remove pow calculations
This commit is contained in:
parent
cc300a69b1
commit
0ff8a4633d
@ -50,6 +50,11 @@
|
||||
#include <cstdio>
|
||||
#include <stdarg.h>
|
||||
|
||||
// use previous stored integrals for regression testing
|
||||
// #define USE_REFERENCE_VALUES
|
||||
|
||||
#if defined USE_REFERENCE_VALUES
|
||||
|
||||
namespace {
|
||||
|
||||
char *itoa(long i, char* s, int /*dummy_radix*/)
|
||||
@ -58,6 +63,8 @@ char *itoa(long i, char* s, int /*dummy_radix*/)
|
||||
return s;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
// used for noisy printfs
|
||||
// #define WITH_DEBUG_OUT
|
||||
|
||||
@ -68,6 +75,8 @@ char *itoa(long i, char* s, int /*dummy_radix*/)
|
||||
# define dprintf(format, ...)
|
||||
#endif
|
||||
|
||||
namespace {
|
||||
|
||||
struct Octave
|
||||
{
|
||||
int index;
|
||||
@ -143,32 +152,6 @@ struct Object
|
||||
Object(const cv::Rect& r, const float c, Class dt = PEDESTRIAN) : rect(r), confidence(c), detType(dt) {}
|
||||
};
|
||||
|
||||
struct Level
|
||||
{
|
||||
const Octave* octave;
|
||||
|
||||
float origScale;
|
||||
float relScale;
|
||||
float shrScale; // used for marking detection
|
||||
|
||||
cv::Size workRect;
|
||||
cv::Size objSize;
|
||||
|
||||
Level(const Octave& oct, const float scale, const int shrinkage, const int w, const int h)
|
||||
: octave(&oct), origScale(scale), relScale(scale / oct.scale), shrScale (relScale / (float)shrinkage),
|
||||
workRect(cv::Size(cvRound(w / (float)shrinkage),cvRound(h / (float)shrinkage))),
|
||||
objSize(cv::Size(cvRound(oct.size.width * relScale), cvRound(oct.size.height * relScale)))
|
||||
{}
|
||||
|
||||
void markDetection(const int x, const int y, float confidence, std::vector<Object>& detections) const
|
||||
{
|
||||
int shrinkage = (*octave).shrinkage;
|
||||
cv::Rect rect(cvRound(x * shrinkage), cvRound(y * shrinkage), objSize.width, objSize.height);
|
||||
|
||||
detections.push_back(Object(rect, confidence));
|
||||
}
|
||||
};
|
||||
|
||||
struct CascadeIntrinsics
|
||||
{
|
||||
static const float lambda = 1.099f, a = 0.89f;
|
||||
@ -202,37 +185,36 @@ struct CascadeIntrinsics
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
int qangle6(float dfdx, float dfdy)
|
||||
struct Level
|
||||
{
|
||||
static const float vectors[6][2] =
|
||||
const Octave* octave;
|
||||
|
||||
float origScale;
|
||||
float relScale;
|
||||
float shrScale; // used for marking detection
|
||||
|
||||
cv::Size workRect;
|
||||
cv::Size objSize;
|
||||
|
||||
float scaling[2];
|
||||
|
||||
Level(const Octave& oct, const float scale, const int shrinkage, const int w, const int h)
|
||||
: octave(&oct), origScale(scale), relScale(scale / oct.scale), shrScale (relScale / (float)shrinkage),
|
||||
workRect(cv::Size(cvRound(w / (float)shrinkage),cvRound(h / (float)shrinkage))),
|
||||
objSize(cv::Size(cvRound(oct.size.width * relScale), cvRound(oct.size.height * relScale)))
|
||||
{
|
||||
{std::cos(0), std::sin(0) },
|
||||
{std::cos(M_PI / 6.f), std::sin(M_PI / 6.f) },
|
||||
{std::cos(M_PI / 3.f), std::sin(M_PI / 3.f) },
|
||||
|
||||
{std::cos(M_PI / 2.f), std::sin(M_PI / 2.f) },
|
||||
{std::cos(2.f * M_PI / 3.f), std::sin(2.f * M_PI / 3.f)},
|
||||
{std::cos(5.f * M_PI / 6.f), std::sin(5.f * M_PI / 6.f)}
|
||||
};
|
||||
|
||||
