[~] Refactored, cleaned up, and consolidated the code of GPU examples (cascadeclassifier and cascadeclassifier_nvidia_api)

This commit is contained in:
Anton Obukhov 2011-04-07 12:59:01 +00:00
parent daac469b83
commit 07d19c2c6f
4 changed files with 293 additions and 259 deletions

View File

@ -1520,7 +1520,7 @@ namespace cv
// The cascade classifier class for object detection.
class CV_EXPORTS CascadeClassifier_GPU
{
public:
public:
CascadeClassifier_GPU();
CascadeClassifier_GPU(const string& filename);
~CascadeClassifier_GPU();
@ -1528,20 +1528,20 @@ namespace cv
bool empty() const;
bool load(const string& filename);
void release();
/* returns number of detected objects */
int detectMultiScale( const GpuMat& image, GpuMat& objectsBuf, double scaleFactor=1.2, int minNeighbors=4, Size minSize=Size());
bool findLargestObject;
bool visualizeInPlace;
Size getClassifierSize() const;
private:
struct CascadeClassifierImpl;
CascadeClassifierImpl* impl;
struct CascadeClassifierImpl;
CascadeClassifierImpl* impl;
};
////////////////////////////////// SURF //////////////////////////////////////////
class CV_EXPORTS SURF_GPU : public CvSURFParams

View File

@ -62,16 +62,22 @@ int cv::gpu::CascadeClassifier_GPU::detectMultiScale( const GpuMat& , GpuMat& ,
#else
struct cv::gpu::CascadeClassifier_GPU::CascadeClassifierImpl
{
{
CascadeClassifierImpl(const string& filename) : lastAllocatedFrameSize(-1, -1)
{
ncvSetDebugOutputHandler(NCVDebugOutputHandler);
ncvSetDebugOutputHandler(NCVDebugOutputHandler);
if (ncvStat != load(filename))
{
CV_Error(CV_GpuApiCallError, "Error in GPU cacade load");
}
NCVStatus process(const GpuMat& src, GpuMat& objects, float scaleStep, int minNeighbors, bool findLargestObject, bool visualizeInPlace, NcvSize32u ncvMinSize, /*out*/unsigned int& numDetections)
{
calculateMemReqsAndAllocate(src.size());
}
}
NCVStatus process(const GpuMat& src, GpuMat& objects, float scaleStep, int minNeighbors,
bool findLargestObject, bool visualizeInPlace, NcvSize32u ncvMinSize,
/*out*/unsigned int& numDetections)
{
calculateMemReqsAndAllocate(src.size());
NCVMemPtr src_beg;
src_beg.ptr = (void*)src.ptr<Ncv8u>();
@ -81,14 +87,8 @@ struct cv::gpu::CascadeClassifier_GPU::CascadeClassifierImpl
src_seg.begin = src_beg;
src_seg.size = src.step * src.rows;
NCVMatrixReuse<Ncv8u> d_src(src_seg, devProp.textureAlignment, src.cols, src.rows, src.step, true);
ncvAssertReturn(d_src.isMemReused(), NCV_ALLOCATOR_BAD_REUSE);
//NCVMatrixAlloc<Ncv8u> d_src(*gpuAllocator, src.cols, src.rows);
//ncvAssertReturn(d_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
//NCVMatrixAlloc<Ncv8u> h_src(*cpuAllocator, src.cols, src.rows);
//ncvAssertReturn(h_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
NCVMatrixReuse<Ncv8u> d_src(src_seg, devProp.textureAlignment, src.cols, src.rows, src.step, true);
ncvAssertReturn(d_src.isMemReused(), NCV_ALLOCATOR_BAD_REUSE);
CV_Assert(objects.rows == 1);
@ -100,10 +100,8 @@ struct cv::gpu::CascadeClassifier_GPU::CascadeClassifierImpl
objects_seg.begin = objects_beg;
objects_seg.size = objects.step * objects.rows;
NCVVectorReuse<NcvRect32u> d_rects(objects_seg, objects.cols);
ncvAssertReturn(d_rects.isMemReused(), NCV_ALLOCATOR_BAD_REUSE);
//NCVVectorAlloc<NcvRect32u> d_rects(*gpuAllocator, 100);
//ncvAssertReturn(d_rects.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
ncvAssertReturn(d_rects.isMemReused(), NCV_ALLOCATOR_BAD_REUSE);
NcvSize32u roi;
roi.width = d_src.width();
roi.height = d_src.height();
@ -111,7 +109,7 @@ struct cv::gpu::CascadeClassifier_GPU::CascadeClassifierImpl
Ncv32u flags = 0;
flags |= findLargestObject? NCVPipeObjDet_FindLargestObject : 0;
flags |= visualizeInPlace ? NCVPipeObjDet_VisualizeInPlace : 0;
ncvStat = ncvDetectObjectsMultiScale_device(
d_src, roi, d_rects, numDetections, haar, *h_haarStages,
*d_haarStages, *d_haarNodes, *d_haarFeatures,
@ -122,24 +120,28 @@ struct cv::gpu::CascadeClassifier_GPU::CascadeClassifierImpl
*gpuAllocator, *cpuAllocator, devProp, 0);
ncvAssertReturnNcvStat(ncvStat);
ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR);
