fixed features2d (ORB) compile errors on Windows

This commit is contained in:
Vadim Pisarevsky 2011-05-23 07:58:35 +00:00
parent 71ebe377fc
commit 145a76faf4
5 changed files with 33 additions and 44 deletions

View File

@ -1496,7 +1496,7 @@ size_t CirclesGridFinder::getFirstCorner(vector<Point> &largeCornerIndices, vect
int cornerIdx = 0;
bool waitOutsider = true;
while (true)
for(;;)
{
if (waitOutsider)
{

View File

@ -404,24 +404,17 @@ public:
class CV_EXPORTS ORB
{
public:
enum PatchSize
{
PATCH_LEARNED_31 = 31
};
/** the size of the signature in bytes */
static const int kBytes = 32;
enum { kBytes = 32 };
struct CommonParams
struct CV_EXPORTS CommonParams
{
static const unsigned int DEFAULT_N_LEVELS = 3;
static const float DEFAULT_SCALE_FACTOR;
static const unsigned int DEFAULT_FIRST_LEVEL = 0;
static const PatchSize DEFAULT_PATCH_SIZE;
enum { DEFAULT_N_LEVELS = 3, DEFAULT_FIRST_LEVEL = 0, DEFAULT_PATCH_SIZE = 31 };
/** default constructor */
CommonParams(float scale_factor = DEFAULT_SCALE_FACTOR, unsigned int n_levels = DEFAULT_N_LEVELS,
unsigned int first_level = DEFAULT_FIRST_LEVEL, PatchSize patch_size = DEFAULT_PATCH_SIZE) :
CommonParams(float scale_factor = 1.2f, unsigned int n_levels = DEFAULT_N_LEVELS,
unsigned int first_level = DEFAULT_FIRST_LEVEL, int patch_size = DEFAULT_PATCH_SIZE) :
scale_factor_(scale_factor), n_levels_(n_levels), first_level_(first_level >= n_levels ? 0 : first_level),
patch_size_(patch_size)
{
@ -438,7 +431,7 @@ public:
*/
unsigned int first_level_;
/** The size of the patch that will be used for orientation and comparisons */
PatchSize patch_size_;
int patch_size_;
};
/** Default Constructor */

View File

@ -444,8 +444,7 @@ void ORB::CommonParams::read(const FileNode& fn)
scale_factor_ = fn["scaleFactor"];
n_levels_ = int(fn["nLevels"]);
first_level_ = int(fn["firsLevel"]);
int patch_size = fn["patchSize"];
patch_size_ = PatchSize(patch_size);
patch_size_ = fn["patchSize"];
}
void ORB::CommonParams::write(FileStorage& fs) const

