Add ocl CLACH implementation.
Test cases (accuracy and performance) are provided.
This commit is contained in:
parent
4cf7a963a0
commit
1d8cd3a717
@ -483,6 +483,23 @@ namespace cv
|
||||
CV_EXPORTS void calcHist(const oclMat &mat_src, oclMat &mat_hist);
|
||||
//! only 8UC1 and 256 bins is supported now
|
||||
CV_EXPORTS void equalizeHist(const oclMat &mat_src, oclMat &mat_dst);
|
||||
|
||||
//! only 8UC1 is supported now
|
||||
class CV_EXPORTS CLAHE
|
||||
{
|
||||
public:
|
||||
virtual void apply(const oclMat &src, oclMat &dst) = 0;
|
||||
|
||||
virtual void setClipLimit(double clipLimit) = 0;
|
||||
virtual double getClipLimit() const = 0;
|
||||
|
||||
virtual void setTilesGridSize(Size tileGridSize) = 0;
|
||||
virtual Size getTilesGridSize() const = 0;
|
||||
|
||||
virtual void collectGarbage() = 0;
|
||||
};
|
||||
CV_EXPORTS Ptr<cv::ocl::CLAHE> createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8));
|
||||
|
||||
//! bilateralFilter
|
||||
// supports 8UC1 8UC4
|
||||
CV_EXPORTS void bilateralFilter(const oclMat& src, oclMat& dst, int d, double sigmaColor, double sigmaSpave, int borderType=BORDER_DEFAULT);
|
||||
|
@ -921,4 +921,51 @@ PERFTEST(remap)
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
///////////// CLAHE ////////////////////////
|
||||
PERFTEST(CLAHE)
|
||||
{
|
||||
Mat src, dst, ocl_dst;
|
||||
cv::ocl::oclMat d_src, d_dst;
|
||||
int all_type[] = {CV_8UC1};
|
||||
std::string type_name[] = {"CV_8UC1"};
|
||||
|
||||
double clipLimit = 40.0;
|
||||
|
||||
cv::Ptr<cv::CLAHE> clahe = cv::createCLAHE(clipLimit);
|
||||
cv::Ptr<cv::ocl::CLAHE> d_clahe = cv::ocl::createCLAHE(clipLimit);
|
||||
|
||||
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
|
||||
{
|
||||
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
|
||||
{
|
||||
SUBTEST << size << 'x' << size << "; " << type_name[j] ;
|
||||
|
||||
gen(src, size, size, all_type[j], 0, 256);
|
||||
|
||||
CPU_ON;
|
||||
clahe->apply(src, dst);
|
||||
CPU_OFF;
|
||||
|
||||
d_src.upload(src);
|
||||
|
||||
WARMUP_ON;
|
||||
d_clahe->apply(d_src, d_dst);
|
||||
WARMUP_OFF;
|
||||
|
||||
ocl_dst = d_dst;
|
||||
|
||||
TestSystem::instance().ExpectedMatNear(dst, ocl_dst, 1.0);
|
||||
|
||||
GPU_ON;
|
||||
d_clahe->apply(d_src, d_dst);
|
||||
GPU_OFF;
|
||||
|
||||
GPU_FULL_ON;
|
||||
d_src.upload(src);
|
||||
d_clahe->apply(d_src, d_dst);
|
||||
d_dst.download(dst);
|
||||
GPU_FULL_OFF;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -25,6 +25,7 @@
|
||||
// Xu Pang, pangxu010@163.com
|
||||
// Wu Zailong, bullet@yeah.net
|
||||
// Wenju He, wenju@multicorewareinc.com
|
||||
// Sen Liu, swjtuls1987@126.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
@ -80,6 +81,7 @@ namespace cv
|
||||
extern const char *imgproc_calcHarris;
|
||||
extern const char *imgproc_calcMinEigenVal;
|
||||
extern const char *imgproc_convolve;
|
||||
extern const char *imgproc_clahe;
|
||||
////////////////////////////////////OpenCL call wrappers////////////////////////////
|
||||
|
||||
template <typename T> struct index_and_sizeof;
|
||||
@ -1511,6 +1513,189 @@ namespace cv
|
||||
openCLExecuteKernel(clCxt, &imgproc_histogram, kernelName, globalThreads, localThreads, args, -1, -1);
|
||||
LUT(mat_src, lut, mat_dst);
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// CLAHE
|
||||
namespace clahe
|
||||
{
|
||||
inline int divUp(int total, int grain)
|
||||
{
|
||||
return (total + grain - 1) / grain * grain;
|
||||
}
|
||||
|
||||
static void calcLut(const oclMat &src, oclMat &dst,
|
||||
const int tilesX, const int tilesY, const cv::Size tileSize,
|
||||
const int clipLimit, const float lutScale)
|
||||