return NCV_SUCCESS;
}
////
NcvSize32u getClassifierSize() const { return haar.ClassifierSize; }
cv::Size getClassifierCvSize() const { return cv::Size(haar.ClassifierSize.width, haar.ClassifierSize.height); }
private:
static void NCVDebugOutputHandler(const char* msg) { CV_Error(CV_GpuApiCallError, msg); }
NCVStatus load(const string& classifierFile)
{
int devId = cv::gpu::getDevice();
{
int devId = cv::gpu::getDevice();
ncvAssertCUDAReturn(cudaGetDeviceProperties(&devProp, devId), NCV_CUDA_ERROR);
// Load the classifier from file (assuming its size is about 1 mb) using a simple allocator
gpuCascadeAllocator = new NCVMemNativeAllocator(NCVMemoryTypeDevice, devProp.textureAlignment);
gpuCascadeAllocator = new NCVMemNativeAllocator(NCVMemoryTypeDevice, devProp.textureAlignment);
cpuCascadeAllocator = new NCVMemNativeAllocator(NCVMemoryTypeHostPinned, devProp.textureAlignment);
ncvAssertPrintReturn(gpuCascadeAllocator->isInitialized(), "Error creating cascade GPU allocator", NCV_CUDA_ERROR);
@ -149,12 +151,12 @@ private:
ncvStat = ncvHaarGetClassifierSize(classifierFile, haarNumStages, haarNumNodes, haarNumFeatures);
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error reading classifier size (check the file)", NCV_FILE_ERROR);
h_haarStages = new NCVVectorAlloc<HaarStage64>(*cpuCascadeAllocator, haarNumStages);
h_haarStages = new NCVVectorAlloc<HaarStage64>(*cpuCascadeAllocator, haarNumStages);
h_haarNodes = new NCVVectorAlloc<HaarClassifierNode128>(*cpuCascadeAllocator, haarNumNodes);
h_haarFeatures = new NCVVectorAlloc<HaarFeature64>(*cpuCascadeAllocator, haarNumFeatures);
ncvAssertPrintReturn(h_haarStages->isMemAllocated(), "Error in cascade CPU allocator", NCV_CUDA_ERROR);
ncvAssertPrintReturn(h_haarNodes->isMemAllocated(), "Error in cascade CPU allocator", NCV_CUDA_ERROR);
ncvAssertPrintReturn(h_haarNodes->isMemAllocated(), "Error in cascade CPU allocator", NCV_CUDA_ERROR);
ncvAssertPrintReturn(h_haarFeatures->isMemAllocated(), "Error in cascade CPU allocator", NCV_CUDA_ERROR);
ncvStat = ncvHaarLoadFromFile_host(classifierFile, haar, *h_haarStages, *h_haarNodes, *h_haarFeatures);
@ -165,7 +167,7 @@ private:
d_haarFeatures = new NCVVectorAlloc<HaarFeature64>(*gpuCascadeAllocator, haarNumFeatures);
ncvAssertPrintReturn(d_haarStages->isMemAllocated(), "Error in cascade GPU allocator", NCV_CUDA_ERROR);
ncvAssertPrintReturn(d_haarNodes->isMemAllocated(), "Error in cascade GPU allocator", NCV_CUDA_ERROR);
ncvAssertPrintReturn(d_haarNodes->isMemAllocated(), "Error in cascade GPU allocator", NCV_CUDA_ERROR);
ncvAssertPrintReturn(d_haarFeatures->isMemAllocated(), "Error in cascade GPU allocator", NCV_CUDA_ERROR);
ncvStat = h_haarStages->copySolid(*d_haarStages, 0);
@ -173,31 +175,33 @@ private:
ncvStat = h_haarNodes->copySolid(*d_haarNodes, 0);
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", NCV_CUDA_ERROR);
ncvStat = h_haarFeatures->copySolid(*d_haarFeatures, 0);
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", NCV_CUDA_ERROR);
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", NCV_CUDA_ERROR);
return NCV_SUCCESS;
}
////
NCVStatus calculateMemReqsAndAllocate(const Size& frameSize)
{
{
if (lastAllocatedFrameSize == frameSize)
{
return NCV_SUCCESS;
}
// Calculate memory requirements and create real allocators
NCVMemStackAllocator gpuCounter(devProp.textureAlignment);
NCVMemStackAllocator cpuCounter(devProp.textureAlignment);
ncvAssertPrintReturn(gpuCounter.isInitialized(), "Error creating GPU memory counter", NCV_CUDA_ERROR);
ncvAssertPrintReturn(gpuCounter.isInitialized(), "Error creating GPU memory counter", NCV_CUDA_ERROR);
ncvAssertPrintReturn(cpuCounter.isInitialized(), "Error creating CPU memory counter", NCV_CUDA_ERROR);
NCVMatrixAlloc<Ncv8u> d_src(gpuCounter, frameSize.width, frameSize.height);
NCVMatrixAlloc<Ncv8u> h_src(cpuCounter, frameSize.width, frameSize.height);
ncvAssertReturn(d_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
ncvAssertReturn(d_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
ncvAssertReturn(h_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
