [x, y])
|
||||
self.drag_rect = None
|
||||
if x1-x0 > 0 and y1-y0 > 0:
|
||||
self.drag_rect = (x0, y0, x1, y1)
|
||||
else:
|
||||
rect = self.drag_rect
|
||||
self.drag_start = None
|
||||
self.drag_rect = None
|
||||
if rect:
|
||||
self.callback(rect)
|
||||
def draw(self, vis):
|
||||
if not self.drag_rect:
|
||||
return False
|
||||
x0, y0, x1, y1 = self.drag_rect
|
||||
cv2.rectangle(vis, (x0, y0), (x1, y1), (0, 255, 0), 2)
|
||||
return True
|
||||
@property
|
||||
def dragging(self):
|
||||
return self.drag_rect is not None
|
||||
|
||||
|
||||
def grouper(n, iterable, fillvalue=None):
|
||||
'''grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx'''
|
||||
args = [iter(iterable)] * n
|
||||
return it.izip_longest(fillvalue=fillvalue, *args)
|
||||
|
||||
def mosaic(w, imgs):
|
||||
'''Make a grid from images.
|
||||
|
||||
w -- number of grid columns
|
||||
imgs -- images (must have same size and format)
|
||||
'''
|
||||
imgs = iter(imgs)
|
||||
img0 = imgs.next()
|
||||
pad = np.zeros_like(img0)
|
||||
imgs = it.chain([img0], imgs)
|
||||
rows = grouper(w, imgs, pad)
|
||||
return np.vstack(map(np.hstack, rows))
|
||||
|
||||
def getsize(img):
|
||||
h, w = img.shape[:2]
|
||||
return w, h
|
||||
|
||||
def mdot(*args):
|
||||
return reduce(np.dot, args)
|
||||
import numpy as np
|
||||
import cv2
|
||||
import os
|
||||
from contextlib import contextmanager
|
||||
import itertools as it
|
||||
|
||||
image_extensions = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.tiff', '.pbm', '.pgm', '.ppm']
|
||||
|
||||
class Bunch(object):
|
||||
def __init__(self, **kw):
|
||||
self.__dict__.update(kw)
|
||||
def __str__(self):
|
||||
return str(self.__dict__)
|
||||
|
||||
def splitfn(fn):
|
||||
path, fn = os.path.split(fn)
|
||||
name, ext = os.path.splitext(fn)
|
||||
return path, name, ext
|
||||
|
||||
def anorm2(a):
|
||||
return (a*a).sum(-1)
|
||||
def anorm(a):
|
||||
return np.sqrt( anorm2(a) )
|
||||
|
||||
def homotrans(H, x, y):
|
||||
xs = H[0, 0]*x + H[0, 1]*y + H[0, 2]
|
||||
ys = H[1, 0]*x + H[1, 1]*y + H[1, 2]
|
||||
s = H[2, 0]*x + H[2, 1]*y + H[2, 2]
|
||||
return xs/s, ys/s
|
||||
|
||||
def to_rect(a):
|
||||
a = np.ravel(a)
|
||||
if len(a) == 2:
|
||||
a = (0, 0, a[0], a[1])
|
||||
return np.array(a, np.float64).reshape(2, 2)
|
||||
|
||||
def rect2rect_mtx(src, dst):
|
||||
src, dst = to_rect(src), to_rect(dst)
|
||||
cx, cy = (dst[1] - dst[0]) / (src[1] - src[0])
|
||||
tx, ty = dst[0] - src[0] * (cx, cy)
|
||||
M = np.float64([[ cx, 0, tx],
|
||||
[ 0, cy, ty],
|
||||
[ 0, 0, 1]])
|
||||
return M
|
||||
|
||||
|
||||
def lookat(eye, target, up = (0, 0, 1)):
|
||||
fwd = np.asarray(target, np.float64) - eye
|
||||
fwd /= anorm(fwd)
|
||||
right = np.cross(fwd, up)
|
||||
right /= anorm(right)
|
||||
down = np.cross(fwd, right)
|
||||
R = np.float64([right, down, fwd])
|
||||
tvec = -np.dot(R, eye)
|
||||
return R, tvec
|
||||
|
||||
def mtx2rvec(R):
|
||||
w, u, vt = cv2.SVDecomp(R - np.eye(3))
|
||||
p = vt[0] + u[:,0]*w[0] # same as np.dot(R, vt[0])
|
||||
c = np.dot(vt[0], p)
|
||||
s = np.dot(vt[1], p)
|
||||
axis = np.cross(vt[0], vt[1])
|
||||
return axis * np.arctan2(s, c)
|
||||
|
||||
def draw_str(dst, (x, y), s):
|
||||
cv2.putText(dst, s, (x+1, y+1), cv2.FONT_HERSHEY_PLAIN, 1.0, (0, 0, 0), thickness = 2, lineType=cv2.CV_AA)