{
|
||||
cl_int2 tile_size;
|
||||
tile_size.s[0] = tileSize.width;
|
||||
tile_size.s[1] = tileSize.height;
|
||||
|
||||
std::vector<pair<size_t , const void *> > args;
|
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src.data ));
|
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data ));
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.step ));
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.step ));
|
||||
args.push_back( std::make_pair( sizeof(cl_int2), (void *)&tile_size ));
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&tilesX ));
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&clipLimit ));
|
||||
args.push_back( std::make_pair( sizeof(cl_float), (void *)&lutScale ));
|
||||
|
||||
String kernelName = "calcLut";
|
||||
size_t localThreads[3] = { 32, 8, 1 };
|
||||
size_t globalThreads[3] = { tilesX * localThreads[0], tilesY * localThreads[1], 1 };
|
||||
bool is_cpu = queryDeviceInfo<IS_CPU_DEVICE, bool>();
|
||||
if (is_cpu)
|
||||
{
|
||||
openCLExecuteKernel(Context::getContext(), &imgproc_clahe, kernelName, globalThreads, localThreads, args, -1, -1, (char*)" -D CPU");
|
||||
}
|
||||
else
|
||||
{
|
||||
cl_kernel kernel = openCLGetKernelFromSource(Context::getContext(), &imgproc_clahe, kernelName);
|
||||
int wave_size = queryDeviceInfo<WAVEFRONT_SIZE, int>(kernel);
|
||||
openCLSafeCall(clReleaseKernel(kernel));
|
||||
|
||||
static char opt[20] = {0};
|
||||
sprintf(opt, " -D WAVE_SIZE=%d", wave_size);
|
||||
openCLExecuteKernel(Context::getContext(), &imgproc_clahe, kernelName, globalThreads, localThreads, args, -1, -1, opt);
|
||||
}
|
||||
}
|
||||
|
||||
static void transform(const oclMat &src, oclMat &dst, const oclMat &lut,
|
||||
const int tilesX, const int tilesY, const cv::Size tileSize)
|
||||
{
|
||||
cl_int2 tile_size;
|
||||
tile_size.s[0] = tileSize.width;
|
||||
tile_size.s[1] = tileSize.height;
|
||||
|
||||
std::vector<pair<size_t , const void *> > args;
|
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src.data ));
|
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data ));
|
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&lut.data ));
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.step ));
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.step ));
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&lut.step ));
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.cols ));
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.rows ));
|
||||
args.push_back( std::make_pair( sizeof(cl_int2), (void *)&tile_size ));
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&tilesX ));
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&tilesY ));
|
||||
|
||||
String kernelName = "transform";
|
||||
size_t localThreads[3] = { 32, 8, 1 };
|
||||
size_t globalThreads[3] = { divUp(src.cols, localThreads[0]), divUp(src.rows, localThreads[1]), 1 };
|
||||
|
||||
openCLExecuteKernel(Context::getContext(), &imgproc_clahe, kernelName, globalThreads, localThreads, args, -1, -1);
|
||||
}
|
||||
}
|
||||
|
||||
namespace
|
||||
{
|
||||
class CLAHE_Impl : public cv::ocl::CLAHE
|
||||
{
|
||||
public:
|
||||
CLAHE_Impl(double clipLimit = 40.0, int tilesX = 8, int tilesY = 8);
|
||||
|
||||
cv::AlgorithmInfo* info() const;
|
||||
|
||||
void apply(const oclMat &src, oclMat &dst);
|
||||
|
||||
void setClipLimit(double clipLimit);
|
||||
double getClipLimit() const;
|
||||
|
||||
void setTilesGridSize(cv::Size tileGridSize);
|
||||
cv::Size getTilesGridSize() const;
|
||||
|
||||
void collectGarbage();
|
||||
|
||||
private:
|
||||
double clipLimit_;
|
||||
int tilesX_;
|
||||
int tilesY_;
|
||||
|
||||