NCVVectorAlloc<NcvRect32u> d_rects(gpuCounter, 100);
NCVVectorAlloc<NcvRect32u> d_rects(gpuCounter, 100);
ncvAssertReturn(d_rects.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
NcvSize32u roi;
@ -209,23 +213,23 @@ private:
ncvAssertReturnNcvStat(ncvStat);
ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR);
gpuAllocator = new NCVMemStackAllocator(NCVMemoryTypeDevice, gpuCounter.maxSize(), devProp.textureAlignment);
gpuAllocator = new NCVMemStackAllocator(NCVMemoryTypeDevice, gpuCounter.maxSize(), devProp.textureAlignment);
cpuAllocator = new NCVMemStackAllocator(NCVMemoryTypeHostPinned, cpuCounter.maxSize(), devProp.textureAlignment);
ncvAssertPrintReturn(gpuAllocator->isInitialized(), "Error creating GPU memory allocator", NCV_CUDA_ERROR);
ncvAssertPrintReturn(cpuAllocator->isInitialized(), "Error creating CPU memory allocator", NCV_CUDA_ERROR);
ncvAssertPrintReturn(cpuAllocator->isInitialized(), "Error creating CPU memory allocator", NCV_CUDA_ERROR);
return NCV_SUCCESS;
}
////
cudaDeviceProp devProp;
NCVStatus ncvStat;
Ptr<NCVMemNativeAllocator> gpuCascadeAllocator;
Ptr<NCVMemNativeAllocator> gpuCascadeAllocator;
Ptr<NCVMemNativeAllocator> cpuCascadeAllocator;
Ptr<NCVVectorAlloc<HaarStage64> > h_haarStages;
Ptr<NCVVectorAlloc<HaarStage64> > h_haarStages;
Ptr<NCVVectorAlloc<HaarClassifierNode128> > h_haarNodes;
Ptr<NCVVectorAlloc<HaarFeature64> > h_haarFeatures;
@ -237,96 +241,103 @@ private:
Size lastAllocatedFrameSize;
Ptr<NCVMemStackAllocator> gpuAllocator;
Ptr<NCVMemStackAllocator> gpuAllocator;
Ptr<NCVMemStackAllocator> cpuAllocator;
};
cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU() : findLargestObject(false), visualizeInPlace(false), impl(0) {}
cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU(const string& filename) : findLargestObject(false), visualizeInPlace(false), impl(0) { load(filename); }
cv::gpu::CascadeClassifier_GPU::~CascadeClassifier_GPU() { release(); }
bool cv::gpu::CascadeClassifier_GPU::empty() const { return impl == 0; }
void cv::gpu::CascadeClassifier_GPU::release() { if (impl) { delete impl; impl = 0; } }
bool cv::gpu::CascadeClassifier_GPU::load(const string& filename)
{
{
release();
impl = new CascadeClassifierImpl(filename);
return !this->empty();
return !this->empty();
}
Size cv::gpu::CascadeClassifier_GPU::getClassifierSize() const
{
return this->empty() ? Size() : impl->getClassifierCvSize();
}
int cv::gpu::CascadeClassifier_GPU::detectMultiScale( const GpuMat& image, GpuMat& objectsBuf, double scaleFactor, int minNeighbors, Size minSize)
{
{
CV_Assert( scaleFactor > 1 && image.depth() == CV_8U);
CV_Assert( !this->empty());
const int defaultObjSearchNum = 100;
if (objectsBuf.empty())
{
objectsBuf.create(1, defaultObjSearchNum, DataType<Rect>::type);
}
NcvSize32u ncvMinSize = impl->getClassifierSize();
if (ncvMinSize.width < (unsigned)minSize.width && ncvMinSize.height < (unsigned)minSize.height)
{
ncvMinSize.width = minSize.width;
ncvMinSize.height = minSize.height;
}
}
unsigned int numDetections;
NCVStatus ncvStat = impl->process(image, objectsBuf, (float)scaleFactor, minNeighbors, findLargestObject, visualizeInPlace, ncvMinSize, numDetections);
NCVStatus ncvStat = impl->process(image, objectsBuf, (float)scaleFactor, minNeighbors, findLargestObject, visualizeInPlace, ncvMinSize, numDetections);
if (ncvStat != NCV_SUCCESS)
{
CV_Error(CV_GpuApiCallError, "Error in face detectioln");
}
return numDetections;
}
struct RectConvert
{
Rect operator()(const NcvRect32u& nr) const { return Rect(nr.x, nr.y, nr.width, nr.height); }
NcvRect32u operator()(const Rect& nr) const
{
NcvRect32u rect;
rect.x = nr.x;
rect.y = nr.y;
rect.width = nr.width;
rect.height = nr.height;
return rect;
}
Rect operator()(const NcvRect32u& nr) const { return Rect(nr.x, nr.y, nr.width, nr.height); }
NcvRect32u operator()(const Rect& nr) const
{
NcvRect32u rect;
rect.x = nr.x;
rect.y = nr.y;
rect.width = nr.width;
rect.height = nr.height;
return rect;
}
};
void groupRectangles(std::vector<NcvRect32u> &hypotheses, int groupThreshold, double eps, std::vector<Ncv32u> *weights)
{