|
||||
cv2.putText(dst, s, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.0, (255, 255, 255), lineType=cv2.CV_AA)
|
||||
|
||||
class Sketcher:
|
||||
def __init__(self, windowname, dests, colors_func):
|
||||
self.prev_pt = None
|
||||
self.windowname = windowname
|
||||
self.dests = dests
|
||||
self.colors_func = colors_func
|
||||
self.dirty = False
|
||||
self.show()
|
||||
cv2.setMouseCallback(self.windowname, self.on_mouse)
|
||||
|
||||
def show(self):
|
||||
cv2.imshow(self.windowname, self.dests[0])
|
||||
|
||||
def on_mouse(self, event, x, y, flags, param):
|
||||
pt = (x, y)
|
||||
if event == cv2.EVENT_LBUTTONDOWN:
|
||||
self.prev_pt = pt
|
||||
if self.prev_pt and flags & cv2.EVENT_FLAG_LBUTTON:
|
||||
for dst, color in zip(self.dests, self.colors_func()):
|
||||
cv2.line(dst, self.prev_pt, pt, color, 5)
|
||||
self.dirty = True
|
||||
self.prev_pt = pt
|
||||
self.show()
|
||||
else:
|
||||
self.prev_pt = None
|
||||
|
||||
|
||||
# palette data from matplotlib/_cm.py
|
||||
_jet_data = {'red': ((0., 0, 0), (0.35, 0, 0), (0.66, 1, 1), (0.89,1, 1),
|
||||
(1, 0.5, 0.5)),
|
||||
'green': ((0., 0, 0), (0.125,0, 0), (0.375,1, 1), (0.64,1, 1),
|
||||
(0.91,0,0), (1, 0, 0)),
|
||||
'blue': ((0., 0.5, 0.5), (0.11, 1, 1), (0.34, 1, 1), (0.65,0, 0),
|
||||
(1, 0, 0))}
|
||||
|
||||
cmap_data = { 'jet' : _jet_data }
|
||||
|
||||
def make_cmap(name, n=256):
|
||||
data = cmap_data[name]
|
||||
xs = np.linspace(0.0, 1.0, n)
|
||||
channels = []
|
||||
eps = 1e-6
|
||||
for ch_name in ['blue', 'green', 'red']:
|
||||
ch_data = data[ch_name]
|
||||
xp, yp = [], []
|
||||
for x, y1, y2 in ch_data:
|
||||
xp += [x, x+eps]
|
||||
yp += [y1, y2]
|
||||
ch = np.interp(xs, xp, yp)
|
||||
channels.append(ch)
|
||||
return np.uint8(np.array(channels).T*255)
|
||||
|
||||
def nothing(*arg, **kw):
|
||||
pass
|
||||
|
||||
def clock():
|
||||
return cv2.getTickCount() / cv2.getTickFrequency()
|
||||
|
||||
@contextmanager
|
||||
def Timer(msg):
|
||||
print msg, '...',
|
||||
start = clock()
|
||||
try:
|
||||
yield
|
||||
finally:
|
||||
print "%.2f ms" % ((clock()-start)*1000)
|
||||
|
||||
class StatValue:
|
||||
def __init__(self, smooth_coef = 0.5):
|
||||
self.value = None
|
||||
self.smooth_coef = smooth_coef
|
||||
def update(self, v):
|
||||
if self.value is None:
|
||||
self.value = v
|
||||
else:
|
||||
c = self.smooth_coef
|
||||
self.value = c * self.value + (1.0-c) * v
|
||||
|
||||
class RectSelector:
|
||||
def __init__(self, win, callback):
|
||||
self.win = win
|
||||
self.callback = callback
|
||||
cv2.setMouseCallback(win, self.onmouse)
|
||||
self.drag_start = None
|
||||
self.drag_rect = None
|
||||
def onmouse(self, event, x, y, flags, param):
|
||||
x, y = np.int16([x, y]) # BUG
|
||||
if event == cv2.EVENT_LBUTTONDOWN:
|
||||
self.drag_start = (x, y)
|
||||
if self.drag_start:
|
||||
if flags & cv2.EVENT_FLAG_LBUTTON:
|
||||
xo, yo = self.drag_start
|
||||
x0, y0 = np.minimum([xo, yo], [x, y])
|
||||
x1, y1 = np.maximum([xo, yo], [x, y])
|
||||
self.drag_rect = None
|
||||
if x1-x0 > 0 and y1-y0 > 0:
|
||||
self.drag_rect = (x0, y0, x1, y1)
|
||||
else:
|
||||
rect = self.drag_rect
|
||||
self.drag_start = None
|
||||
self.drag_rect = None
|
||||
if rect:
|
||||
self.callback(rect)
|
||||
