minor optimization of SURF_GPU (reduce memory transfers, use structure of arrays instead of array of structures)

This commit is contained in:
Vladislav Vinogradov
2011-05-23 07:59:20 +00:00
parent 145a76faf4
commit 0b19f915be
5 changed files with 171 additions and 194 deletions

View File

@@ -69,11 +69,14 @@ namespace cv { namespace gpu { namespace surf
void icvFindMaximaInLayer_gpu(const PtrStepf& det, const PtrStepf& trace, int4* maxPosBuffer, unsigned int* maxCounter,
int img_rows, int img_cols, int octave, bool use_mask, int nLayers);
void icvInterpolateKeypoint_gpu(const PtrStepf& det, const int4* maxPosBuffer, unsigned int maxCounter, KeyPoint_GPU* featuresBuffer, unsigned int* featureCounter);
void icvInterpolateKeypoint_gpu(const PtrStepf& det, const int4* maxPosBuffer, unsigned int maxCounter,
float* featureX, float* featureY, int* featureLaplacian, float* featureSize, float* featureHessian,
unsigned int* featureCounter);
void icvCalcOrientation_gpu(const KeyPoint_GPU* featureBuffer, int nFeatures, KeyPoint_GPU* keypoints, unsigned int* keypointCounter);
void icvCalcOrientation_gpu(const float* featureX, const float* featureY, const float* featureSize, float* featureDir, int nFeatures);
void compute_descriptors_gpu(const DevMem2Df& descriptors, const KeyPoint_GPU* features, int nFeatures);
void compute_descriptors_gpu(const DevMem2Df& descriptors,
const float* featureX, const float* featureY, const float* featureSize, const float* featureDir, int nFeatures);
}}}
using namespace cv::gpu::surf;
@@ -88,7 +91,7 @@ namespace
sum(surf.sum), mask1(surf.mask1), maskSum(surf.maskSum), intBuffer(surf.intBuffer), det(surf.det), trace(surf.trace),
maxPosBuffer(surf.maxPosBuffer), featuresBuffer(surf.featuresBuffer), keypointsBuffer(surf.keypointsBuffer),
maxPosBuffer(surf.maxPosBuffer),
img_cols(img.cols), img_rows(img.rows),
@@ -101,18 +104,16 @@ namespace
CV_Assert(nOctaves > 0 && nOctaveLayers > 0);
CV_Assert(TargetArchs::builtWith(GLOBAL_ATOMICS) && DeviceInfo().supports(GLOBAL_ATOMICS));
maxKeypoints = min(static_cast<int>(img.size().area() * surf.keypointsRatio), 65535);
maxFeatures = min(static_cast<int>(1.5 * maxKeypoints), 65535);
maxFeatures = min(static_cast<int>(img.size().area() * surf.keypointsRatio), 65535);
maxCandidates = min(static_cast<int>(1.5 * maxFeatures), 65535);
CV_Assert(maxKeypoints > 0);
CV_Assert(maxFeatures > 0);
cudaSafeCall( cudaMalloc((void**)&d_counters, (nOctaves + 2) * sizeof(unsigned int)) );
cudaSafeCall( cudaMemset(d_counters, 0, (nOctaves + 2) * sizeof(unsigned int)) );
cudaSafeCall( cudaMalloc((void**)&d_counters, (nOctaves + 1) * sizeof(unsigned int)) );
cudaSafeCall( cudaMemset(d_counters, 0, (nOctaves + 1) * sizeof(unsigned int)) );
uploadConstant("cv::gpu::surf::c_max_candidates", maxCandidates);
uploadConstant("cv::gpu::surf::c_max_features", maxFeatures);
uploadConstant("cv::gpu::surf::c_max_keypoints", maxKeypoints);
uploadConstant("cv::gpu::surf::c_img_rows", img_rows);
uploadConstant("cv::gpu::surf::c_img_cols", img_cols);
uploadConstant("cv::gpu::surf::c_nOctaveLayers", nOctaveLayers);
@@ -148,7 +149,8 @@ namespace
ensureSizeIsEnough(img_rows * (nOctaveLayers + 2), img_cols, CV_32FC1, trace);
ensureSizeIsEnough(1, maxCandidates, CV_32SC4, maxPosBuffer);
ensureSizeIsEnough(1, maxFeatures, CV_32FC(6), featuresBuffer);
ensureSizeIsEnough(SURF_GPU::SF_FEATURE_STRIDE, maxFeatures, CV_32FC1, keypoints);
