[~] Refactored, cleaned up, and consolidated the code of GPU examples (cascadeclassifier and cascadeclassifier_nvidia_api)
This commit is contained in:
@@ -62,16 +62,22 @@ int cv::gpu::CascadeClassifier_GPU::detectMultiScale( const GpuMat& , GpuMat& ,
|
||||
#else
|
||||
|
||||
struct cv::gpu::CascadeClassifier_GPU::CascadeClassifierImpl
|
||||
{
|
||||
{
|
||||
CascadeClassifierImpl(const string& filename) : lastAllocatedFrameSize(-1, -1)
|
||||
{
|
||||
ncvSetDebugOutputHandler(NCVDebugOutputHandler);
|
||||
ncvSetDebugOutputHandler(NCVDebugOutputHandler);
|
||||
if (ncvStat != load(filename))
|
||||
{
|
||||
CV_Error(CV_GpuApiCallError, "Error in GPU cacade load");
|
||||
}
|
||||
NCVStatus process(const GpuMat& src, GpuMat& objects, float scaleStep, int minNeighbors, bool findLargestObject, bool visualizeInPlace, NcvSize32u ncvMinSize, /*out*/unsigned int& numDetections)
|
||||
{
|
||||
calculateMemReqsAndAllocate(src.size());
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
NCVStatus process(const GpuMat& src, GpuMat& objects, float scaleStep, int minNeighbors,
|
||||
bool findLargestObject, bool visualizeInPlace, NcvSize32u ncvMinSize,
|
||||
/*out*/unsigned int& numDetections)
|
||||
{
|
||||
calculateMemReqsAndAllocate(src.size());
|
||||
|
||||
NCVMemPtr src_beg;
|
||||
src_beg.ptr = (void*)src.ptr<Ncv8u>();
|
||||
@@ -81,14 +87,8 @@ struct cv::gpu::CascadeClassifier_GPU::CascadeClassifierImpl
|
||||
src_seg.begin = src_beg;
|
||||
src_seg.size = src.step * src.rows;
|
||||
|
||||
NCVMatrixReuse<Ncv8u> d_src(src_seg, devProp.textureAlignment, src.cols, src.rows, src.step, true);
|
||||
ncvAssertReturn(d_src.isMemReused(), NCV_ALLOCATOR_BAD_REUSE);
|
||||
|
||||
//NCVMatrixAlloc<Ncv8u> d_src(*gpuAllocator, src.cols, src.rows);
|
||||
//ncvAssertReturn(d_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
|
||||
|
||||
//NCVMatrixAlloc<Ncv8u> h_src(*cpuAllocator, src.cols, src.rows);
|
||||
//ncvAssertReturn(h_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
|
||||
NCVMatrixReuse<Ncv8u> d_src(src_seg, devProp.textureAlignment, src.cols, src.rows, src.step, true);
|
||||
ncvAssertReturn(d_src.isMemReused(), NCV_ALLOCATOR_BAD_REUSE);
|
||||
|
||||
CV_Assert(objects.rows == 1);
|
||||
|
||||
@@ -100,10 +100,8 @@ struct cv::gpu::CascadeClassifier_GPU::CascadeClassifierImpl
|
||||
objects_seg.begin = objects_beg;
|
||||
objects_seg.size = objects.step * objects.rows;
|
||||
NCVVectorReuse<NcvRect32u> d_rects(objects_seg, objects.cols);
|
||||
ncvAssertReturn(d_rects.isMemReused(), NCV_ALLOCATOR_BAD_REUSE);
|
||||
//NCVVectorAlloc<NcvRect32u> d_rects(*gpuAllocator, 100);
|
||||
//ncvAssertReturn(d_rects.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
|
||||
|
||||
ncvAssertReturn(d_rects.isMemReused(), NCV_ALLOCATOR_BAD_REUSE);
|
||||
|
||||
NcvSize32u roi;
|
||||
roi.width = d_src.width();
|
||||
roi.height = d_src.height();
|
||||
@@ -111,7 +109,7 @@ struct cv::gpu::CascadeClassifier_GPU::CascadeClassifierImpl
|
||||
Ncv32u flags = 0;
|
||||