vector<Rect> rects(hypotheses.size());
std::transform(hypotheses.begin(), hypotheses.end(), rects.begin(), RectConvert());
if (weights)
{
vector<int> weights_int;
weights_int.assign(weights->begin(), weights->end());
cv::groupRectangles(rects, weights_int, groupThreshold, eps);
}
else
{
cv::groupRectangles(rects, groupThreshold, eps);
}
std::transform(rects.begin(), rects.end(), hypotheses.begin(), RectConvert());
hypotheses.resize(rects.size());
vector<Rect> rects(hypotheses.size());
std::transform(hypotheses.begin(), hypotheses.end(), rects.begin(), RectConvert());
if (weights)
{
vector<int> weights_int;
weights_int.assign(weights->begin(), weights->end());
cv::groupRectangles(rects, weights_int, groupThreshold, eps);
}
else
{
cv::groupRectangles(rects, groupThreshold, eps);
}
std::transform(rects.begin(), rects.end(), hypotheses.begin(), RectConvert());
hypotheses.resize(rects.size());
}
#if 1 /* loadFromXML implementation switch */
NCVStatus loadFromXML(const std::string &filename,
HaarClassifierCascadeDescriptor &haar,
std::vector<HaarStage64> &haarStages,
std::vector<HaarClassifierNode128> &haarClassifierNodes,
NCVStatus loadFromXML(const std::string &filename,
HaarClassifierCascadeDescriptor &haar,
std::vector<HaarStage64> &haarStages,
std::vector<HaarClassifierNode128> &haarClassifierNodes,
std::vector<HaarFeature64> &haarFeatures)
{
NCVStatus ncvStat;
@ -347,12 +358,12 @@ NCVStatus loadFromXML(const std::string &filename,
haarStages.resize(0);
haarClassifierNodes.resize(0);
haarFeatures.resize(0);
Ptr<CvHaarClassifierCascade> oldCascade = (CvHaarClassifierCascade*)cvLoad(filename.c_str(), 0, 0, 0);
if (oldCascade.empty())
{
return NCV_HAAR_XML_LOADING_EXCEPTION;
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
}
haar.ClassifierSize.width = oldCascade->orig_window_size.width;
haar.ClassifierSize.height = oldCascade->orig_window_size.height;
@ -384,14 +395,14 @@ NCVStatus loadFromXML(const std::string &filename,
HaarClassifierNodeDescriptor32 nodeLeft;
if ( tree->left[n] <= 0 )
{
{
Ncv32f leftVal = tree->alpha[-tree->left[n]];
ncvStat = nodeLeft.create(leftVal);
ncvAssertReturn(ncvStat == NCV_SUCCESS, ncvStat);
bIsLeftNodeLeaf = true;
}
else
{
{
Ncv32u leftNodeOffset = tree->left[n];
nodeLeft.create((Ncv32u)(h_TmpClassifierNotRootNodes.size() + leftNodeOffset - 1));
haar.bHasStumpsOnly = false;
@ -419,8 +430,8 @@ NCVStatus loadFromXML(const std::string &filename,
Ncv32u featureId = 0;
for(int l = 0; l < CV_HAAR_FEATURE_MAX; ++l) //by rects
{
Ncv32u rectX = feature->rect[l].r.x;
{
Ncv32u rectX = feature->rect[l].r.x;
Ncv32u rectY = feature->rect[l].r.y;
Ncv32u rectWidth = feature->rect[l].r.width;
Ncv32u rectHeight = feature->rect[l].r.height;
@ -441,7 +452,7 @@ NCVStatus loadFromXML(const std::string &filename,
HaarFeatureDescriptor32 tmpFeatureDesc;
ncvStat = tmpFeatureDesc.create(haar.bNeedsTiltedII, bIsLeftNodeLeaf, bIsRightNodeLeaf,
featureId, haarFeatures.size() - featureId);
featureId, haarFeatures.size() - featureId);
ncvAssertReturn(NCV_SUCCESS == ncvStat, ncvStat);
curNode.setFeatureDesc(tmpFeatureDesc);
@ -466,8 +477,6 @@ NCVStatus loadFromXML(const std::string &filename,
haarStages.push_back(curStage);
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//fill in cascade stats
haar.NumStages = haarStages.size();
haar.NumClassifierRootNodes = haarClassifierNodes.size();
@ -496,6 +505,7 @@ NCVStatus loadFromXML(const std::string &filename,
}
haarClassifierNodes[i].setRightNodeDesc(nodeRight);
}
for (Ncv32u i=0; i<h_TmpClassifierNotRootNodes.size(); i++)
{
HaarFeatureDescriptor32 featureDesc = h_TmpClassifierNotRootNodes[i].getFeatureDesc();
@ -522,8 +532,6 @@ NCVStatus loadFromXML(const std::string &filename,
return NCV_SUCCESS;
}
////
#else /* loadFromXML implementation switch */
#include "e:/devNPP-OpenCV/src/external/_rapidxml-1.13/rapidxml.hpp"
@ -793,5 +801,3 @@ NCVStatus loadFromXML(const std::string &filename,
#endif /* loadFromXML implementation switch */
#endif /* HAVE_CUDA */

View File

@ -1,19 +1,29 @@
// WARNING: this sample is under construction! Use it on your own risk.