oclMat srcExt_;
|
||||
oclMat lut_;
|
||||
};
|
||||
|
||||
CLAHE_Impl::CLAHE_Impl(double clipLimit, int tilesX, int tilesY) :
|
||||
clipLimit_(clipLimit), tilesX_(tilesX), tilesY_(tilesY)
|
||||
{
|
||||
}
|
||||
|
||||
void CLAHE_Impl::apply(const oclMat &src, oclMat &dst)
|
||||
{
|
||||
CV_Assert( src.type() == CV_8UC1 );
|
||||
|
||||
dst.create( src.size(), src.type() );
|
||||
|
||||
const int histSize = 256;
|
||||
|
||||
ensureSizeIsEnough(tilesX_ * tilesY_, histSize, CV_8UC1, lut_);
|
||||
|
||||
cv::Size tileSize;
|
||||
oclMat srcForLut;
|
||||
|
||||
if (src.cols % tilesX_ == 0 && src.rows % tilesY_ == 0)
|
||||
{
|
||||
tileSize = cv::Size(src.cols / tilesX_, src.rows / tilesY_);
|
||||
srcForLut = src;
|
||||
}
|
||||
else
|
||||
{
|
||||
cv::ocl::copyMakeBorder(src, srcExt_, 0, tilesY_ - (src.rows % tilesY_), 0, tilesX_ - (src.cols % tilesX_), cv::BORDER_REFLECT_101, cv::Scalar());
|
||||
|
||||
tileSize = cv::Size(srcExt_.cols / tilesX_, srcExt_.rows / tilesY_);
|
||||
srcForLut = srcExt_;
|
||||
}
|
||||
|
||||
const int tileSizeTotal = tileSize.area();
|
||||
const float lutScale = static_cast<float>(histSize - 1) / tileSizeTotal;
|
||||
|
||||
int clipLimit = 0;
|
||||
if (clipLimit_ > 0.0)
|
||||
{
|
||||
clipLimit = static_cast<int>(clipLimit_ * tileSizeTotal / histSize);
|
||||
clipLimit = std::max(clipLimit, 1);
|
||||
}
|
||||
|
||||
clahe::calcLut(srcForLut, lut_, tilesX_, tilesY_, tileSize, clipLimit, lutScale);
|
||||
//finish();
|
||||
clahe::transform(src, dst, lut_, tilesX_, tilesY_, tileSize);
|
||||
}
|
||||
|
||||
void CLAHE_Impl::setClipLimit(double clipLimit)
|
||||
{
|
||||
clipLimit_ = clipLimit;
|
||||
}
|
||||
|
||||
double CLAHE_Impl::getClipLimit() const
|
||||
{
|
||||
return clipLimit_;
|
||||
}
|
||||
|
||||
void CLAHE_Impl::setTilesGridSize(cv::Size tileGridSize)
|
||||
{
|
||||
tilesX_ = tileGridSize.width;
|
||||
tilesY_ = tileGridSize.height;
|
||||
}
|
||||
|
||||
cv::Size CLAHE_Impl::getTilesGridSize() const
|
||||
{
|
||||
return cv::Size(tilesX_, tilesY_);
|
||||
}
|
||||
|
||||
void CLAHE_Impl::collectGarbage()
|
||||
{
|
||||
srcExt_.release();
|
||||
lut_.release();
|
||||
}
|
||||
}
|
||||
|
||||
cv::Ptr<cv::ocl::CLAHE> createCLAHE(double clipLimit, cv::Size tileGridSize)
|
||||
{
|
||||
return new CLAHE_Impl(clipLimit, tileGridSize.width, tileGridSize.height);
|
||||
}
|
||||
|
||||
//////////////////////////////////bilateralFilter////////////////////////////////////////////////////
|
||||
static void
|
||||
oclbilateralFilter_8u( const oclMat &src, oclMat &dst, int d,
|
||||
|
275
modules/ocl/src/opencl/imgproc_clahe.cl
Normal file
275
modules/ocl/src/opencl/imgproc_clahe.cl
Normal file
@ -0,0 +1,275 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Sen Liu, swjtuls1987@126.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other oclMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors as is and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef WAVE_SIZE
|
||||
#define WAVE_SIZE 1
|
||||
#endif
|
||||
|
||||
int calc_lut(__local int* smem, int val, int tid)
|
||||
{
|
||||
smem[tid] = val;
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (tid == 0)
|
||||
{
|
||||
for (int i = 1; i < 256; ++i)
|
||||
{
|
||||
smem[i] += smem[i - 1];
|
||||
}
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
return smem[tid];
|
||||
}
|
||||
|
||||
#ifdef CPU
|
||||
void reduce(volatile __local int* smem, int val, int tid)
|
||||
{
|
||||
smem[tid] = val;
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (tid < 128)
|
||||
{
|
||||
smem[tid] = val += smem[tid + 128];
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (tid < 64)