def draw(self, vis):
|
||||
if not self.drag_rect:
|
||||
return False
|
||||
x0, y0, x1, y1 = self.drag_rect
|
||||
cv2.rectangle(vis, (x0, y0), (x1, y1), (0, 255, 0), 2)
|
||||
return True
|
||||
@property
|
||||
def dragging(self):
|
||||
return self.drag_rect is not None
|
||||
|
||||
|
||||
def grouper(n, iterable, fillvalue=None):
|
||||
'''grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx'''
|
||||
args = [iter(iterable)] * n
|
||||
return it.izip_longest(fillvalue=fillvalue, *args)
|
||||
|
||||
def mosaic(w, imgs):
|
||||
'''Make a grid from images.
|
||||
|
||||
w -- number of grid columns
|
||||
imgs -- images (must have same size and format)
|
||||
'''
|
||||
imgs = iter(imgs)
|
||||
img0 = imgs.next()
|
||||
pad = np.zeros_like(img0)
|
||||
imgs = it.chain([img0], imgs)
|
||||
rows = grouper(w, imgs, pad)
|
||||
return np.vstack(map(np.hstack, rows))
|
||||
|
||||
def getsize(img):
|
||||
h, w = img.shape[:2]
|
||||
return w, h
|
||||
|
||||
def mdot(*args):
|
||||
return reduce(np.dot, args)
|
||||
|
||||
def draw_keypoints(vis, keypoints, color = (0, 255, 255)):
|
||||
for kp in keypoints:
|
||||
x, y = kp.pt
|
||||
cv2.circle(vis, (int(x), int(y)), 2, color)
|
||||
|
||||
|
@ -1,168 +1,88 @@
|
||||
'''
|
||||
Feature homography
|
||||
==================
|
||||
|
||||
Example of using features2d framework for interactive video homography matching.
|
||||
ORB features and FLANN matcher are used.
|
||||
|
||||
Inspired by http://www.youtube.com/watch?v=-ZNYoL8rzPY
|
||||
|
||||
Usage
|
||||
-----
|
||||
feature_homography.py [<video source>]
|
||||
|
||||
Select a textured planar object to track by drawing a box with a mouse.
|
||||
|
||||
'''
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
import video
|
||||
import common
|
||||
from collections import namedtuple
|
||||
from common import getsize
|
||||
|
||||
|
||||
FLANN_INDEX_KDTREE = 1
|
||||
FLANN_INDEX_LSH = 6
|
||||
flann_params= dict(algorithm = FLANN_INDEX_LSH,
|
||||
table_number = 6, # 12
|
||||
key_size = 12, # 20
|
||||
multi_probe_level = 1) #2
|
||||
|
||||
MIN_MATCH_COUNT = 10
|
||||
|
||||
|
||||
ar_verts = np.float32([[0, 0, 0], [0, 1, 0], [1, 1, 0], [1, 0, 0],
|
||||
[0, 0, 1], [0, 1, 1], [1, 1, 1], [1, 0, 1],
|
||||
[0.5, 0.5, 2]])
|
||||
ar_edges = [(0, 1), (1, 2), (2, 3), (3, 0),
|
||||
(4, 5), (5, 6), (6, 7), (7, 4),
|
||||
(0, 4), (1, 5), (2, 6), (3, 7),
|
||||
(4, 8), (5, 8), (6, 8), (7, 8)]
|
||||
|
||||
|
||||
|
||||
def draw_keypoints(vis, keypoints, color = (0, 255, 255)):
|
||||
for kp in keypoints:
|
||||
x, y = kp.pt
|
||||
cv2.circle(vis, (int(x), int(y)), 2, color)
|
||||
|
||||
class App:
|
||||
def __init__(self, src):
|
||||
self.cap = video.create_capture(src)
|
||||
self.frame = None
|
||||
self.paused = False
|
||||
self.ref_frame = None
|
||||
|
||||
self.detector = cv2.ORB( nfeatures = 1000 )
|
||||
self.matcher = cv2.FlannBasedMatcher(flann_params, {}) # bug : need to pass empty dict (#1329)
|
||||
|
||||
cv2.namedWindow('plane')
|
||||
self.rect_sel = common.RectSelector('plane', self.on_rect)
|
||||
|
||||
|
||||
def match_frames(self):
|
||||
if len(self.frame_desc) < MIN_MATCH_COUNT or len(self.frame_desc) < MIN_MATCH_COUNT:
|
||||
return
|
||||
|
||||
raw_matches = self.matcher.knnMatch(self.frame_desc, k = 2)
|
||||
p0, p1 = [], []