#pragma warning(disable : 4100)
#include "cvconfig.h"
#include <iostream>
#include <iomanip>
#include <opencv2/contrib/contrib.hpp>
#include <opencv2/objdetect/objdetect.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/gpu/gpu.hpp>
#include <iostream>
#include <iomanip>
using namespace std;
using namespace cv;
using namespace cv::gpu;
#if !defined(HAVE_CUDA)
int main(int argc, const char **argv)
{
cout << "Please compile the library with CUDA support" << endl;
return -1;
}
#else
void help()
{
cout << "Usage: ./cascadeclassifier <cascade_file> <image_or_video_or_cameraid>\n"
@ -21,14 +31,8 @@ void help()
}
void DetectAndDraw(Mat& img, CascadeClassifier_GPU& cascade);
String cascadeName = "../../data/haarcascades/haarcascade_frontalface_alt.xml";
String nestedCascadeName = "../../data/haarcascades/haarcascade_eye_tree_eyeglasses.xml";
template<class T> void convertAndResize(const T& src, T& gray, T& resized, double scale)
template<class T>
void convertAndResize(const T& src, T& gray, T& resized, double scale)
{
if (src.channels() == 3)
{
@ -54,15 +58,16 @@ template<class T> void convertAndResize(const T& src, T& gray, T& resized, doubl
void matPrint(Mat &img, int lineOffsY, Scalar fontColor, const ostringstream &ss)
{
int fontFace = FONT_HERSHEY_PLAIN;
double fontScale = 1.5;
int fontFace = FONT_HERSHEY_DUPLEX;
double fontScale = 0.8;
int fontThickness = 2;
Size fontSize = cv::getTextSize("T[]", fontFace, fontScale, fontThickness, 0);
Point org;
org.x = 1;
org.y = 3 * fontSize.height * (lineOffsY + 1) / 2;
putText(img, ss.str(), org, fontFace, fontScale, fontColor, fontThickness);
putText(img, ss.str(), org, fontFace, fontScale, CV_RGB(0,0,0), 5*fontThickness/2, 16);
putText(img, ss.str(), org, fontFace, fontScale, fontColor, fontThickness, 16);
}
@ -72,25 +77,26 @@ void displayState(Mat &canvas, bool bHelp, bool bGpu, bool bLargestFace, bool bF
Scalar fontColorNV = CV_RGB(118,185,0);
ostringstream ss;
ss << "FPS = " << setprecision(1) << fixed << fps;
matPrint(canvas, 0, fontColorRed, ss);
ss.str("");
ss << "[" << canvas.cols << "x" << canvas.rows << "], " <<
(bGpu ? "GPU, " : "CPU, ") <<
(bLargestFace ? "OneFace, " : "MultiFace, ") <<
(bFilter ? "Filter:ON, " : "Filter:OFF, ") <<
"FPS = " << setprecision(1) << fixed << fps;
matPrint(canvas, 0, fontColorRed, ss);
(bFilter ? "Filter:ON" : "Filter:OFF");
matPrint(canvas, 1, fontColorRed, ss);
if (bHelp)
{
matPrint(canvas, 1, fontColorNV, ostringstream("Space - switch GPU / CPU"));
matPrint(canvas, 2, fontColorNV, ostringstream("M - switch OneFace / MultiFace"));
matPrint(canvas, 3, fontColorNV, ostringstream("F - toggle rectangles Filter (only in MultiFace)"));
matPrint(canvas, 4, fontColorNV, ostringstream("H - toggle hotkeys help"));
matPrint(canvas, 5, fontColorNV, ostringstream("1/Q - increase/decrease scale"));
matPrint(canvas, 2, fontColorNV, ostringstream("Space - switch GPU / CPU"));
matPrint(canvas, 3, fontColorNV, ostringstream("M - switch OneFace / MultiFace"));
matPrint(canvas, 4, fontColorNV, ostringstream("F - toggle rectangles Filter"));
matPrint(canvas, 5, fontColorNV, ostringstream("H - toggle hotkeys help"));
matPrint(canvas, 6, fontColorNV, ostringstream("1/Q - increase/decrease scale"));
}
else
{
matPrint(canvas, 1, fontColorNV, ostringstream("H - toggle hotkeys help"));
matPrint(canvas, 2, fontColorNV, ostringstream("H - toggle hotkeys help"));
}
}
@ -130,8 +136,10 @@ int main(int argc, const char *argv[])
{
if (!capture.open(inputName))
{
int camid = 0;
sscanf(inputName.c_str(), "%d", &camid);
int camid = -1;
istringstream iss(inputName);
iss >> camid;
if (!capture.open(camid))
{
cout << "Can't open source" << endl;
@ -180,24 +188,26 @@ int main(int argc, const char *argv[])
cascade_gpu.visualizeInPlace = true;
cascade_gpu.findLargestObject = findLargestObject;
detections_num = cascade_gpu.detectMultiScale(resized_gpu, facesBuf_gpu, 1.2, filterRects ? 4 : 0);
detections_num = cascade_gpu.detectMultiScale(resized_gpu, facesBuf_gpu, 1.2,
(filterRects || findLargestObject) ? 4 : 0);
facesBuf_gpu.colRange(0, detections_num).download(faces_downloaded);
}
else