|
||||
{
|
||||
smem[tid] = val += smem[tid + 64];
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (tid < 32)
|
||||
{
|
||||
smem[tid] += smem[tid + 32];
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (tid < 16)
|
||||
{
|
||||
smem[tid] += smem[tid + 16];
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (tid < 8)
|
||||
{
|
||||
smem[tid] += smem[tid + 8];
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (tid < 4)
|
||||
{
|
||||
smem[tid] += smem[tid + 4];
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (tid < 2)
|
||||
{
|
||||
smem[tid] += smem[tid + 2];
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (tid < 1)
|
||||
{
|
||||
smem[256] = smem[tid] + smem[tid + 1];
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
#else
|
||||
void reduce(__local volatile int* smem, int val, int tid)
|
||||
{
|
||||
smem[tid] = val;
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (tid < 128)
|
||||
{
|
||||
smem[tid] = val += smem[tid + 128];
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (tid < 64)
|
||||
{
|
||||
smem[tid] = val += smem[tid + 64];
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (tid < 32)
|
||||
{
|
||||
smem[tid] += smem[tid + 32];
|
||||
#if WAVE_SIZE < 32
|
||||
} barrier(CLK_LOCAL_MEM_FENCE);
|
||||
if (tid < 16) {
|
||||
#endif
|
||||
smem[tid] += smem[tid + 16];
|
||||
#if WAVE_SIZE < 16
|
||||
} barrier(CLK_LOCAL_MEM_FENCE);
|
||||
if (tid < 8) {
|
||||
#endif
|
||||
smem[tid] += smem[tid + 8];
|
||||
smem[tid] += smem[tid + 4];
|
||||
smem[tid] += smem[tid + 2];
|
||||
smem[tid] += smem[tid + 1];
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
__kernel void calcLut(__global __const uchar * src, __global uchar * lut,
|
||||
const int srcStep, const int dstStep,
|
||||
const int2 tileSize, const int tilesX,
|
||||
const int clipLimit, const float lutScale)
|
||||
{
|
||||
__local int smem[512];
|
||||
|
||||
const int tx = get_group_id(0);
|
||||
const int ty = get_group_id(1);
|
||||
const unsigned int tid = get_local_id(1) * get_local_size(0)
|
||||
+ get_local_id(0);
|
||||
|
||||
smem[tid] = 0;
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
for (int i = get_local_id(1); i < tileSize.y; i += get_local_size(1))
|
||||
{
|
||||
__global const uchar* srcPtr = src + mad24( ty * tileSize.y + i,
|
||||
srcStep, tx * tileSize.x );
|
||||
for (int j = get_local_id(0); j < tileSize.x; j += get_local_size(0))
|
||||
{
|
||||
const int data = srcPtr[j];
|
||||
atomic_inc(&smem[data]);
|
||||
}
|
||||
}
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
int tHistVal = smem[tid];
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (clipLimit > 0)
|
||||
{
|
||||
// clip histogram bar
|
||||
|
||||
int clipped = 0;
|
||||
if (tHistVal > clipLimit)
|
||||
{
|
||||
clipped = tHistVal - clipLimit;
|
||||
tHistVal = clipLimit;
|
||||
}
|
||||
|
||||
// find number of overall clipped samples
|
||||
|
||||
reduce(smem, clipped, tid);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
#ifdef CPU
|
||||
clipped = smem[256];
|
||||
#else
|
||||
clipped = smem[0];
|
||||
#endif
|
||||
|
||||
// broadcast evaluated value
|
||||
|
||||
__local int totalClipped;
|
||||
|
||||
if (tid == 0)
|
||||
totalClipped = clipped;
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
// redistribute clipped samples evenly
|
||||
|
||||
int redistBatch = totalClipped / 256;
|
||||
tHistVal += redistBatch;
|
||||
|
||||
int residual = totalClipped - redistBatch * 256;
|
||||
if (tid < residual)
|
||||
++tHistVal;
|
||||
}
|
||||
|
||||
const int lutVal = calc_lut(smem, tHistVal, tid);
|
||||
uint ires = (uint)convert_int_rte(lutScale * lutVal);
