fixed features2d (ORB) compile errors on Windows

This commit is contained in:
Vadim Pisarevsky 2011-05-23 07:58:35 +00:00
parent 71ebe377fc
commit 145a76faf4
5 changed files with 33 additions and 44 deletions

View File

@ -1496,7 +1496,7 @@ size_t CirclesGridFinder::getFirstCorner(vector<Point> &largeCornerIndices, vect
int cornerIdx = 0; int cornerIdx = 0;
bool waitOutsider = true; bool waitOutsider = true;
while (true) for(;;)
{ {
if (waitOutsider) if (waitOutsider)
{ {

View File

@ -404,24 +404,17 @@ public:
class CV_EXPORTS ORB class CV_EXPORTS ORB
{ {
public: public:
enum PatchSize
{
PATCH_LEARNED_31 = 31
};
/** the size of the signature in bytes */ /** the size of the signature in bytes */
static const int kBytes = 32; enum { kBytes = 32 };
struct CommonParams struct CV_EXPORTS CommonParams
{ {
static const unsigned int DEFAULT_N_LEVELS = 3; enum { DEFAULT_N_LEVELS = 3, DEFAULT_FIRST_LEVEL = 0, DEFAULT_PATCH_SIZE = 31 };
static const float DEFAULT_SCALE_FACTOR;
static const unsigned int DEFAULT_FIRST_LEVEL = 0;
static const PatchSize DEFAULT_PATCH_SIZE;
/** default constructor */ /** default constructor */
CommonParams(float scale_factor = DEFAULT_SCALE_FACTOR, unsigned int n_levels = DEFAULT_N_LEVELS, CommonParams(float scale_factor = 1.2f, unsigned int n_levels = DEFAULT_N_LEVELS,
unsigned int first_level = DEFAULT_FIRST_LEVEL, PatchSize patch_size = DEFAULT_PATCH_SIZE) : unsigned int first_level = DEFAULT_FIRST_LEVEL, int patch_size = DEFAULT_PATCH_SIZE) :
scale_factor_(scale_factor), n_levels_(n_levels), first_level_(first_level >= n_levels ? 0 : first_level), scale_factor_(scale_factor), n_levels_(n_levels), first_level_(first_level >= n_levels ? 0 : first_level),
patch_size_(patch_size) patch_size_(patch_size)
{ {
@ -438,7 +431,7 @@ public:
*/ */
unsigned int first_level_; unsigned int first_level_;
/** The size of the patch that will be used for orientation and comparisons */ /** The size of the patch that will be used for orientation and comparisons */
PatchSize patch_size_; int patch_size_;
}; };
/** Default Constructor */ /** Default Constructor */

View File

@ -444,8 +444,7 @@ void ORB::CommonParams::read(const FileNode& fn)
scale_factor_ = fn["scaleFactor"]; scale_factor_ = fn["scaleFactor"];
n_levels_ = int(fn["nLevels"]); n_levels_ = int(fn["nLevels"]);
first_level_ = int(fn["firsLevel"]); first_level_ = int(fn["firsLevel"]);
int patch_size = fn["patchSize"]; patch_size_ = fn["patchSize"];
patch_size_ = PatchSize(patch_size);
} }
void ORB::CommonParams::write(FileStorage& fs) const void ORB::CommonParams::write(FileStorage& fs) const