flags |= findLargestObject? NCVPipeObjDet_FindLargestObject : 0;
|
||||
flags |= visualizeInPlace ? NCVPipeObjDet_VisualizeInPlace : 0;
|
||||
|
||||
|
||||
ncvStat = ncvDetectObjectsMultiScale_device(
|
||||
d_src, roi, d_rects, numDetections, haar, *h_haarStages,
|
||||
*d_haarStages, *d_haarNodes, *d_haarFeatures,
|
||||
@@ -122,24 +120,28 @@ struct cv::gpu::CascadeClassifier_GPU::CascadeClassifierImpl
|
||||
*gpuAllocator, *cpuAllocator, devProp, 0);
|
||||
ncvAssertReturnNcvStat(ncvStat);
|
||||
ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR);
|
||||
|
||||
|
||||
return NCV_SUCCESS;
|
||||
}
|
||||
////
|
||||
|
||||
|
||||
|
||||
NcvSize32u getClassifierSize() const { return haar.ClassifierSize; }
|
||||
cv::Size getClassifierCvSize() const { return cv::Size(haar.ClassifierSize.width, haar.ClassifierSize.height); }
|
||||
|
||||
|
||||
private:
|
||||
|
||||
|
||||
static void NCVDebugOutputHandler(const char* msg) { CV_Error(CV_GpuApiCallError, msg); }
|
||||
|
||||
|
||||
NCVStatus load(const string& classifierFile)
|
||||
{
|
||||
int devId = cv::gpu::getDevice();
|
||||
{
|
||||
int devId = cv::gpu::getDevice();
|
||||
ncvAssertCUDAReturn(cudaGetDeviceProperties(&devProp, devId), NCV_CUDA_ERROR);
|
||||
|
||||
// Load the classifier from file (assuming its size is about 1 mb) using a simple allocator
|
||||
gpuCascadeAllocator = new NCVMemNativeAllocator(NCVMemoryTypeDevice, devProp.textureAlignment);
|
||||
gpuCascadeAllocator = new NCVMemNativeAllocator(NCVMemoryTypeDevice, devProp.textureAlignment);
|
||||
cpuCascadeAllocator = new NCVMemNativeAllocator(NCVMemoryTypeHostPinned, devProp.textureAlignment);
|
||||
|
||||
ncvAssertPrintReturn(gpuCascadeAllocator->isInitialized(), "Error creating cascade GPU allocator", NCV_CUDA_ERROR);
|
||||
@@ -149,12 +151,12 @@ private:
|
||||
ncvStat = ncvHaarGetClassifierSize(classifierFile, haarNumStages, haarNumNodes, haarNumFeatures);
|
||||
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error reading classifier size (check the file)", NCV_FILE_ERROR);
|
||||
|
||||
h_haarStages = new NCVVectorAlloc<HaarStage64>(*cpuCascadeAllocator, haarNumStages);
|
||||
h_haarStages = new NCVVectorAlloc<HaarStage64>(*cpuCascadeAllocator, haarNumStages);
|
||||
h_haarNodes = new NCVVectorAlloc<HaarClassifierNode128>(*cpuCascadeAllocator, haarNumNodes);
|
||||
h_haarFeatures = new NCVVectorAlloc<HaarFeature64>(*cpuCascadeAllocator, haarNumFeatures);
|
||||
|
||||
ncvAssertPrintReturn(h_haarStages->isMemAllocated(), "Error in cascade CPU allocator", NCV_CUDA_ERROR);
|
||||
ncvAssertPrintReturn(h_haarNodes->isMemAllocated(), "Error in cascade CPU allocator", NCV_CUDA_ERROR);
|
||||
ncvAssertPrintReturn(h_haarNodes->isMemAllocated(), "Error in cascade CPU allocator", NCV_CUDA_ERROR);
|
||||
ncvAssertPrintReturn(h_haarFeatures->isMemAllocated(), "Error in cascade CPU allocator", NCV_CUDA_ERROR);
|
||||
|
||||
ncvStat = ncvHaarLoadFromFile_host(classifierFile, haar, *h_haarStages, *h_haarNodes, *h_haarFeatures);
|
||||
@@ -165,7 +167,7 @@ private:
|
||||