|
||||
lut[(ty * tilesX + tx) * dstStep + tid] =
|
||||
convert_uchar(clamp(ires, (uint)0, (uint)255));
|
||||
}
|
||||
|
||||
__kernel void transform(__global __const uchar * src,
|
||||
__global uchar * dst,
|
||||
__global uchar * lut,
|
||||
const int srcStep, const int dstStep, const int lutStep,
|
||||
const int cols, const int rows,
|
||||
const int2 tileSize,
|
||||
const int tilesX, const int tilesY)
|
||||
{
|
||||
const int x = get_global_id(0);
|
||||
const int y = get_global_id(1);
|
||||
|
||||
if (x >= cols || y >= rows)
|
||||
return;
|
||||
|
||||
const float tyf = (convert_float(y) / tileSize.y) - 0.5f;
|
||||
int ty1 = convert_int_rtn(tyf);
|
||||
int ty2 = ty1 + 1;
|
||||
const float ya = tyf - ty1;
|
||||
ty1 = max(ty1, 0);
|
||||
ty2 = min(ty2, tilesY - 1);
|
||||
|
||||
const float txf = (convert_float(x) / tileSize.x) - 0.5f;
|
||||
int tx1 = convert_int_rtn(txf);
|
||||
int tx2 = tx1 + 1;
|
||||
const float xa = txf - tx1;
|
||||
tx1 = max(tx1, 0);
|
||||
tx2 = min(tx2, tilesX - 1);
|
||||
|
||||
const int srcVal = src[mad24(y, srcStep, x)];
|
||||
|
||||
float res = 0;
|
||||
|
||||
res += lut[mad24(ty1 * tilesX + tx1, lutStep, srcVal)] * ((1.0f - xa) * (1.0f - ya));
|
||||
res += lut[mad24(ty1 * tilesX + tx2, lutStep, srcVal)] * ((xa) * (1.0f - ya));
|
||||
res += lut[mad24(ty2 * tilesX + tx1, lutStep, srcVal)] * ((1.0f - xa) * (ya));
|
||||
res += lut[mad24(ty2 * tilesX + tx2, lutStep, srcVal)] * ((xa) * (ya));
|
||||
|
||||
uint ires = (uint)convert_int_rte(res);
|
||||
dst[mad24(y, dstStep, x)] = convert_uchar(clamp(ires, (uint)0, (uint)255));
|
||||
}
|
@ -23,6 +23,7 @@
|
||||
// Rock Li, Rock.Li@amd.com
|
||||
// Wu Zailong, bullet@yeah.net
|
||||
// Xu Pang, pangxu010@163.com
|
||||
// Sen Liu, swjtuls1987@126.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
@ -1393,6 +1394,46 @@ TEST_P(calcHist, Mat)
|
||||
EXPECT_MAT_NEAR(dst_hist, cpu_hist, 0.0);
|
||||
}
|
||||
}
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// CLAHE
|
||||
namespace
|
||||
{
|
||||
IMPLEMENT_PARAM_CLASS(ClipLimit, double)
|
||||
}
|
||||
|
||||
PARAM_TEST_CASE(CLAHE, cv::Size, ClipLimit)
|
||||
{
|
||||
cv::Size size;
|
||||
double clipLimit;
|
||||
|
||||
cv::Mat src;
|
||||
cv::Mat dst_gold;
|
||||
|
||||
cv::ocl::oclMat g_src;
|
||||
cv::ocl::oclMat g_dst;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
size = GET_PARAM(0);
|
||||
clipLimit = GET_PARAM(1);
|
||||
|
||||
cv::RNG &rng = TS::ptr()->get_rng();
|
||||
src = randomMat(rng, size, CV_8UC1, 0, 256, false);
|
||||
g_src.upload(src);
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(CLAHE, Accuracy)
|
||||
{
|
||||
cv::Ptr<cv::ocl::CLAHE> clahe = cv::ocl::createCLAHE(clipLimit);
|
||||
clahe->apply(g_src, g_dst);
|
||||
cv::Mat dst(g_dst);
|
||||
|
||||
cv::Ptr<cv::CLAHE> clahe_gold = cv::createCLAHE(clipLimit);
|
||||
clahe_gold->apply(src, dst_gold);
|
||||
|
||||
EXPECT_MAT_NEAR(dst_gold, dst, 1.0);
|
||||
}
|
||||
|
||||
///////////////////////////Convolve//////////////////////////////////
|
||||
PARAM_TEST_CASE(ConvolveTestBase, MatType, bool)
|
||||
@ -1643,6 +1684,10 @@ INSTANTIATE_TEST_CASE_P(histTestBase, calcHist, Combine(
|
||||
ONE_TYPE(CV_32SC1) //no use
|
||||
));
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(ImgProc, CLAHE, Combine(
|
||||
Values(cv::Size(128, 128), cv::Size(113, 113), cv::Size(1300, 1300)),
|
||||
Values(0.0, 40.0)));
|
||||
|
||||
//INSTANTIATE_TEST_CASE_P(ConvolveTestBase, Convolve, Combine(
|
||||
// Values(CV_32FC1, CV_32FC1),
|
||||
// Values(false))); // Values(false) is the reserved parameter
|
||||
|
Loading…
x
Reference in New Issue
Block a user