int index = 0;
|
||||
|
||||
float dot = fabs(dfdx * vectors[0][0] + dfdy * vectors[0][1]);
|
||||
|
||||
for(int i = 1; i < 6; ++i)
|
||||
{
|
||||
const float curr = fabs(dfdx * vectors[i][0] + dfdy * vectors[i][1]);
|
||||
|
||||
if(curr > dot)
|
||||
{
|
||||
dot = curr;
|
||||
index = i;
|
||||
}
|
||||
scaling[0] = CascadeIntrinsics::getFor(0, relScale);
|
||||
scaling[1] = CascadeIntrinsics::getFor(9, relScale);
|
||||
}
|
||||
|
||||
return index;
|
||||
}
|
||||
void markDetection(const int x, const int y, float confidence, std::vector<Object>& detections) const
|
||||
{
|
||||
int shrinkage = (*octave).shrinkage;
|
||||
cv::Rect rect(cvRound(x * shrinkage), cvRound(y * shrinkage), objSize.width, objSize.height);
|
||||
|
||||
detections.push_back(Object(rect, confidence));
|
||||
}
|
||||
};
|
||||
|
||||
template< typename T>
|
||||
struct Decimate {
|
||||
@ -271,9 +253,6 @@ struct Decimate {
|
||||
|
||||
};
|
||||
|
||||
// use previous stored integrals for regression testing
|
||||
// #define USE_REFERENCE_VALUES
|
||||
|
||||
struct ChannelStorage
|
||||
{
|
||||
std::vector<cv::Mat> hog;
|
||||
@ -437,9 +416,10 @@ struct cv::SoftCascade::Filds
|
||||
|
||||
typedef std::vector<Octave>::iterator octIt_t;
|
||||
|
||||
float rescale(const Feature& feature, const float relScale, cv::Rect& scaledRect, const float threshold) const
|
||||
float rescale(const Feature& feature, const float scaling, const float relScale,
|
||||
cv::Rect& scaledRect, const float threshold) const
|
||||
{
|
||||
float scaling = CascadeIntrinsics::getFor(feature.channel, relScale);
|
||||
// float scaling = CascadeIntrinsics::getFor(feature.channel, relScale);
|
||||
scaledRect = feature.rect;
|
||||
|
||||
dprintf("feature %d box %d %d %d %d\n", feature.channel, scaledRect.x, scaledRect.y,
|
||||
@ -460,16 +440,16 @@ struct cv::SoftCascade::Filds
|
||||
float sarea = (scaledRect.width - scaledRect.x) * (scaledRect.height - scaledRect.y);
|
||||
|
||||
float approx = 1.f;
|
||||
if (fabs(farea - 0.f) > FLT_EPSILON && fabs(farea - 0.f) > FLT_EPSILON)
|
||||
// if (fabs(farea - 0.f) > FLT_EPSILON && fabs(farea - 0.f) > FLT_EPSILON)
|
||||
{
|
||||
const float expected_new_area = farea * relScale * relScale;
|
||||
approx = expected_new_area / sarea;
|
||||
approx = sarea / expected_new_area;
|
||||
|
||||
dprintf(" rel areas %f %f\n", expected_new_area, sarea);
|
||||
}
|
||||
|
||||
// compensation areas rounding
|
||||
float rootThreshold = threshold / approx;
|
||||
float rootThreshold = threshold * approx;
|
||||
rootThreshold *= scaling;
|
||||
|
||||
dprintf("approximation %f %f -> %f %f\n", approx, threshold, rootThreshold, scaling);
|
||||
@ -504,7 +484,8 @@ struct cv::SoftCascade::Filds
|
||||
const Node& node = nodes[nId];
|
||||
const Feature& feature = features[node.feature];
|
||||
cv::Rect scaledRect;
|
||||
float threshold = rescale(feature, level.relScale, scaledRect, node.threshold);
|
||||
float threshold = rescale(feature, level.scaling[(int)(feature.channel > 6)],
|
||||
level.relScale, scaledRect, node.threshold);
|
||||
|
||||
|
||||
float sum = storage.get(dx, dy, feature.channel, scaledRect);
|
||||
@ -519,7 +500,8 @@ struct cv::SoftCascade::Filds
|
||||
const Node& leaf = nodes[nId + next];
|
||||
const Feature& fLeaf = features[leaf.feature];