keypoints.setTo(Scalar::all(0));
for (int octave = 0; octave < nOctaves; ++octave)
{
@@ -161,60 +163,49 @@ namespace
icvCalcLayerDetAndTrace_gpu(det, trace, img_rows, img_cols, octave, nOctaveLayers);
icvFindMaximaInLayer_gpu(det, trace, maxPosBuffer.ptr<int4>(), d_counters + 2 + octave,
icvFindMaximaInLayer_gpu(det, trace, maxPosBuffer.ptr<int4>(), d_counters + 1 + octave,
img_rows, img_cols, octave, use_mask, nOctaveLayers);
unsigned int maxCounter;
cudaSafeCall( cudaMemcpy(&maxCounter, d_counters + 2 + octave, sizeof(unsigned int), cudaMemcpyDeviceToHost) );
cudaSafeCall( cudaMemcpy(&maxCounter, d_counters + 1 + octave, sizeof(unsigned int), cudaMemcpyDeviceToHost) );
maxCounter = std::min(maxCounter, static_cast<unsigned int>(maxCandidates));
if (maxCounter > 0)
{
icvInterpolateKeypoint_gpu(det, maxPosBuffer.ptr<int4>(), maxCounter,
featuresBuffer.ptr<KeyPoint_GPU>(), d_counters);
keypoints.ptr<float>(SURF_GPU::SF_X), keypoints.ptr<float>(SURF_GPU::SF_Y),
keypoints.ptr<int>(SURF_GPU::SF_LAPLACIAN), keypoints.ptr<float>(SURF_GPU::SF_SIZE),
keypoints.ptr<float>(SURF_GPU::SF_HESSIAN), d_counters);
}
}
unsigned int featureCounter;
cudaSafeCall( cudaMemcpy(&featureCounter, d_counters, sizeof(unsigned int), cudaMemcpyDeviceToHost) );
featureCounter = std::min(featureCounter, static_cast<unsigned int>(maxFeatures));
keypoints.cols = featureCounter;
if (!upright)
findOrientation(featuresBuffer.colRange(0, featureCounter), keypoints);
else
{
if (featureCounter > 0)
featuresBuffer.colRange(0, featureCounter).copyTo(keypoints);
else
keypoints.release();
}
findOrientation(keypoints);
}
void findOrientation(const GpuMat& features, GpuMat& keypoints)
void findOrientation(GpuMat& keypoints)
{
if (features.cols > 0)
const int nFeatures = keypoints.cols;
if (nFeatures > 0)
{
ensureSizeIsEnough(1, maxKeypoints, CV_32FC(6), keypointsBuffer);
icvCalcOrientation_gpu(features.ptr<KeyPoint_GPU>(), features.cols, keypointsBuffer.ptr<KeyPoint_GPU>(),
d_counters + 1);
unsigned int keypointsCounter;
cudaSafeCall( cudaMemcpy(&keypointsCounter, d_counters + 1, sizeof(unsigned int), cudaMemcpyDeviceToHost) );
keypointsCounter = std::min(keypointsCounter, static_cast<unsigned int>(maxKeypoints));
if (keypointsCounter > 0)
keypointsBuffer.colRange(0, keypointsCounter).copyTo(keypoints);
else
keypoints.release();
icvCalcOrientation_gpu(keypoints.ptr<float>(SURF_GPU::SF_X), keypoints.ptr<float>(SURF_GPU::SF_Y),
keypoints.ptr<float>(SURF_GPU::SF_SIZE), keypoints.ptr<float>(SURF_GPU::SF_DIR), nFeatures);
}
}
void computeDescriptors(const GpuMat& keypoints, GpuMat& descriptors, int descriptorSize)
{
if (keypoints.cols > 0)
const int nFeatures = keypoints.cols;
if (nFeatures > 0)
{
descriptors.create(keypoints.cols, descriptorSize, CV_32F);
compute_descriptors_gpu(descriptors, keypoints.ptr<KeyPoint_GPU>(), keypoints.cols);
descriptors.create(nFeatures, descriptorSize, CV_32F);
compute_descriptors_gpu(descriptors, keypoints.ptr<float>(SURF_GPU::SF_X), keypoints.ptr<float>(SURF_GPU::SF_Y),
keypoints.ptr<float>(SURF_GPU::SF_SIZE), keypoints.ptr<float>(SURF_GPU::SF_DIR), nFeatures);
}
}
@@ -228,8 +219,6 @@ namespace
GpuMat& trace;
GpuMat& maxPosBuffer;
GpuMat& featuresBuffer;
GpuMat& keypointsBuffer;
int img_cols, img_rows;
@@ -239,7 +228,6 @@ namespace
int maxCandidates;
int maxFeatures;
int maxKeypoints;
unsigned int* d_counters;
};