d_haarFeatures = new NCVVectorAlloc<HaarFeature64>(*gpuCascadeAllocator, haarNumFeatures);
|
||||
|
||||
ncvAssertPrintReturn(d_haarStages->isMemAllocated(), "Error in cascade GPU allocator", NCV_CUDA_ERROR);
|
||||
ncvAssertPrintReturn(d_haarNodes->isMemAllocated(), "Error in cascade GPU allocator", NCV_CUDA_ERROR);
|
||||
ncvAssertPrintReturn(d_haarNodes->isMemAllocated(), "Error in cascade GPU allocator", NCV_CUDA_ERROR);
|
||||
ncvAssertPrintReturn(d_haarFeatures->isMemAllocated(), "Error in cascade GPU allocator", NCV_CUDA_ERROR);
|
||||
|
||||
ncvStat = h_haarStages->copySolid(*d_haarStages, 0);
|
||||
@@ -173,31 +175,33 @@ private:
|
||||
ncvStat = h_haarNodes->copySolid(*d_haarNodes, 0);
|
||||
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", NCV_CUDA_ERROR);
|
||||
ncvStat = h_haarFeatures->copySolid(*d_haarFeatures, 0);
|
||||
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", NCV_CUDA_ERROR);
|
||||
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", NCV_CUDA_ERROR);
|
||||
|
||||
return NCV_SUCCESS;
|
||||
}
|
||||
////
|
||||
|
||||
|
||||
NCVStatus calculateMemReqsAndAllocate(const Size& frameSize)
|
||||
{
|
||||
{
|
||||
if (lastAllocatedFrameSize == frameSize)
|
||||
{
|
||||
return NCV_SUCCESS;
|
||||
}
|
||||
|
||||
// Calculate memory requirements and create real allocators
|
||||
NCVMemStackAllocator gpuCounter(devProp.textureAlignment);
|
||||
NCVMemStackAllocator cpuCounter(devProp.textureAlignment);
|
||||
|
||||
ncvAssertPrintReturn(gpuCounter.isInitialized(), "Error creating GPU memory counter", NCV_CUDA_ERROR);
|
||||
ncvAssertPrintReturn(gpuCounter.isInitialized(), "Error creating GPU memory counter", NCV_CUDA_ERROR);
|
||||
ncvAssertPrintReturn(cpuCounter.isInitialized(), "Error creating CPU memory counter", NCV_CUDA_ERROR);
|
||||
|
||||
|
||||
NCVMatrixAlloc<Ncv8u> d_src(gpuCounter, frameSize.width, frameSize.height);
|
||||
NCVMatrixAlloc<Ncv8u> h_src(cpuCounter, frameSize.width, frameSize.height);
|
||||
|
||||
ncvAssertReturn(d_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
|
||||
ncvAssertReturn(d_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
|
||||
ncvAssertReturn(h_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
|
||||
|
||||
NCVVectorAlloc<NcvRect32u> d_rects(gpuCounter, 100);
|
||||
NCVVectorAlloc<NcvRect32u> d_rects(gpuCounter, 100);
|
||||
ncvAssertReturn(d_rects.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
|
||||
|
||||
NcvSize32u roi;
|
||||
@@ -209,23 +213,23 @@ private:
|
||||
|
||||
ncvAssertReturnNcvStat(ncvStat);
|
||||
ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR);
|
||||
|
||||
gpuAllocator = new NCVMemStackAllocator(NCVMemoryTypeDevice, gpuCounter.maxSize(), devProp.textureAlignment);
|
||||
|
||||
gpuAllocator = new NCVMemStackAllocator(NCVMemoryTypeDevice, gpuCounter.maxSize(), devProp.textureAlignment);
|
||||
cpuAllocator = new NCVMemStackAllocator(NCVMemoryTypeHostPinned, cpuCounter.maxSize(), devProp.textureAlignment);
|
||||
|
||||