|
||||
for m in raw_matches:
|
||||
if len(m) == 2 and m[0].distance < m[1].distance * 0.75:
|
||||
m = m[0]
|
||||
p0.append( self.ref_points[m.trainIdx].pt ) # queryIdx
|
||||
p1.append( self.frame_points[m.queryIdx].pt )
|
||||
p0, p1 = np.float32((p0, p1))
|
||||
if len(p0) < MIN_MATCH_COUNT:
|
||||
return
|
||||
|
||||
H, status = cv2.findHomography(p0, p1, cv2.RANSAC, 4.0)
|
||||
status = status.ravel() != 0
|
||||
if status.sum() < MIN_MATCH_COUNT:
|
||||
return
|
||||
p0, p1 = p0[status], p1[status]
|
||||
return p0, p1, H
|
||||
|
||||
|
||||
def on_frame(self, vis):
|
||||
match = self.match_frames()
|
||||
if match is None:
|
||||
return
|
||||
w, h = getsize(self.frame)
|
||||
p0, p1, H = match
|
||||
for (x0, y0), (x1, y1) in zip(np.int32(p0), np.int32(p1)):
|
||||
cv2.line(vis, (x0+w, y0), (x1, y1), (0, 255, 0))
|
||||
x0, y0, x1, y1 = self.ref_rect
|
||||
corners0 = np.float32([[x0, y0], [x1, y0], [x1, y1], [x0, y1]])
|
||||
img_corners = cv2.perspectiveTransform(corners0.reshape(1, -1, 2), H)
|
||||
cv2.polylines(vis, [np.int32(img_corners)], True, (255, 255, 255), 2)
|
||||
|
||||
corners3d = np.hstack([corners0, np.zeros((4, 1), np.float32)])
|
||||
fx = 0.9
|
||||
K = np.float64([[fx*w, 0, 0.5*(w-1)],
|
||||
[0, fx*w, 0.5*(h-1)],
|
||||
[0.0,0.0, 1.0]])
|
||||
dist_coef = np.zeros(4)
|
||||
ret, rvec, tvec = cv2.solvePnP(corners3d, img_corners, K, dist_coef)
|
||||
verts = ar_verts * [(x1-x0), (y1-y0), -(x1-x0)*0.3] + (x0, y0, 0)
|
||||
verts = cv2.projectPoints(verts, rvec, tvec, K, dist_coef)[0].reshape(-1, 2)
|
||||
for i, j in ar_edges:
|
||||
(x0, y0), (x1, y1) = verts[i], verts[j]
|
||||
cv2.line(vis, (int(x0), int(y0)), (int(x1), int(y1)), (255, 255, 0), 2)
|
||||
|
||||
def on_rect(self, rect):
|
||||
x0, y0, x1, y1 = rect
|
||||
self.ref_frame = self.frame.copy()
|
||||
self.ref_rect = rect
|
||||
points, descs = [], []
|
||||
for kp, desc in zip(self.frame_points, self.frame_desc):
|
||||
x, y = kp.pt
|
||||
if x0 <= x <= x1 and y0 <= y <= y1:
|
||||
points.append(kp)
|
||||
descs.append(desc)
|
||||
self.ref_points, self.ref_descs = points, np.uint8(descs)
|
||||
|
||||
self.matcher.clear()
|
||||
self.matcher.add([self.ref_descs])
|
||||
|
||||
def run(self):
|
||||
while True:
|
||||
playing = not self.paused and not self.rect_sel.dragging
|
||||
if playing or self.frame is None:
|
||||
ret, frame = self.cap.read()
|
||||
if not ret:
|
||||
break
|
||||
self.frame = np.fliplr(frame).copy()
|
||||
self.frame_points, self.frame_desc = self.detector.detectAndCompute(self.frame, None)
|
||||
if self.frame_desc is None: # detectAndCompute returns descs=None if not keypoints found
|
||||
self.frame_desc = []
|
||||
|
||||
w, h = getsize(self.frame)
|
||||
vis = np.zeros((h, w*2, 3), np.uint8)
|
||||
vis[:h,:w] = self.frame
|
||||
if self.ref_frame is not None:
|
||||
vis[:h,w:] = self.ref_frame
|
||||
x0, y0, x1, y1 = self.ref_rect
|
||||
cv2.rectangle(vis, (x0+w, y0), (x1+w, y1), (0, 255, 0), 2)
|
||||
draw_keypoints(vis[:,w:], self.ref_points)
|
||||
draw_keypoints(vis, self.frame_points)
|
||||
|
||||
if playing and self.ref_frame is not None:
|
||||
self.on_frame(vis)
|
||||
|
||||
self.rect_sel.draw(vis)
|
||||
cv2.imshow('plane', vis)
|
||||
ch = cv2.waitKey(1)
|
||||
if ch == ord(' '):
|
||||
self.paused = not self.paused