@@ -276,22 +264,24 @@ void cv::gpu::SURF_GPU::uploadKeypoints(const vector<KeyPoint>& keypoints, GpuMa
keypointsGPU.release();
else
{
Mat keypointsCPU(1, keypoints.size(), CV_32FC(6));
Mat keypointsCPU(SURF_GPU::SF_FEATURE_STRIDE, keypoints.size(), CV_32FC1);
for (size_t i = 0; i < keypoints.size(); ++i)
float* kp_x = keypointsCPU.ptr<float>(SURF_GPU::SF_X);
float* kp_y = keypointsCPU.ptr<float>(SURF_GPU::SF_Y);
int* kp_laplacian = keypointsCPU.ptr<int>(SURF_GPU::SF_LAPLACIAN);
float* kp_size = keypointsCPU.ptr<float>(SURF_GPU::SF_SIZE);
float* kp_dir = keypointsCPU.ptr<float>(SURF_GPU::SF_DIR);
float* kp_hessian = keypointsCPU.ptr<float>(SURF_GPU::SF_HESSIAN);
for (size_t i = 0, size = keypoints.size(); i < size; ++i)
{
const KeyPoint& kp = keypoints[i];
KeyPoint_GPU& gkp = keypointsCPU.ptr<KeyPoint_GPU>()[i];
gkp.x = kp.pt.x;
gkp.y = kp.pt.y;
gkp.laplacian = 1.0f;
gkp.size = kp.size;
gkp.dir = kp.angle;
gkp.hessian = kp.response;
kp_x[i] = kp.pt.x;
kp_y[i] = kp.pt.y;
kp_size[i] = kp.size;
kp_dir[i] = kp.angle;
kp_hessian[i] = kp.response;
kp_laplacian[i] = 1;
}
keypointsGPU.upload(keypointsCPU);
@@ -314,7 +304,7 @@ namespace
return (HAAR_SIZE0 + HAAR_SIZE_INC * layer) << octave;
}
int getPointOctave(const KeyPoint_GPU& kpt, const CvSURFParams& params)
int getPointOctave(float size, const CvSURFParams& params)
{
int best_octave = 0;
float min_diff = numeric_limits<float>::max();
@@ -322,7 +312,7 @@ namespace
{
for (int layer = 0; layer < params.nOctaveLayers; ++layer)
{
float diff = std::abs(kpt.size - (float)calcSize(octave, layer));
float diff = std::abs(size - (float)calcSize(octave, layer));
if (min_diff > diff)
{
min_diff = diff;
@@ -338,32 +328,35 @@ namespace
void cv::gpu::SURF_GPU::downloadKeypoints(const GpuMat& keypointsGPU, vector<KeyPoint>& keypoints)
{
if (keypointsGPU.empty())
const int nFeatures = keypointsGPU.cols;
if (nFeatures == 0)
keypoints.clear();
else
{
CV_Assert(keypointsGPU.type() == CV_32FC(6) && keypointsGPU.isContinuous());
CV_Assert(keypointsGPU.type() == CV_32FC1 && keypointsGPU.rows == SF_FEATURE_STRIDE);
Mat keypointsCPU = keypointsGPU;
keypoints.resize(keypointsGPU.cols);
keypoints.resize(nFeatures);
for (int i = 0; i < keypointsGPU.cols; ++i)
float* kp_x = keypointsCPU.ptr<float>(SF_X);
float* kp_y = keypointsCPU.ptr<float>(SF_Y);
int* kp_laplacian = keypointsCPU.ptr<int>(SF_LAPLACIAN);
float* kp_size = keypointsCPU.ptr<float>(SF_SIZE);
float* kp_dir = keypointsCPU.ptr<float>(SF_DIR);
float* kp_hessian = keypointsCPU.ptr<float>(SF_HESSIAN);
for (int i = 0; i < nFeatures; ++i)
{
KeyPoint& kp = keypoints[i];
const KeyPoint_GPU& gkp = keypointsCPU.ptr<KeyPoint_GPU>()[i];
kp.pt.x = gkp.x;
kp.pt.y = gkp.y;
kp.size = gkp.size;
kp.angle = gkp.dir;
kp.response = gkp.hessian;
kp.octave = getPointOctave(gkp, *this);
kp.class_id = static_cast<int>(gkp.laplacian);
kp.pt.x = kp_x[i];
kp.pt.y = kp_y[i];
kp.class_id = kp_laplacian[i];
kp.size = kp_size[i];
kp.angle = kp_dir[i];
kp.response = kp_hessian[i];
kp.octave = getPointOctave(kp.size, *this);
}
}
}
@@ -403,9 +396,7 @@ void cv::gpu::SURF_GPU::operator()(const GpuMat& img, const GpuMat& mask, GpuMat
surf.detectKeypoints(keypoints);
else if (!upright)
{
GpuMat keypointsBuf;
surf.findOrientation(keypoints, keypointsBuf);
keypointsBuf.copyTo(keypoints);
surf.findOrientation(keypoints);
}
surf.computeDescriptors(keypoints, descriptors, descriptorSize());