|
||||
|
||||
threshold = rescale(fLeaf, level.relScale, scaledRect, leaf.threshold);
|
||||
threshold = rescale(fLeaf, level.scaling[(int)(fLeaf.channel > 6)],
|
||||
level.relScale, scaledRect, leaf.threshold);
|
||||
sum = storage.get(dx, dy, fLeaf.channel, scaledRect);
|
||||
|
||||
|
||||
@ -546,7 +528,7 @@ struct cv::SoftCascade::Filds
|
||||
|
||||
if (st == stEnd)
|
||||
{
|
||||
std::cout << " got " << st << std::endl;
|
||||
dprintf(" got %d\n", st);
|
||||
level.markDetection(dx, dy, detectionScore, detections);
|
||||
}
|
||||
}
|
||||
@ -701,25 +683,6 @@ struct cv::SoftCascade::Filds
|
||||
}
|
||||
|
||||
shrinkage = octaves[0].shrinkage;
|
||||
|
||||
//debug print
|
||||
// std::cout << "collected " << stages.size() << " stages" << std::endl;
|
||||
// for (int i = 0; i < (int)stages.size(); ++i)
|
||||
// {
|
||||
// std::cout << "stage " << i << ": " << stages[i].threshold << std::endl;
|
||||
// }
|
||||
|
||||
// std::cout << "collected " << nodes.size() << " nodes" << std::endl;
|
||||
// for (int i = 0; i < (int)nodes.size(); ++i)
|
||||
// {
|
||||
// std::cout << "node " << i << ": " << nodes[i].threshold << " " << nodes[i].feature << std::endl;
|
||||
// }
|
||||
|
||||
// std::cout << "collected " << leaves.size() << " leaves" << std::endl;
|
||||
// for (int i = 0; i < (int)leaves.size(); ++i)
|
||||
// {
|
||||
// std::cout << "leaf " << i << ": " << leaves[i] << std::endl;
|
||||
// }
|
||||
return true;
|
||||
}
|
||||
};
|
||||
@ -752,8 +715,7 @@ bool cv::SoftCascade::load( const string& filename, const float minScale, const
|
||||
return true;
|
||||
}
|
||||
|
||||
// #define DEBUG_STORE_IMAGES
|
||||
#define DEBUG_SHOW_RESULT
|
||||
// #define DEBUG_SHOW_RESULT
|
||||
|
||||
void cv::SoftCascade::detectMultiScale(const Mat& image, const std::vector<cv::Rect>& /*rois*/,
|
||||
std::vector<cv::Rect>& objects, const int /*rejectfactor*/)
|
||||
@ -772,26 +734,6 @@ void cv::SoftCascade::detectMultiScale(const Mat& image, const std::vector<cv::R
|
||||
cv::Mat image1;
|
||||
cv::cvtColor(image, image1, CV_BGR2RGB);
|
||||
|
||||
#if defined DEBUG_STORE_IMAGES
|
||||
cv::FileStorage fs("/home/kellan/opencvInputImage.xml", cv::FileStorage::WRITE);
|
||||
cv::imwrite("/home/kellan/opencvInputImage.jpg", image1);
|
||||
fs << "opencvInputImage" << image1;
|
||||
|
||||
cv::Mat doppia;
|
||||
cv::FileStorage fsr("/home/kellan/befireGause.xml", cv::FileStorage::READ);
|
||||
fsr["input_gpu_mat"] >> doppia;
|
||||
|
||||
cv::Mat diff;
|
||||
cv::absdiff(image1, doppia, diff);
|
||||
|
||||
fs << "absdiff" << diff;
|
||||
fs.release();
|
||||
|
||||
#endif
|
||||
|
||||
cv::imshow("!!", image1);
|
||||
cv::waitKey(0);
|
||||
|
||||
// create integrals
|
||||
ChannelStorage storage(image, fld.shrinkage);
|
||||
|
||||
@ -831,9 +773,9 @@ void cv::SoftCascade::detectMultiScale(const Mat& image, const std::vector<cv::R
|
||||
|
||||
cv::imshow("out", out);
|
||||
cv::waitKey(0);
|
||||
std::cout << "work rect: " << level.workRect.width << " " << level.workRect.height << std::endl;
|
||||
#endif
|
||||
|
||||
std::cout << "work rect: " << level.workRect.width << " " << level.workRect.height << std::endl;
|
||||
detections.clear();
|
||||
}
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user