|
||||
if ch == 27:
|
||||
break
|
||||
|
||||
if __name__ == '__main__':
|
||||
print __doc__
|
||||
|
||||
import sys
|
||||
try: video_src = sys.argv[1]
|
||||
except: video_src = 0
|
||||
App(video_src).run()
|
||||
'''
|
||||
Feature homography
|
||||
==================
|
||||
|
||||
Example of using features2d framework for interactive video homography matching.
|
||||
ORB features and FLANN matcher are used. The actual tracking is implemented by
|
||||
PlaneTracker class in plane_tracker.py
|
||||
|
||||
Inspired by http://www.youtube.com/watch?v=-ZNYoL8rzPY
|
||||
|
||||
video: http://www.youtube.com/watch?v=FirtmYcC0Vc
|
||||
|
||||
Usage
|
||||
-----
|
||||
feature_homography.py [<video source>]
|
||||
|
||||
Keys:
|
||||
SPACE - pause video
|
||||
|
||||
Select a textured planar object to track by drawing a box with a mouse.
|
||||
'''
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
import video
|
||||
import common
|
||||
from common import getsize, draw_keypoints
|
||||
from plane_tracker import PlaneTracker
|
||||
|
||||
|
||||
class App:
|
||||
def __init__(self, src):
|
||||
self.cap = video.create_capture(src)
|
||||
self.frame = None
|
||||
self.paused = False
|
||||
self.tracker = PlaneTracker()
|
||||
|
||||
cv2.namedWindow('plane')
|
||||
self.rect_sel = common.RectSelector('plane', self.on_rect)
|
||||
|
||||
def on_rect(self, rect):
|
||||
self.tracker.clear()
|
||||
self.tracker.add_target(self.frame, rect)
|
||||
|
||||
def run(self):
|
||||
while True:
|
||||
playing = not self.paused and not self.rect_sel.dragging
|
||||
if playing or self.frame is None:
|
||||
ret, frame = self.cap.read()
|
||||
if not ret:
|
||||
break
|
||||
self.frame = np.frame.copy()
|
||||
|
||||
w, h = getsize(self.frame)
|
||||
vis = np.zeros((h, w*2, 3), np.uint8)
|
||||
vis[:h,:w] = self.frame
|
||||
if len(self.tracker.targets) > 0:
|
||||
target = self.tracker.targets[0]
|
||||
vis[:,w:] = target.image
|
||||
draw_keypoints(vis[:,w:], target.keypoints)
|
||||
x0, y0, x1, y1 = target.rect
|
||||
cv2.rectangle(vis, (x0+w, y0), (x1+w, y1), (0, 255, 0), 2)
|
||||
|
||||
if playing:
|
||||
tracked = self.tracker.track(self.frame)
|
||||
if len(tracked) > 0:
|
||||
tracked = tracked[0]
|
||||
cv2.polylines(vis, [np.int32(tracked.quad)], True, (255, 255, 255), 2)
|
||||
for (x0, y0), (x1, y1) in zip(np.int32(tracked.p0), np.int32(tracked.p1)):
|
||||
cv2.line(vis, (x0+w, y0), (x1, y1), (0, 255, 0))
|
||||
draw_keypoints(vis, self.tracker.frame_points)
|
||||
|
||||
self.rect_sel.draw(vis)
|
||||
cv2.imshow('plane', vis)
|
||||
ch = cv2.waitKey(1)
|
||||
if ch == ord(' '):
|
||||
self.paused = not self.paused
|
||||
if ch == 27:
|
||||
break
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
print __doc__
|
||||
|
||||
import sys
|
||||
try: video_src = sys.argv[1]
|
||||
except: video_src = 0
|
||||
App(video_src).run()
|
||||
|
103
samples/python2/plane_ar.py
Executable file
103
samples/python2/plane_ar.py
Executable file
@ -0,0 +1,103 @@
|
||||
'''
|
||||
Planar augmented reality
|
||||
==================
|
||||
|
||||
This sample shows an example of augmented reality overlay over a planar object
|
||||
tracked by PlaneTracker from plane_tracker.py. solvePnP funciton is used to
|
||||
estimate the tracked object location in 3d space.