View File

@ -75,8 +75,8 @@ template<typename PatchType, typename SumType>
for (size_t u = 0; u <= 6; u++, ++dX_data, ++dY_data) for (size_t u = 0; u <= 6; u++, ++dX_data, ++dY_data)
{ {
// 1, 2 for Sobel, 3 and 10 for Scharr // 1, 2 for Sobel, 3 and 10 for Scharr
float Ix = 1 * (*dX_data + *(dX_data + 14)) + 2 * (*(dX_data + 7)); float Ix = (float)(1 * (*dX_data + *(dX_data + 14)) + 2 * (*(dX_data + 7)));
float Iy = 1 * (*dY_data + *(dY_data + 2)) + 2 * (*(dY_data + 1)); float Iy = (float)(1 * (*dY_data + *(dY_data + 2)) + 2 * (*(dY_data + 1)));
a += Ix * Ix; a += Ix * Ix;
b += Iy * Iy; b += Iy * Iy;
@ -154,8 +154,8 @@ HarrisResponse::HarrisResponse(const cv::Mat& image, double k) :
void HarrisResponse::operator()(std::vector<cv::KeyPoint>& kpts) const void HarrisResponse::operator()(std::vector<cv::KeyPoint>& kpts) const
{ {
// Those parameters are used to match the OpenCV computation of Harris corners // Those parameters are used to match the OpenCV computation of Harris corners
float scale = (1 << 2) * 7.0 * 255.0; float scale = (1 << 2) * 7.0f * 255.0f;
scale = 1.0 / scale; scale = 1.0f / scale;
float scale_sq_sq = scale * scale * scale * scale; float scale_sq_sq = scale * scale * scale * scale;
// define it to 1 if you want to compare to what OpenCV computes // define it to 1 if you want to compare to what OpenCV computes
@ -166,10 +166,10 @@ void HarrisResponse::operator()(std::vector<cv::KeyPoint>& kpts) const
#endif #endif
for (std::vector<cv::KeyPoint>::iterator kpt = kpts.begin(), kpt_end = kpts.end(); kpt != kpt_end; ++kpt) for (std::vector<cv::KeyPoint>::iterator kpt = kpts.begin(), kpt_end = kpts.end(); kpt != kpt_end; ++kpt)
{ {
cv::Mat patch = image_(cv::Rect(kpt->pt.x - 4, kpt->pt.y - 4, 9, 9)); cv::Mat patch = image_(cv::Rect(cvRound(kpt->pt.x) - 4, cvRound(kpt->pt.y) - 4, 9, 9));
// Compute the response // Compute the response
kpt->response = harris<uchar, int> (patch, k_, dX_offsets_, dY_offsets_) * scale_sq_sq; kpt->response = harris<uchar, int> (patch, (float)k_, dX_offsets_, dY_offsets_) * scale_sq_sq;
#if HARRIS_TEST #if HARRIS_TEST
cv::Mat_<float> Ix(9, 9), Iy(9, 9); cv::Mat_<float> Ix(9, 9), Iy(9, 9);
@ -225,7 +225,7 @@ template<typename SumType>
// Go line by line in the circular patch // Go line by line in the circular patch
std::vector<int>::const_iterator horizontal_iterator = horizontal_offsets.begin(), vertical_iterator = std::vector<int>::const_iterator horizontal_iterator = horizontal_offsets.begin(), vertical_iterator =
vertical_offsets.begin(); vertical_offsets.begin();
const SumType* val_ptr = &(integral_image.at<SumType> (kpt.pt.y, kpt.pt.x)); const SumType* val_ptr = &(integral_image.at<SumType> (cvRound(kpt.pt.y), cvRound(kpt.pt.x)));
for (int uv = 1; uv <= half_k; ++uv) for (int uv = 1; uv <= half_k; ++uv)
{ {
// Do the horizontal lines // Do the horizontal lines
@ -239,8 +239,8 @@ template<typename SumType>
vertical_iterator += 8; vertical_iterator += 8;
} }
float x = m_10; float x = (float)m_10;
float y = m_01; float y = (float)m_01;
kpt.angle = cv::fastAtan2(y, x); kpt.angle = cv::fastAtan2(y, x);
} }
@ -249,7 +249,7 @@ template<typename PatchType, typename SumType>
{ {
SumType m_01 = 0, m_10 = 0/*, m_00 = 0*/; SumType m_01 = 0, m_10 = 0/*, m_00 = 0*/;
const PatchType* val_center_ptr_plus = &(image.at<PatchType> (kpt.pt.y, kpt.pt.x)), *val_center_ptr_minus; const PatchType* val_center_ptr_plus = &(image.at<PatchType> (cvRound(kpt.pt.y), cvRound(kpt.pt.x))), *val_center_ptr_minus;
// Treat the center line differently, v=0 // Treat the center line differently, v=0
@ -279,8 +279,8 @@ template<typename PatchType, typename SumType>
m_01 += v * v_sum; m_01 += v * v_sum;
} }
float x = m_10;// / float(m_00);// / m_00; float x = (float)m_10;// / float(m_00);// / m_00;
float y = m_01;// / float(m_00);// / m_00; float y = (float)m_01;// / float(m_00);// / m_00;
kpt.angle = cv::fastAtan2(y, x); kpt.angle = cv::fastAtan2(y, x);
} }
@ -291,9 +291,9 @@ inline int smoothedSum(const int *center, const int* int_diff)
return *(center + int_diff[2]) - *(center + int_diff[3]) - *(center + int_diff[1]) + *(center + int_diff[0]); return *(center + int_diff[2]) - *(center + int_diff[3]) - *(center + int_diff[1]) + *(center + int_diff[0]);
} }
inline char smoothed_comparison(const int * center, const int* diff, int l, int m) inline uchar smoothed_comparison(const int * center, const int* diff, int l, int m)
{ {