ncvAssertPrintReturn(gpuAllocator->isInitialized(), "Error creating GPU memory allocator", NCV_CUDA_ERROR);
|
||||
ncvAssertPrintReturn(cpuAllocator->isInitialized(), "Error creating CPU memory allocator", NCV_CUDA_ERROR);
|
||||
ncvAssertPrintReturn(cpuAllocator->isInitialized(), "Error creating CPU memory allocator", NCV_CUDA_ERROR);
|
||||
return NCV_SUCCESS;
|
||||
}
|
||||
////
|
||||
|
||||
|
||||
cudaDeviceProp devProp;
|
||||
NCVStatus ncvStat;
|
||||
|
||||
Ptr<NCVMemNativeAllocator> gpuCascadeAllocator;
|
||||
Ptr<NCVMemNativeAllocator> gpuCascadeAllocator;
|
||||
Ptr<NCVMemNativeAllocator> cpuCascadeAllocator;
|
||||
|
||||
Ptr<NCVVectorAlloc<HaarStage64> > h_haarStages;
|
||||
Ptr<NCVVectorAlloc<HaarStage64> > h_haarStages;
|
||||
Ptr<NCVVectorAlloc<HaarClassifierNode128> > h_haarNodes;
|
||||
Ptr<NCVVectorAlloc<HaarFeature64> > h_haarFeatures;
|
||||
|
||||
@@ -237,96 +241,103 @@ private:
|
||||
|
||||
Size lastAllocatedFrameSize;
|
||||
|
||||
Ptr<NCVMemStackAllocator> gpuAllocator;
|
||||
Ptr<NCVMemStackAllocator> gpuAllocator;
|
||||
Ptr<NCVMemStackAllocator> cpuAllocator;
|
||||
};
|
||||
|
||||
|
||||
|
||||
cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU() : findLargestObject(false), visualizeInPlace(false), impl(0) {}
|
||||
cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU(const string& filename) : findLargestObject(false), visualizeInPlace(false), impl(0) { load(filename); }
|
||||
cv::gpu::CascadeClassifier_GPU::~CascadeClassifier_GPU() { release(); }
|
||||
bool cv::gpu::CascadeClassifier_GPU::empty() const { return impl == 0; }
|
||||
|
||||
void cv::gpu::CascadeClassifier_GPU::release() { if (impl) { delete impl; impl = 0; } }
|
||||
|
||||
|
||||
bool cv::gpu::CascadeClassifier_GPU::load(const string& filename)
|
||||
{
|
||||
{
|
||||
release();
|
||||
impl = new CascadeClassifierImpl(filename);
|
||||
return !this->empty();
|
||||
return !this->empty();
|
||||
}
|
||||
|
||||
|
||||
Size cv::gpu::CascadeClassifier_GPU::getClassifierSize() const
|
||||
{
|
||||
return this->empty() ? Size() : impl->getClassifierCvSize();
|
||||
}
|
||||
|
||||
|
||||
|
||||
int cv::gpu::CascadeClassifier_GPU::detectMultiScale( const GpuMat& image, GpuMat& objectsBuf, double scaleFactor, int minNeighbors, Size minSize)
|
||||
{
|
||||
{
|
||||
CV_Assert( scaleFactor > 1 && image.depth() == CV_8U);
|
||||
CV_Assert( !this->empty());
|
||||
|
||||
|
||||
const int defaultObjSearchNum = 100;
|
||||
if (objectsBuf.empty())
|
||||
{
|
||||
objectsBuf.create(1, defaultObjSearchNum, DataType<Rect>::type);
|
||||
|
||||
}
|
||||
|
||||
NcvSize32u ncvMinSize = impl->getClassifierSize();
|
||||
|
||||
if (ncvMinSize.width < (unsigned)minSize.width && ncvMinSize.height < (unsigned)minSize.height)
|
||||
{
|
||||
ncvMinSize.width = minSize.width;
|
||||
ncvMinSize.height = minSize.height;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
unsigned int numDetections;
|
||||
NCVStatus ncvStat = impl->process(image, objectsBuf, (float)scaleFactor, minNeighbors, findLargestObject, visualizeInPlace, ncvMinSize, numDetections);