|
||||
|
||||
video: http://www.youtube.com/watch?v=pzVbhxx6aog
|
||||
|
||||
Usage
|
||||
-----
|
||||
plane_ar.py [<video source>]
|
||||
|
||||
Keys:
|
||||
SPACE - pause video
|
||||
c - clear targets
|
||||
|
||||
Select a textured planar object to track by drawing a box with a mouse.
|
||||
Use 'focal' slider to adjust to camera focal length for proper video augmentation.
|
||||
'''
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
import video
|
||||
import common
|
||||
from plane_tracker import PlaneTracker
|
||||
|
||||
|
||||
ar_verts = np.float32([[0, 0, 0], [0, 1, 0], [1, 1, 0], [1, 0, 0],
|
||||
[0, 0, 1], [0, 1, 1], [1, 1, 1], [1, 0, 1],
|
||||
[0, 0.5, 2], [1, 0.5, 2]])
|
||||
ar_edges = [(0, 1), (1, 2), (2, 3), (3, 0),
|
||||
(4, 5), (5, 6), (6, 7), (7, 4),
|
||||
(0, 4), (1, 5), (2, 6), (3, 7),
|
||||
(4, 8), (5, 8), (6, 9), (7, 9), (8, 9)]
|
||||
|
||||
class App:
|
||||
def __init__(self, src):
|
||||
self.cap = video.create_capture(src)
|
||||
self.frame = None
|
||||
self.paused = False
|
||||
self.tracker = PlaneTracker()
|
||||
|
||||
cv2.namedWindow('plane')
|
||||
cv2.createTrackbar('focal', 'plane', 25, 50, common.nothing)
|
||||
self.rect_sel = common.RectSelector('plane', self.on_rect)
|
||||
|
||||
def on_rect(self, rect):
|
||||
self.tracker.add_target(self.frame, rect)
|
||||
|
||||
def run(self):
|
||||
while True:
|
||||
playing = not self.paused and not self.rect_sel.dragging
|
||||
if playing or self.frame is None:
|
||||
ret, frame = self.cap.read()
|
||||
if not ret:
|
||||
break
|
||||
self.frame = frame.copy()
|
||||
|
||||
vis = self.frame.copy()
|
||||
if playing:
|
||||
tracked = self.tracker.track(self.frame)
|
||||
for tr in tracked:
|
||||
cv2.polylines(vis, [np.int32(tr.quad)], True, (255, 255, 255), 2)
|
||||
for (x, y) in np.int32(tr.p1):
|
||||
cv2.circle(vis, (x, y), 2, (255, 255, 255))
|
||||
self.draw_overlay(vis, tr)
|
||||
|
||||
self.rect_sel.draw(vis)
|
||||
cv2.imshow('plane', vis)
|
||||
ch = cv2.waitKey(1)
|
||||
if ch == ord(' '):
|
||||
self.paused = not self.paused
|
||||
if ch == ord('c'):
|
||||
self.tracker.clear()
|
||||
if ch == 27:
|
||||
break
|
||||
|
||||
def draw_overlay(self, vis, tracked):
|
||||
x0, y0, x1, y1 = tracked.target.rect
|
||||
quad_3d = np.float32([[x0, y0, 0], [x1, y0, 0], [x1, y1, 0], [x0, y1, 0]])
|
||||
fx = 0.5 + cv2.getTrackbarPos('focal', 'plane') / 50.0
|
||||
h, w = vis.shape[:2]
|
||||
K = np.float64([[fx*w, 0, 0.5*(w-1)],
|
||||
[0, fx*w, 0.5*(h-1)],
|
||||
[0.0,0.0, 1.0]])
|
||||
dist_coef = np.zeros(4)
|
||||
ret, rvec, tvec = cv2.solvePnP(quad_3d, tracked.quad, K, dist_coef)