{
Size minSize = cascade_gpu.getClassifierSize();
cascade_cpu.detectMultiScale(resized_cpu, facesBuf_cpu, 1.2, filterRects ? 4 : 0, (findLargestObject ? CV_HAAR_FIND_BIGGEST_OBJECT : 0) | CV_HAAR_SCALE_IMAGE, minSize);
cascade_cpu.detectMultiScale(resized_cpu, facesBuf_cpu, 1.2,
(filterRects || findLargestObject) ? 4 : 0,
(findLargestObject ? CV_HAAR_FIND_BIGGEST_OBJECT : 0)
| CV_HAAR_SCALE_IMAGE,
minSize);
detections_num = (int)facesBuf_cpu.size();
}
if (!useGPU)
if (!useGPU && detections_num)
{
if (detections_num)
for (int i = 0; i < detections_num; ++i)
{
for (int i = 0; i < detections_num; ++i)
{
rectangle(resized_cpu, facesBuf_cpu[i], Scalar(255));
}
rectangle(resized_cpu, facesBuf_cpu[i], Scalar(255));
}
}
@ -265,3 +275,5 @@ int main(int argc, const char *argv[])
return 0;
}
#endif //!defined(HAVE_CUDA)

View File

@ -1,50 +1,76 @@
#pragma warning( disable : 4201 4408 4127 4100)
#include <cstdio>
#include "cvconfig.h"
#if !defined(HAVE_CUDA)
int main( int argc, const char** argv ) { return printf("Please compile the library with CUDA support."), -1; }
#else
#include <cuda_runtime.h>
#include "opencv2/opencv.hpp"
#include <iostream>
#include <iomanip>
#include <opencv2/opencv.hpp>
#include <opencv2/gpu/gpu.hpp>
#include "NCVHaarObjectDetection.hpp"
using namespace std;
using namespace cv;
const Size2i preferredVideoFrameSize(640, 480);
std::string preferredClassifier = "haarcascade_frontalface_alt.xml";
std::string wndTitle = "NVIDIA Computer Vision SDK :: Face Detection in Video Feed";
void printSyntax(void)
#if !defined(HAVE_CUDA)
int main( int argc, const char** argv )
{
printf("Syntax: FaceDetectionFeed.exe [-c cameranum | -v filename] classifier.xml\n");
cout << "Please compile the library with CUDA support" << endl;
return -1;
}
#else
const Size2i preferredVideoFrameSize(640, 480);
const string wndTitle = "NVIDIA Computer Vision :: Haar Classifiers Cascade";
void matPrint(Mat &img, int lineOffsY, Scalar fontColor, const ostringstream &ss)
{
int fontFace = FONT_HERSHEY_DUPLEX;
double fontScale = 0.8;
int fontThickness = 2;
Size fontSize = cv::getTextSize("T[]", fontFace, fontScale, fontThickness, 0);
Point org;
org.x = 1;
org.y = 3 * fontSize.height * (lineOffsY + 1) / 2;
putText(img, ss.str(), org, fontFace, fontScale, CV_RGB(0,0,0), 5*fontThickness/2, 16);
putText(img, ss.str(), org, fontFace, fontScale, fontColor, fontThickness, 16);
}
void imagePrintf(Mat& img, int lineOffsY, Scalar color, const char *format, ...)
{
int fontFace = CV_FONT_HERSHEY_PLAIN;
double fontScale = 1;
int baseline;
Size textSize = cv::getTextSize("T", fontFace, fontScale, 1, &baseline);
va_list arg_ptr;
va_start(arg_ptr, format);
void displayState(Mat &canvas, bool bHelp, bool bGpu, bool bLargestFace, bool bFilter, double fps)
{
Scalar fontColorRed = CV_RGB(255,0,0);
Scalar fontColorNV = CV_RGB(118,185,0);
char strBuf[4096];
vsprintf(&strBuf[0], format, arg_ptr);
ostringstream ss;
ss << "FPS = " << setprecision(1) << fixed << fps;
matPrint(canvas, 0, fontColorRed, ss);
ss.str("");
ss << "[" << canvas.cols << "x" << canvas.rows << "], " <<
(bGpu ? "GPU, " : "CPU, ") <<
(bLargestFace ? "OneFace, " : "MultiFace, ") <<
(bFilter ? "Filter:ON" : "Filter:OFF");
matPrint(canvas, 1, fontColorRed, ss);
Point org(1, 3 * textSize.height * (lineOffsY + 1) / 2);
putText(img, &strBuf[0], org, fontFace, fontScale, color);
va_end(arg_ptr);
if (bHelp)
{
matPrint(canvas, 2, fontColorNV, ostringstream("Space - switch GPU / CPU"));
matPrint(canvas, 3, fontColorNV, ostringstream("M - switch OneFace / MultiFace"));
matPrint(canvas, 4, fontColorNV, ostringstream("F - toggle rectangles Filter"));
matPrint(canvas, 5, fontColorNV, ostringstream("H - toggle hotkeys help"));
}
else
{
matPrint(canvas, 2, fontColorNV, ostringstream("H - toggle hotkeys help"));
}
}
NCVStatus process(Mat *srcdst,
Ncv32u width, Ncv32u height,
NcvBool bShowAllHypotheses, NcvBool bLargestFace,
NcvBool bFilterRects, NcvBool bLargestFace,
HaarClassifierCascadeDescriptor &haar,
NCVVector<HaarStage64> &d_haarStages, NCVVector<HaarClassifierNode128> &d_haarNodes,