|
||||
NCVStatus ncvStat = impl->process(image, objectsBuf, (float)scaleFactor, minNeighbors, findLargestObject, visualizeInPlace, ncvMinSize, numDetections);
|
||||
if (ncvStat != NCV_SUCCESS)
|
||||
{
|
||||
CV_Error(CV_GpuApiCallError, "Error in face detectioln");
|
||||
}
|
||||
|
||||
return numDetections;
|
||||
}
|
||||
|
||||
|
||||
struct RectConvert
|
||||
{
|
||||
Rect operator()(const NcvRect32u& nr) const { return Rect(nr.x, nr.y, nr.width, nr.height); }
|
||||
NcvRect32u operator()(const Rect& nr) const
|
||||
{
|
||||
NcvRect32u rect;
|
||||
rect.x = nr.x;
|
||||
rect.y = nr.y;
|
||||
rect.width = nr.width;
|
||||
rect.height = nr.height;
|
||||
return rect;
|
||||
}
|
||||
Rect operator()(const NcvRect32u& nr) const { return Rect(nr.x, nr.y, nr.width, nr.height); }
|
||||
NcvRect32u operator()(const Rect& nr) const
|
||||
{
|
||||
NcvRect32u rect;
|
||||
rect.x = nr.x;
|
||||
rect.y = nr.y;
|
||||
rect.width = nr.width;
|
||||
rect.height = nr.height;
|
||||
return rect;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
void groupRectangles(std::vector<NcvRect32u> &hypotheses, int groupThreshold, double eps, std::vector<Ncv32u> *weights)
|
||||
{
|
||||
vector<Rect> rects(hypotheses.size());
|
||||
std::transform(hypotheses.begin(), hypotheses.end(), rects.begin(), RectConvert());
|
||||
|
||||
if (weights)
|
||||
{
|
||||
vector<int> weights_int;
|
||||
weights_int.assign(weights->begin(), weights->end());
|
||||
cv::groupRectangles(rects, weights_int, groupThreshold, eps);
|
||||
}
|
||||
else
|
||||
{
|
||||
cv::groupRectangles(rects, groupThreshold, eps);
|
||||
}
|
||||
std::transform(rects.begin(), rects.end(), hypotheses.begin(), RectConvert());
|
||||
hypotheses.resize(rects.size());
|
||||
vector<Rect> rects(hypotheses.size());
|
||||
std::transform(hypotheses.begin(), hypotheses.end(), rects.begin(), RectConvert());
|
||||
|
||||
if (weights)
|
||||
{
|
||||
vector<int> weights_int;
|
||||
weights_int.assign(weights->begin(), weights->end());
|
||||
cv::groupRectangles(rects, weights_int, groupThreshold, eps);
|
||||
}
|
||||
else
|
||||
{
|
||||
cv::groupRectangles(rects, groupThreshold, eps);
|
||||
}
|
||||
std::transform(rects.begin(), rects.end(), hypotheses.begin(), RectConvert());
|
||||
hypotheses.resize(rects.size());
|
||||
}
|
||||
|
||||
|
||||
#if 1 /* loadFromXML implementation switch */
|
||||
|
||||
NCVStatus loadFromXML(const std::string &filename,
|
||||
HaarClassifierCascadeDescriptor &haar,
|
||||
std::vector<HaarStage64> &haarStages,
|
||||
std::vector<HaarClassifierNode128> &haarClassifierNodes,
|
||||
NCVStatus loadFromXML(const std::string &filename,
|
||||
HaarClassifierCascadeDescriptor &haar,
|
||||
std::vector<HaarStage64> &haarStages,
|
||||
std::vector<HaarClassifierNode128> &haarClassifierNodes,
|
||||
std::vector<HaarFeature64> &haarFeatures)
|
||||
{
|
||||
NCVStatus ncvStat;
|
||||
@@ -347,12 +358,12 @@ NCVStatus loadFromXML(const std::string &filename,
|
||||
haarStages.resize(0);
|
||||
haarClassifierNodes.resize(0);
|