View File

@ -75,8 +75,8 @@ template<typename PatchType, typename SumType>
for (size_t u = 0; u <= 6; u++, ++dX_data, ++dY_data)
{
// 1, 2 for Sobel, 3 and 10 for Scharr
float Ix = 1 * (*dX_data + *(dX_data + 14)) + 2 * (*(dX_data + 7));
float Iy = 1 * (*dY_data + *(dY_data + 2)) + 2 * (*(dY_data + 1));
float Ix = (float)(1 * (*dX_data + *(dX_data + 14)) + 2 * (*(dX_data + 7)));
float Iy = (float)(1 * (*dY_data + *(dY_data + 2)) + 2 * (*(dY_data + 1)));
a += Ix * Ix;
b += Iy * Iy;
@ -154,8 +154,8 @@ HarrisResponse::HarrisResponse(const cv::Mat& image, double k) :
void HarrisResponse::operator()(std::vector<cv::KeyPoint>& kpts) const
{
// Those parameters are used to match the OpenCV computation of Harris corners
float scale = (1 << 2) * 7.0 * 255.0;
scale = 1.0 / scale;
float scale = (1 << 2) * 7.0f * 255.0f;
scale = 1.0f / scale;
float scale_sq_sq = scale * scale * scale * scale;
// define it to 1 if you want to compare to what OpenCV computes
@ -166,10 +166,10 @@ void HarrisResponse::operator()(std::vector<cv::KeyPoint>& kpts) const
#endif
for (std::vector<cv::KeyPoint>::iterator kpt = kpts.begin(), kpt_end = kpts.end(); kpt != kpt_end; ++kpt)
{
cv::Mat patch = image_(cv::Rect(kpt->pt.x - 4, kpt->pt.y - 4, 9, 9));
cv::Mat patch = image_(cv::Rect(cvRound(kpt->pt.x) - 4, cvRound(kpt->pt.y) - 4, 9, 9));
// Compute the response
kpt->response = harris<uchar, int> (patch, k_, dX_offsets_, dY_offsets_) * scale_sq_sq;
kpt->response = harris<uchar, int> (patch, (float)k_, dX_offsets_, dY_offsets_) * scale_sq_sq;
#if HARRIS_TEST
cv::Mat_<float> Ix(9, 9), Iy(9, 9);
@ -225,7 +225,7 @@ template<typename SumType>
// Go line by line in the circular patch
std::vector<int>::const_iterator horizontal_iterator = horizontal_offsets.begin(), vertical_iterator =
vertical_offsets.begin();
const SumType* val_ptr = &(integral_image.at<SumType> (kpt.pt.y, kpt.pt.x));
const SumType* val_ptr = &(integral_image.at<SumType> (cvRound(kpt.pt.y), cvRound(kpt.pt.x)));
for (int uv = 1; uv <= half_k; ++uv)
{
// Do the horizontal lines
@ -239,8 +239,8 @@ template<typename SumType>
vertical_iterator += 8;
}
float x = m_10;
float y = m_01;
float x = (float)m_10;
float y = (float)m_01;
kpt.angle = cv::fastAtan2(y, x);
}
@ -249,7 +249,7 @@ template<typename PatchType, typename SumType>
{
SumType m_01 = 0, m_10 = 0/*, m_00 = 0*/;
const PatchType* val_center_ptr_plus = &(image.at<PatchType> (kpt.pt.y, kpt.pt.x)), *val_center_ptr_minus;
const PatchType* val_center_ptr_plus = &(image.at<PatchType> (cvRound(kpt.pt.y), cvRound(kpt.pt.x))), *val_center_ptr_minus;
// Treat the center line differently, v=0
@ -279,8 +279,8 @@ template<typename PatchType, typename SumType>
m_01 += v * v_sum;
}
float x = m_10;// / float(m_00);// / m_00;
float y = m_01;// / float(m_00);// / m_00;
float x = (float)m_10;// / float(m_00);// / m_00;
float y = (float)m_01;// / float(m_00);// / m_00;
kpt.angle = cv::fastAtan2(y, x);
}
@ -291,9 +291,9 @@ inline int smoothedSum(const int *center, const int* int_diff)
return *(center + int_diff[2]) - *(center + int_diff[3]) - *(center + int_diff[1]) + *(center + int_diff[0]);
}
inline char smoothed_comparison(const int * center, const int* diff, int l, int m)
inline uchar smoothed_comparison(const int * center, const int* diff, int l, int m)
{
static const char score[] = {1 << 0, 1 << 1, 1 << 2, 1 << 3, 1 << 4, 1 << 5, 1 << 6, 1 << 7};
static const uchar score[] = {1 << 0, 1 << 1, 1 << 2, 1 << 3, 1 << 4, 1 << 5, 1 << 6, 1 << 7};
return (smoothedSum(center, diff + l) < smoothedSum(center, diff + l + 4)) ? score[m] : 0;
}
}
@ -388,21 +388,21 @@ public:
private:
static inline int angle2Wedge(float angle)
{
return (angle / 360) * kNumAngles;
return cvRound((angle / 360) * kNumAngles);
}
void generateRelativePattern(int angle_idx, int sz, cv::Mat & relative_pattern)
void generateRelativePattern(int angle_idx, int /*sz*/, cv::Mat & relative_pattern)
{
// Create the relative pattern
relative_pattern.create(512, 4, CV_32SC1);
int * relative_pattern_data = reinterpret_cast<int*> (relative_pattern.data);
// Get the original rotated pattern
const int * pattern_data;
switch (sz)
//switch (sz)
{
default:
//default:
pattern_data = reinterpret_cast<int*> (rotated_patterns_[angle_idx].data);
break;
//break;
}
int half_kernel = ORB::kKernelWidth / 2;
@ -421,7 +421,7 @@ private:
static cv::Mat getRotationMat(int angle_idx)
{
float a = float(angle_idx) / kNumAngles * CV_PI * 2;
float a = float(float(angle_idx) / kNumAngles * CV_PI * 2);
return (cv::Mat_<float>(2, 2) << cos(a), -sin(a), sin(a), cos(a));
}
@ -443,13 +443,10 @@ private:
std::vector<cv::Mat> ORB::OrbPatterns::rotated_patterns_ = OrbPatterns::generateRotatedPatterns();
//this is the definition for BIT_PATTERN
#include "orb_pattern.i"
#include "orb_pattern.hpp"
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
const float ORB::CommonParams::DEFAULT_SCALE_FACTOR = 1.2;
const ORB::PatchSize ORB::CommonParams::DEFAULT_PATCH_SIZE = ORB::PATCH_LEARNED_31;
/** Constructor
* @param detector_params parameters to use
*/
@ -457,12 +454,12 @@ ORB::ORB(size_t n_features, const CommonParams & detector_params) :
params_(detector_params), n_features_(n_features)
{
// fill the extractors and descriptors for the corresponding scales
int n_desired_features_per_scale = n_features / ((1.0 / std::pow(params_.scale_factor_, 2.f * params_.n_levels_) - 1)
/ (1.0 / std::pow(params_.scale_factor_, 2) - 1));
int n_desired_features_per_scale = cvRound(n_features / ((1.0 / std::pow(params_.scale_factor_, 2.f * params_.n_levels_) - 1)
/ (1.0 / std::pow(params_.scale_factor_, 2) - 1)));
n_features_per_level_.resize(detector_params.n_levels_);
for (unsigned int level = 0; level < detector_params.n_levels_; level++)
{
n_desired_features_per_scale /= std::pow(params_.scale_factor_, 2);
n_desired_features_per_scale = cvRound(n_desired_features_per_scale / std::pow(params_.scale_factor_, 2));
n_features_per_level_[level] = n_desired_features_per_scale;
}
@ -470,7 +467,7 @@ ORB::ORB(size_t n_features, const CommonParams & detector_params) :
half_patch_size_ = params_.patch_size_ / 2;
u_max_.resize(half_patch_size_ + 1);
for (int v = 0; v <= half_patch_size_ * sqrt(2.f) / 2 + 1; ++v)
u_max_[v] = std::floor(sqrt(float(half_patch_size_ * half_patch_size_ - v * v)) + 0.5);
u_max_[v] = cvRound(sqrt(float(half_patch_size_ * half_patch_size_ - v * v)));
// Make sure we are symmetric
for (int v = half_patch_size_, v_0 = 0; v >= half_patch_size_ * sqrt(2.f) / 2; --v)