NCVVector<HaarFeature64> &d_haarFeatures, NCVVector<HaarStage64> &h_haarStages,
@ -87,7 +113,7 @@ NCVStatus process(Mat *srcdst,
d_src, roi, d_rects, numDetections, haar, h_haarStages,
d_haarStages, d_haarNodes, d_haarFeatures,
haar.ClassifierSize,
bShowAllHypotheses ? 0 : 4,
(bFilterRects || bLargestFace) ? 4 : 0,
1.2f, 1,
(bLargestFace ? NCVPipeObjDet_FindLargestObject : 0)
| NCVPipeObjDet_VisualizeInPlace,
@ -111,80 +137,67 @@ NCVStatus process(Mat *srcdst,
return NCV_SUCCESS;
}
int main( int argc, const char** argv )
int main(int argc, const char** argv)
{
cout << "OpenCV / NVIDIA Computer Vision" << endl;
cout << "Face Detection in video and live feed" << endl;
cout << "Syntax: exename <cascade_file> <image_or_video_or_cameraid>" << endl;
cout << "=========================================" << endl;
ncvAssertPrintReturn(cv::gpu::getCudaEnabledDeviceCount() != 0, "No GPU found or the library is compiled without GPU support", -1);
ncvAssertPrintReturn(argc == 3, "Invalid number of arguments", -1);
string cascadeName = argv[1];
string inputName = argv[2];
NCVStatus ncvStat;
printf("NVIDIA Computer Vision SDK\n");
printf("Face Detection in video and live feed\n");
printf("=========================================\n");
printf(" Esc - Quit\n");
printf(" Space - Switch between NCV and OpenCV\n");
printf(" L - Switch between FullSearch and LargestFace modes\n");
printf(" U - Toggle unfiltered hypotheses visualization in FullSearch\n");
VideoCapture capture;
bool bQuit = false;
NcvBool bQuit = false;
VideoCapture capture;
Size2i frameSize;
if (argc != 4 && argc != 1)
//open content source
Mat image = imread(inputName);
Mat frame;
if (!image.empty())
{
printSyntax();
return -1;
}
if (argc == 1 || strcmp(argv[1], "-c") == 0)
{
// Camera input is specified
int camIdx = (argc == 3) ? atoi(argv[2]) : 0;
if(!capture.open(camIdx))
return printf("Error opening camera\n"), -1;
capture.set(CV_CAP_PROP_FRAME_WIDTH, preferredVideoFrameSize.width);
capture.set(CV_CAP_PROP_FRAME_HEIGHT, preferredVideoFrameSize.height);
capture.set(CV_CAP_PROP_FPS, 25);
frameSize = preferredVideoFrameSize;
}
else if (strcmp(argv[1], "-v") == 0)
{
// Video file input (avi)
if(!capture.open(argv[2]))
return printf("Error opening video file\n"), -1;
frameSize.width = (int)capture.get(CV_CAP_PROP_FRAME_WIDTH);
frameSize.height = (int)capture.get(CV_CAP_PROP_FRAME_HEIGHT);
frameSize.width = image.cols;
frameSize.height = image.rows;
}
else
return printSyntax(), -1;
{
if (!capture.open(inputName))
{
int camid = -1;
NcvBool bUseOpenCV = true;
NcvBool bLargestFace = false; //LargestFace=true is used usually during training
NcvBool bShowAllHypotheses = false;
istringstream ss(inputName);
int x = 0;
ss >> x;
ncvAssertPrintReturn(capture.open(camid) != 0, "Can't open source", -1);
}
capture >> frame;
ncvAssertPrintReturn(!frame.empty(), "Empty video source", -1);
frameSize.width = frame.cols;
frameSize.height = frame.rows;
}
NcvBool bUseGPU = true;
NcvBool bLargestObject = false;
NcvBool bFilterRects = true;
NcvBool bHelpScreen = false;
CascadeClassifier classifierOpenCV;
std::string classifierFile;
if (argc == 1)
{
classifierFile = preferredClassifier;
}
else
{
classifierFile.assign(argv[3]);
}
if (!classifierOpenCV.load(classifierFile))
{
printf("Error (in OpenCV) opening classifier\n");
printSyntax();
return -1;
}
ncvAssertPrintReturn(classifierOpenCV.load(cascadeName) != 0, "Error (in OpenCV) opening classifier", -1);
int devId;
ncvAssertCUDAReturn(cudaGetDevice(&devId), -1);
cudaDeviceProp devProp;
ncvAssertCUDAReturn(cudaGetDeviceProperties(&devProp, devId), -1);
printf("Using GPU %d %s, arch=%d.%d\n", devId, devProp.name, devProp.major, devProp.minor);
cout << "Using GPU: " << devId << "(" << devProp.name <<
"), arch=" << devProp.major << "." << devProp.minor << endl;
//==============================================================================
//
@ -199,7 +212,7 @@ int main( int argc, const char** argv )
ncvAssertPrintReturn(cpuCascadeAllocator.isInitialized(), "Error creating cascade CPU allocator", -1);
Ncv32u haarNumStages, haarNumNodes, haarNumFeatures;