||||
haarFeatures.resize(0);
|
||||
|
||||
|
||||
Ptr<CvHaarClassifierCascade> oldCascade = (CvHaarClassifierCascade*)cvLoad(filename.c_str(), 0, 0, 0);
|
||||
if (oldCascade.empty())
|
||||
{
|
||||
return NCV_HAAR_XML_LOADING_EXCEPTION;
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
}
|
||||
|
||||
haar.ClassifierSize.width = oldCascade->orig_window_size.width;
|
||||
haar.ClassifierSize.height = oldCascade->orig_window_size.height;
|
||||
@@ -384,14 +395,14 @@ NCVStatus loadFromXML(const std::string &filename,
|
||||
|
||||
HaarClassifierNodeDescriptor32 nodeLeft;
|
||||
if ( tree->left[n] <= 0 )
|
||||
{
|
||||
{
|
||||
Ncv32f leftVal = tree->alpha[-tree->left[n]];
|
||||
ncvStat = nodeLeft.create(leftVal);
|
||||
ncvAssertReturn(ncvStat == NCV_SUCCESS, ncvStat);
|
||||
bIsLeftNodeLeaf = true;
|
||||
}
|
||||
else
|
||||
{
|
||||
{
|
||||
Ncv32u leftNodeOffset = tree->left[n];
|
||||
nodeLeft.create((Ncv32u)(h_TmpClassifierNotRootNodes.size() + leftNodeOffset - 1));
|
||||
haar.bHasStumpsOnly = false;
|
||||
@@ -419,8 +430,8 @@ NCVStatus loadFromXML(const std::string &filename,
|
||||
|
||||
Ncv32u featureId = 0;
|
||||
for(int l = 0; l < CV_HAAR_FEATURE_MAX; ++l) //by rects
|
||||
{
|
||||
Ncv32u rectX = feature->rect[l].r.x;
|
||||
{
|
||||
Ncv32u rectX = feature->rect[l].r.x;
|
||||
Ncv32u rectY = feature->rect[l].r.y;
|
||||
Ncv32u rectWidth = feature->rect[l].r.width;
|
||||
Ncv32u rectHeight = feature->rect[l].r.height;
|
||||
@@ -441,7 +452,7 @@ NCVStatus loadFromXML(const std::string &filename,
|
||||
|
||||
HaarFeatureDescriptor32 tmpFeatureDesc;
|
||||
ncvStat = tmpFeatureDesc.create(haar.bNeedsTiltedII, bIsLeftNodeLeaf, bIsRightNodeLeaf,
|
||||
featureId, haarFeatures.size() - featureId);
|
||||
featureId, haarFeatures.size() - featureId);
|
||||
ncvAssertReturn(NCV_SUCCESS == ncvStat, ncvStat);
|
||||
curNode.setFeatureDesc(tmpFeatureDesc);
|
||||
|
||||
@@ -466,8 +477,6 @@ NCVStatus loadFromXML(const std::string &filename,
|
||||
haarStages.push_back(curStage);
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
//fill in cascade stats
|
||||
haar.NumStages = haarStages.size();
|
||||
haar.NumClassifierRootNodes = haarClassifierNodes.size();
|
||||
@@ -496,6 +505,7 @@ NCVStatus loadFromXML(const std::string &filename,
|
||||
}
|
||||
haarClassifierNodes[i].setRightNodeDesc(nodeRight);
|
||||
}
|
||||
|
||||
for (Ncv32u i=0; i<h_TmpClassifierNotRootNodes.size(); i++)
|
||||
{
|
||||
HaarFeatureDescriptor32 featureDesc = h_TmpClassifierNotRootNodes[i].getFeatureDesc();
|
||||
@@ -522,8 +532,6 @@ NCVStatus loadFromXML(const std::string &filename,
|
||||
return NCV_SUCCESS;
|
||||
}
|
||||
|
||||
////
|
||||
|
||||
#else /* loadFromXML implementation switch */
|
||||
|
||||
#include "e:/devNPP-OpenCV/src/external/_rapidxml-1.13/rapidxml.hpp"
|
||||
@@ -793,5 +801,3 @@ NCVStatus loadFromXML(const std::string &filename,
|
||||
#endif /* loadFromXML implementation switch */
|
||||
|
||||
#endif /* HAVE_CUDA */
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user