refactor CUDA FAST feature detector algorithm:

use new FastFeatureDetector abstract interface and hidden implementation
This commit is contained in:
Vladislav Vinogradov
2015-01-12 18:11:09 +03:00
parent 6f91b7f6a4
commit 14ef62ed66
7 changed files with 213 additions and 216 deletions

View File

@@ -47,124 +47,162 @@ using namespace cv::cuda;
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
cv::cuda::FAST_CUDA::FAST_CUDA(int, bool, double) { throw_no_cuda(); }
void cv::cuda::FAST_CUDA::operator ()(const GpuMat&, const GpuMat&, GpuMat&) { throw_no_cuda(); }
void cv::cuda::FAST_CUDA::operator ()(const GpuMat&, const GpuMat&, std::vector<KeyPoint>&) { throw_no_cuda(); }
void cv::cuda::FAST_CUDA::downloadKeypoints(const GpuMat&, std::vector<KeyPoint>&) { throw_no_cuda(); }
void cv::cuda::FAST_CUDA::convertKeypoints(const Mat&, std::vector<KeyPoint>&) { throw_no_cuda(); }
void cv::cuda::FAST_CUDA::release() { throw_no_cuda(); }
int cv::cuda::FAST_CUDA::calcKeyPointsLocation(const GpuMat&, const GpuMat&) { throw_no_cuda(); return 0; }
int cv::cuda::FAST_CUDA::getKeyPoints(GpuMat&) { throw_no_cuda(); return 0; }
Ptr<FastFeatureDetector> cv::cuda::FastFeatureDetector::create(int, bool, int, int) { throw_no_cuda(); return Ptr<FastFeatureDetector>(); }
#else /* !defined (HAVE_CUDA) */
cv::cuda::FAST_CUDA::FAST_CUDA(int _threshold, bool _nonmaxSuppression, double _keypointsRatio) :
nonmaxSuppression(_nonmaxSuppression), threshold(_threshold), keypointsRatio(_keypointsRatio), count_(0)
{
}
void cv::cuda::FAST_CUDA::operator ()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints)
{
if (image.empty())
return;
(*this)(image, mask, d_keypoints_);
downloadKeypoints(d_keypoints_, keypoints);
}
void cv::cuda::FAST_CUDA::downloadKeypoints(const GpuMat& d_keypoints, std::vector<KeyPoint>& keypoints)
{
if (d_keypoints.empty())
return;
Mat h_keypoints(d_keypoints);
convertKeypoints(h_keypoints, keypoints);
}
void cv::cuda::FAST_CUDA::convertKeypoints(const Mat& h_keypoints, std::vector<KeyPoint>& keypoints)
{
if (h_keypoints.empty())
return;
CV_Assert(h_keypoints.rows == ROWS_COUNT && h_keypoints.elemSize() == 4);
int npoints = h_keypoints.cols;
keypoints.resize(npoints);
const short2* loc_row = h_keypoints.ptr<short2>(LOCATION_ROW);
const float* response_row = h_keypoints.ptr<float>(RESPONSE_ROW);
for (int i = 0; i < npoints; ++i)
{
KeyPoint kp(loc_row[i].x, loc_row[i].y, static_cast<float>(FEATURE_SIZE), -1, response_row[i]);
keypoints[i] = kp;
}
}
void cv::cuda::FAST_CUDA::operator ()(const GpuMat& img, const GpuMat& mask, GpuMat& keypoints)
{
calcKeyPointsLocation(img, mask);
keypoints.cols = getKeyPoints(keypoints);
}
namespace cv { namespace cuda { namespace device
{
namespace fast
{
int calcKeypoints_gpu(PtrStepSzb img, PtrStepSzb mask, short2* kpLoc, int maxKeypoints, PtrStepSzi score, int threshold);
int nonmaxSuppression_gpu(const short2* kpLoc, int count, PtrStepSzi score, short2* loc, float* response);
int calcKeypoints_gpu(PtrStepSzb img, PtrStepSzb mask, short2* kpLoc, int maxKeypoints, PtrStepSzi score, int threshold, cudaStream_t stream);
int nonmaxSuppression_gpu(const short2* kpLoc, int count, PtrStepSzi score, short2* loc, float* response, cudaStream_t stream);
}
}}}
int cv::cuda::FAST_CUDA::calcKeyPointsLocation(const GpuMat& img, const GpuMat& mask)
namespace
{
using namespace cv::cuda::device::fast;
CV_Assert(img.type() == CV_8UC1);
CV_Assert(mask.empty() || (mask.type() == CV_8UC1 && mask.size() == img.size()));
int maxKeypoints = static_cast<int>(keypointsRatio * img.size().area());
ensureSizeIsEnough(1, maxKeypoints, CV_16SC2, kpLoc_);
if (nonmaxSuppression)
class FAST_Impl : public cv::cuda::FastFeatureDetector
{
public:
FAST_Impl(int threshold, bool nonmaxSuppression, int max_npoints);
virtual void detect(InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask);
virtual void detectAsync(InputArray _image, OutputArray _keypoints, InputArray _mask, Stream& stream);
virtual void convert(InputArray _gpu_keypoints, std::vector<KeyPoint>& keypoints);
virtual void setThreshold(int threshold) { threshold_ = threshold; }
virtual int getThreshold() const { return threshold_; }