ncvStat = ncvHaarGetClassifierSize(classifierFile, haarNumStages, haarNumNodes, haarNumFeatures);
ncvStat = ncvHaarGetClassifierSize(cascadeName, haarNumStages, haarNumNodes, haarNumFeatures);
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error reading classifier size (check the file)", -1);
NCVVectorAlloc<HaarStage64> h_haarStages(cpuCascadeAllocator, haarNumStages);
@ -210,7 +223,7 @@ int main( int argc, const char** argv )
ncvAssertPrintReturn(h_haarFeatures.isMemAllocated(), "Error in cascade CPU allocator", -1);
HaarClassifierCascadeDescriptor haar;
ncvStat = ncvHaarLoadFromFile_host(classifierFile, haar, h_haarStages, h_haarNodes, h_haarFeatures);
ncvStat = ncvHaarLoadFromFile_host(cascadeName, haar, h_haarStages, h_haarNodes, h_haarFeatures);
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error loading classifier", -1);
NCVVectorAlloc<HaarStage64> d_haarStages(gpuCascadeAllocator, haarNumStages);
@ -258,30 +271,25 @@ int main( int argc, const char** argv )
//
//==============================================================================
namedWindow(wndTitle, 1);
Mat frame, gray, frameDisp;
namedWindow(wndTitle, 1);
Mat gray, frameDisp;
do
{
// For camera and video file, capture the next image
capture >> frame;
if (frame.empty())
break;
Mat gray;
cvtColor(frame, gray, CV_BGR2GRAY);
cvtColor((image.empty() ? frame : image), gray, CV_BGR2GRAY);
//
// process
//
NcvSize32u minSize = haar.ClassifierSize;
if (bLargestFace)
if (bLargestObject)
{
Ncv32u ratioX = preferredVideoFrameSize.width / minSize.width;
Ncv32u ratioY = preferredVideoFrameSize.height / minSize.height;
Ncv32u ratioSmallest = std::min(ratioX, ratioY);
ratioSmallest = std::max((Ncv32u)(ratioSmallest / 2.5f), (Ncv32u)1);
Ncv32u ratioSmallest = min(ratioX, ratioY);
ratioSmallest = max((Ncv32u)(ratioSmallest / 2.5f), (Ncv32u)1);
minSize.width *= ratioSmallest;
minSize.height *= ratioSmallest;
}
@ -289,10 +297,10 @@ int main( int argc, const char** argv )
Ncv32f avgTime;
NcvTimer timer = ncvStartTimer();
if (!bUseOpenCV)
if (bUseGPU)
{
ncvStat = process(&gray, frameSize.width, frameSize.height,
bShowAllHypotheses, bLargestFace, haar,
bFilterRects, bLargestObject, haar,
d_haarStages, d_haarNodes,
d_haarFeatures, h_haarStages,
gpuAllocator, cpuAllocator, devProp);
@ -306,8 +314,8 @@ int main( int argc, const char** argv )
gray,
rectsOpenCV,
1.2f,
bShowAllHypotheses && !bLargestFace ? 0 : 4,
(bLargestFace ? CV_HAAR_FIND_BIGGEST_OBJECT : 0)
bFilterRects ? 4 : 0,
(bLargestObject ? CV_HAAR_FIND_BIGGEST_OBJECT : 0)
| CV_HAAR_SCALE_IMAGE,
Size(minSize.width, minSize.height));
@ -318,32 +326,41 @@ int main( int argc, const char** argv )
avgTime = (Ncv32f)ncvEndQueryTimerMs(timer);
cvtColor(gray, frameDisp, CV_GRAY2BGR);
displayState(frameDisp, bHelpScreen, bUseGPU, bLargestObject, bFilterRects, 1000.0f / avgTime);
imshow(wndTitle, frameDisp);
imagePrintf(frameDisp, 0, CV_RGB(255, 0,0), "Space - Switch NCV%s / OpenCV%s", bUseOpenCV?"":" (ON)", bUseOpenCV?" (ON)":"");
imagePrintf(frameDisp, 1, CV_RGB(255, 0,0), "L - Switch FullSearch%s / LargestFace%s modes", bLargestFace?"":" (ON)", bLargestFace?" (ON)":"");
imagePrintf(frameDisp, 2, CV_RGB(255, 0,0), "U - Toggle unfiltered hypotheses visualization in FullSearch %s", bShowAllHypotheses?"(ON)":"(OFF)");
imagePrintf(frameDisp, 3, CV_RGB(118,185,0), " Running at %f FPS on %s", 1000.0f / avgTime, bUseOpenCV?"CPU":"GPU");
cv::imshow(wndTitle, frameDisp);
//handle input
switch (cvWaitKey(3))
{
case ' ':
bUseOpenCV = !bUseOpenCV;
bUseGPU = !bUseGPU;
break;
case 'L':
case 'l':
bLargestFace = !bLargestFace;
case 'm':
case 'M':
bLargestObject = !bLargestObject;
break;
case 'U':
case 'u':
bShowAllHypotheses = !bShowAllHypotheses;
case 'f':
case 'F':
bFilterRects = !bFilterRects;
break;
case 'h':
case 'H':
bHelpScreen = !bHelpScreen;
break;
case 27:
bQuit = true;
break;
}
// For camera and video file, capture the next image
if (capture.isOpened())
{
capture >> frame;
if (frame.empty())
{
break;
}
}
} while (!bQuit);
cvDestroyWindow(wndTitle.c_str());
@ -351,5 +368,4 @@ int main( int argc, const char** argv )
return 0;
}
#endif
#endif //!defined(HAVE_CUDA)