|
||||
verts = ar_verts * [(x1-x0), (y1-y0), -(x1-x0)*0.3] + (x0, y0, 0)
|
||||
verts = cv2.projectPoints(verts, rvec, tvec, K, dist_coef)[0].reshape(-1, 2)
|
||||
for i, j in ar_edges:
|
||||
(x0, y0), (x1, y1) = verts[i], verts[j]
|
||||
cv2.line(vis, (int(x0), int(y0)), (int(x1), int(y1)), (255, 255, 0), 2)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
print __doc__
|
||||
|
||||
import sys
|
||||
try: video_src = sys.argv[1]
|
||||
except: video_src = 0
|
||||
App(video_src).run()
|
171
samples/python2/plane_tracker.py
Executable file
171
samples/python2/plane_tracker.py
Executable file
@ -0,0 +1,171 @@
|
||||
'''
|
||||
Multitarget planar tracking
|
||||
==================
|
||||
|
||||
Example of using features2d framework for interactive video homography matching.
|
||||
ORB features and FLANN matcher are used. This sample provides PlaneTracker class
|
||||
and an example of its usage.
|
||||
|
||||
video: http://www.youtube.com/watch?v=pzVbhxx6aog
|
||||
|
||||
Usage
|
||||
-----
|
||||
plane_tracker.py [<video source>]
|
||||
|
||||
Keys:
|
||||
SPACE - pause video
|
||||
c - clear targets
|
||||
|
||||
Select a textured planar object to track by drawing a box with a mouse.
|
||||
'''
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
from collections import namedtuple
|
||||
import video
|
||||
import common
|
||||
|
||||
|
||||
FLANN_INDEX_KDTREE = 1
|
||||
FLANN_INDEX_LSH = 6
|
||||
flann_params= dict(algorithm = FLANN_INDEX_LSH,
|
||||
table_number = 6, # 12
|
||||
key_size = 12, # 20
|
||||
multi_probe_level = 1) #2
|
||||
|
||||
MIN_MATCH_COUNT = 10
|
||||
|
||||
'''
|
||||
image - image to track
|
||||
rect - tracked rectangle (x1, y1, x2, y2)
|
||||
keypoints - keypoints detected inside rect
|
||||
descrs - their descriptors
|
||||
data - some user-provided data
|
||||
'''
|
||||
PlanarTarget = namedtuple('PlaneTarget', 'image, rect, keypoints, descrs, data')
|
||||
|
||||
'''
|
||||
target - reference to PlanarTarget
|
||||
p0 - matched points coords in target image
|
||||
p1 - matched points coords in input frame
|
||||
H - homography matrix from p0 to p1
|
||||
quad - target bounary quad in input frame
|
||||
'''
|
||||
TrackedTarget = namedtuple('TrackedTarget', 'target, p0, p1, H, quad')
|
||||
|
||||
class PlaneTracker:
|
||||
def __init__(self):
|
||||
self.detector = cv2.ORB( nfeatures = 1000 )
|
||||
self.matcher = cv2.FlannBasedMatcher(flann_params, {}) # bug : need to pass empty dict (#1329)
|
||||
self.targets = []
|
||||
|
||||
def add_target(self, image, rect, data=None):
|
||||
'''Add a new tracking target.'''