static const char score[] = {1 << 0, 1 << 1, 1 << 2, 1 << 3, 1 << 4, 1 << 5, 1 << 6, 1 << 7}; static const uchar score[] = {1 << 0, 1 << 1, 1 << 2, 1 << 3, 1 << 4, 1 << 5, 1 << 6, 1 << 7};
return (smoothedSum(center, diff + l) < smoothedSum(center, diff + l + 4)) ? score[m] : 0; return (smoothedSum(center, diff + l) < smoothedSum(center, diff + l + 4)) ? score[m] : 0;
} }
} }
@ -388,21 +388,21 @@ public:
private: private:
static inline int angle2Wedge(float angle) static inline int angle2Wedge(float angle)
{ {
return (angle / 360) * kNumAngles; return cvRound((angle / 360) * kNumAngles);
} }
void generateRelativePattern(int angle_idx, int sz, cv::Mat & relative_pattern) void generateRelativePattern(int angle_idx, int /*sz*/, cv::Mat & relative_pattern)
{ {
// Create the relative pattern // Create the relative pattern
relative_pattern.create(512, 4, CV_32SC1); relative_pattern.create(512, 4, CV_32SC1);
int * relative_pattern_data = reinterpret_cast<int*> (relative_pattern.data); int * relative_pattern_data = reinterpret_cast<int*> (relative_pattern.data);
// Get the original rotated pattern // Get the original rotated pattern
const int * pattern_data; const int * pattern_data;
switch (sz) //switch (sz)
{ {
default: //default:
pattern_data = reinterpret_cast<int*> (rotated_patterns_[angle_idx].data); pattern_data = reinterpret_cast<int*> (rotated_patterns_[angle_idx].data);
break; //break;
} }
int half_kernel = ORB::kKernelWidth / 2; int half_kernel = ORB::kKernelWidth / 2;
@ -421,7 +421,7 @@ private:
static cv::Mat getRotationMat(int angle_idx) static cv::Mat getRotationMat(int angle_idx)
{ {
float a = float(angle_idx) / kNumAngles * CV_PI * 2; float a = float(float(angle_idx) / kNumAngles * CV_PI * 2);
return (cv::Mat_<float>(2, 2) << cos(a), -sin(a), sin(a), cos(a)); return (cv::Mat_<float>(2, 2) << cos(a), -sin(a), sin(a), cos(a));
} }
@ -443,13 +443,10 @@ private:
std::vector<cv::Mat> ORB::OrbPatterns::rotated_patterns_ = OrbPatterns::generateRotatedPatterns(); std::vector<cv::Mat> ORB::OrbPatterns::rotated_patterns_ = OrbPatterns::generateRotatedPatterns();
//this is the definition for BIT_PATTERN //this is the definition for BIT_PATTERN
#include "orb_pattern.i" #include "orb_pattern.hpp"
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
const float ORB::CommonParams::DEFAULT_SCALE_FACTOR = 1.2;
const ORB::PatchSize ORB::CommonParams::DEFAULT_PATCH_SIZE = ORB::PATCH_LEARNED_31;
/** Constructor /** Constructor
* @param detector_params parameters to use * @param detector_params parameters to use
*/ */
@ -457,12 +454,12 @@ ORB::ORB(size_t n_features, const CommonParams & detector_params) :
params_(detector_params), n_features_(n_features) params_(detector_params), n_features_(n_features)
{ {
// fill the extractors and descriptors for the corresponding scales // fill the extractors and descriptors for the corresponding scales
int n_desired_features_per_scale = n_features / ((1.0 / std::pow(params_.scale_factor_, 2.f * params_.n_levels_) - 1) int n_desired_features_per_scale = cvRound(n_features / ((1.0 / std::pow(params_.scale_factor_, 2.f * params_.n_levels_) - 1)
/ (1.0 / std::pow(params_.scale_factor_, 2) - 1)); / (1.0 / std::pow(params_.scale_factor_, 2) - 1)));
n_features_per_level_.resize(detector_params.n_levels_); n_features_per_level_.resize(detector_params.n_levels_);
for (unsigned int level = 0; level < detector_params.n_levels_; level++) for (unsigned int level = 0; level < detector_params.n_levels_; level++)
{ {
n_desired_features_per_scale /= std::pow(params_.scale_factor_, 2); n_desired_features_per_scale = cvRound(n_desired_features_per_scale / std::pow(params_.scale_factor_, 2));
n_features_per_level_[level] = n_desired_features_per_scale; n_features_per_level_[level] = n_desired_features_per_scale;
} }
@ -470,7 +467,7 @@ ORB::ORB(size_t n_features, const CommonParams & detector_params) :
half_patch_size_ = params_.patch_size_ / 2; half_patch_size_ = params_.patch_size_ / 2;
u_max_.resize(half_patch_size_ + 1); u_max_.resize(half_patch_size_ + 1);
for (int v = 0; v <= half_patch_size_ * sqrt(2.f) / 2 + 1; ++v) for (int v = 0; v <= half_patch_size_ * sqrt(2.f) / 2 + 1; ++v)
u_max_[v] = std::floor(sqrt(float(half_patch_size_ * half_patch_size_ - v * v)) + 0.5); u_max_[v] = cvRound(sqrt(float(half_patch_size_ * half_patch_size_ - v * v)));
// Make sure we are symmetric // Make sure we are symmetric
for (int v = half_patch_size_, v_0 = 0; v >= half_patch_size_ * sqrt(2.f) / 2; --v) for (int v = half_patch_size_, v_0 = 0; v >= half_patch_size_ * sqrt(2.f) / 2; --v)