virtual void setNonmaxSuppression(bool f) { nonmaxSuppression_ = f; }
virtual bool getNonmaxSuppression() const { return nonmaxSuppression_; }
virtual void setMaxNumPoints(int max_npoints) { max_npoints_ = max_npoints; }
virtual int getMaxNumPoints() const { return max_npoints_; }
virtual void setType(int type) { CV_Assert( type == TYPE_9_16 ); }
virtual int getType() const { return TYPE_9_16; }
private:
int threshold_;
bool nonmaxSuppression_;
int max_npoints_;
};
FAST_Impl::FAST_Impl(int threshold, bool nonmaxSuppression, int max_npoints) :
threshold_(threshold), nonmaxSuppression_(nonmaxSuppression), max_npoints_(max_npoints)
{
ensureSizeIsEnough(img.size(), CV_32SC1, score_);
score_.setTo(Scalar::all(0));
}
count_ = calcKeypoints_gpu(img, mask, kpLoc_.ptr<short2>(), maxKeypoints, nonmaxSuppression ? score_ : PtrStepSzi(), threshold);
count_ = std::min(count_, maxKeypoints);
void FAST_Impl::detect(InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask)
{
if (_image.empty())
{
keypoints.clear();
return;
}
return count_;
BufferPool pool(Stream::Null());
GpuMat d_keypoints = pool.getBuffer(ROWS_COUNT, max_npoints_, CV_16SC2);
detectAsync(_image, d_keypoints, _mask, Stream::Null());
convert(d_keypoints, keypoints);
}
void FAST_Impl::detectAsync(InputArray _image, OutputArray _keypoints, InputArray _mask, Stream& stream)
{
using namespace cv::cuda::device::fast;
const GpuMat img = _image.getGpuMat();
const GpuMat mask = _mask.getGpuMat();
CV_Assert( img.type() == CV_8UC1 );
CV_Assert( mask.empty() || (mask.type() == CV_8UC1 && mask.size() == img.size()) );
BufferPool pool(stream);
GpuMat kpLoc = pool.getBuffer(1, max_npoints_, CV_16SC2);
GpuMat score;
if (nonmaxSuppression_)
{
score = pool.getBuffer(img.size(), CV_32SC1);
score.setTo(Scalar::all(0), stream);
}
int count = calcKeypoints_gpu(img, mask, kpLoc.ptr<short2>(), max_npoints_, score, threshold_, StreamAccessor::getStream(stream));
count = std::min(count, max_npoints_);
if (count == 0)
{
_keypoints.release();
return;
}
ensureSizeIsEnough(ROWS_COUNT, count, CV_32FC1, _keypoints);
GpuMat& keypoints = _keypoints.getGpuMatRef();
if (nonmaxSuppression_)
{
count = nonmaxSuppression_gpu(kpLoc.ptr<short2>(), count, score, keypoints.ptr<short2>(LOCATION_ROW), keypoints.ptr<float>(RESPONSE_ROW), StreamAccessor::getStream(stream));
if (count == 0)
{
keypoints.release();
}
else
{
keypoints.cols = count;
}
}
else
{
GpuMat locRow(1, count, kpLoc.type(), keypoints.ptr(0));
kpLoc.colRange(0, count).copyTo(locRow, stream);
keypoints.row(1).setTo(Scalar::all(0), stream);
}
}
void FAST_Impl::convert(InputArray _gpu_keypoints, std::vector<KeyPoint>& keypoints)
{
if (_gpu_keypoints.empty())
{
keypoints.clear();
return;
}
Mat h_keypoints;
if (_gpu_keypoints.kind() == _InputArray::CUDA_GPU_MAT)
{
_gpu_keypoints.getGpuMat().download(h_keypoints);
}
else
{
h_keypoints = _gpu_keypoints.getMat();
}
CV_Assert( h_keypoints.rows == ROWS_COUNT );
CV_Assert( h_keypoints.elemSize() == 4 );
const int npoints = h_keypoints.cols;
keypoints.resize(npoints);
const short2* loc_row = h_keypoints.ptr<short2>(LOCATION_ROW);
const float* response_row = h_keypoints.ptr<float>(RESPONSE_ROW);
for (int i = 0; i < npoints; ++i)
{
KeyPoint kp(loc_row[i].x, loc_row[i].y, static_cast<float>(FEATURE_SIZE), -1, response_row[i]);
keypoints[i] = kp;
}
}
}
int cv::cuda::FAST_CUDA::getKeyPoints(GpuMat& keypoints)
Ptr<cv::cuda::FastFeatureDetector> cv::cuda::FastFeatureDetector::create(int threshold, bool nonmaxSuppression, int type, int max_npoints)
{
using namespace cv::cuda::device::fast;
if (count_ == 0)
return 0;
ensureSizeIsEnough(ROWS_COUNT, count_, CV_32FC1, keypoints);
if (nonmaxSuppression)
return nonmaxSuppression_gpu(kpLoc_.ptr<short2>(), count_, score_, keypoints.ptr<short2>(LOCATION_ROW), keypoints.ptr<float>(RESPONSE_ROW));
GpuMat locRow(1, count_, kpLoc_.type(), keypoints.ptr(0));
kpLoc_.colRange(0, count_).copyTo(locRow);
keypoints.row(1).setTo(Scalar::all(0));
return count_;
}
void cv::cuda::FAST_CUDA::release()
{
kpLoc_.release();
score_.release();
d_keypoints_.release();
CV_Assert( type == TYPE_9_16 );
return makePtr<FAST_Impl>(threshold, nonmaxSuppression, max_npoints);
}
#endif /* !defined (HAVE_CUDA) */