|
||||
x0, y0, x1, y1 = rect
|
||||
raw_points, raw_descrs = self.detect_features(image)
|
||||
points, descs = [], []
|
||||
for kp, desc in zip(raw_points, raw_descrs):
|
||||
x, y = kp.pt
|
||||
if x0 <= x <= x1 and y0 <= y <= y1:
|
||||
points.append(kp)
|
||||
descs.append(desc)
|
||||
descs = np.uint8(descs)
|
||||
self.matcher.add([descs])
|
||||
target = PlanarTarget(image = image, rect=rect, keypoints = points, descrs=descs, data=None)
|
||||
self.targets.append(target)
|
||||
|
||||
def clear(self):
|
||||
'''Remove all targets'''
|
||||
self.targets = []
|
||||
self.matcher.clear()
|
||||
|
||||
def track(self, frame):
|
||||
'''Returns a list of detected TrackedTarget objects'''
|
||||
self.frame_points, self.frame_descrs = self.detect_features(frame)
|
||||
if len(self.frame_points) < MIN_MATCH_COUNT:
|
||||
return []
|
||||
matches = self.matcher.knnMatch(self.frame_descrs, k = 2)
|
||||
matches = [m[0] for m in matches if len(m) == 2 and m[0].distance < m[1].distance * 0.75]
|
||||
if len(matches) < MIN_MATCH_COUNT:
|
||||
return []
|
||||
matches_by_id = [[] for _ in xrange(len(self.targets))]
|
||||
for m in matches:
|
||||
matches_by_id[m.imgIdx].append(m)
|
||||
tracked = []
|
||||
for imgIdx, matches in enumerate(matches_by_id):
|
||||
if len(matches) < MIN_MATCH_COUNT:
|
||||
continue
|
||||
target = self.targets[imgIdx]
|
||||
p0 = [target.keypoints[m.trainIdx].pt for m in matches]
|
||||
p1 = [self.frame_points[m.queryIdx].pt for m in matches]
|
||||
p0, p1 = np.float32((p0, p1))
|
||||
H, status = cv2.findHomography(p0, p1, cv2.RANSAC, 3.0)
|
||||
status = status.ravel() != 0
|
||||
if status.sum() < MIN_MATCH_COUNT:
|
||||
continue
|
||||
p0, p1 = p0[status], p1[status]
|
||||
|
||||
x0, y0, x1, y1 = target.rect
|
||||
quad = np.float32([[x0, y0], [x1, y0], [x1, y1], [x0, y1]])
|
||||
quad = cv2.perspectiveTransform(quad.reshape(1, -1, 2), H).reshape(-1, 2)
|
||||
|
||||
track = TrackedTarget(target=target, p0=p0, p1=p1, H=H, quad=quad)
|
||||
tracked.append(track)
|
||||
tracked.sort(key = lambda t: len(t.p0), reverse=True)
|
||||
return tracked
|
||||
|
||||
def detect_features(self, frame):
|
||||
'''detect_features(self, frame) -> keypoints, descrs'''
|
||||
keypoints, descrs = self.detector.detectAndCompute(frame, None)
|
||||
if descrs is None: # detectAndCompute returns descs=None if not keypoints found
|
||||
descrs = []
|
||||
return keypoints, descrs
|
||||
|
||||
|
||||
class App:
|
||||
def __init__(self, src):
|
||||
self.cap = video.create_capture(src)
|
||||
self.frame = None
|
||||
self.paused = False
|
||||
self.tracker = PlaneTracker()
|
||||
|
||||
cv2.namedWindow('plane')
|
||||
self.rect_sel = common.RectSelector('plane', self.on_rect)
|
||||
|
||||
def on_rect(self, rect):
|
||||
self.tracker.add_target(self.frame, rect)
|
||||
|
||||
def run(self):
|
||||
while True:
|
||||
playing = not self.paused and not self.rect_sel.dragging
|
||||
if playing or self.frame is None:
|
||||
ret, frame = self.cap.read()
|
||||
if not ret:
|
||||
break
|
||||
self.frame = frame.copy()
|
||||
|
||||
vis = self.frame.copy()
|
||||
if playing:
|
||||
tracked = self.tracker.track(self.frame)
|
||||
for tr in tracked:
|
||||
cv2.polylines(vis, [np.int32(tr.quad)], True, (255, 255, 255), 2)
|
||||
for (x, y) in np.int32(tr.p1):
|
||||
cv2.circle(vis, (x, y), 2, (255, 255, 255))
|
||||
|
||||
self.rect_sel.draw(vis)
|
||||
cv2.imshow('plane', vis)
|
||||
ch = cv2.waitKey(1)
|
||||
if ch == ord(' '):
|
||||
self.paused = not self.paused
|
||||
if ch == ord('c'):
|
||||
self.tracker.clear()
|
||||
if ch == 27:
|
||||
break
|
||||
|
||||
if __name__ == '__main__':
|
||||
print __doc__
|
||||
|
||||
import sys
|
||||
try: video_src = sys.argv[1]
|
||||
except: video_src = 0
|
||||
App(video_src).run()
|
Loading…
x
Reference in New Issue
Block a user