1) NPP_staging as sources. Binaries removed.

2) NVidia tests for GPU
3) FD sample that uses NVidia's interface.
This commit is contained in:
Anatoly Baksheev
2011-02-04 15:15:25 +00:00
parent 811f6fbe92
commit 0747f2d863
52 changed files with 6042 additions and 1240 deletions

View File

@@ -83,25 +83,25 @@ void cv::gpu::transpose(const GpuMat& src, GpuMat& dst)
sz.width = src.cols;
sz.height = src.rows;
nppSafeCall( nppiTranspose_8u_C1R(src.ptr<Npp8u>(), src.step, dst.ptr<Npp8u>(), dst.step, sz) );
nppSafeCall( nppiTranspose_8u_C1R(src.ptr<Npp8u>(), src.step, dst.ptr<Npp8u>(), dst.step, sz) );
}
else if (src.elemSize() == 4)
{
NppStSize32u sz;
NcvSize32u sz;
sz.width = src.cols;
sz.height = src.rows;
nppSafeCall( nppiStTranspose_32u_C1R(const_cast<NppSt32u*>(src.ptr<NppSt32u>()), src.step,
dst.ptr<NppSt32u>(), dst.step, sz) );
nppSafeCall( nppiStTranspose_32u_C1R(const_cast<Ncv32u*>(src.ptr<Ncv32u>()), src.step,
dst.ptr<Ncv32u>(), dst.step, sz) );
}
else // if (src.elemSize() == 8)
{
NppStSize32u sz;
NcvSize32u sz;
sz.width = src.cols;
sz.height = src.rows;
nppSafeCall( nppiStTranspose_64u_C1R(const_cast<NppSt64u*>(src.ptr<NppSt64u>()), src.step,
dst.ptr<NppSt64u>(), dst.step, sz) );
nppSafeCall( nppiStTranspose_64u_C1R(const_cast<Ncv64u*>(src.ptr<Ncv64u>()), src.step,
dst.ptr<Ncv64u>(), dst.step, sz) );
}
cudaSafeCall( cudaThreadSynchronize() );

View File

@@ -126,7 +126,7 @@ struct cv::gpu::CascadeClassifier_GPU::CascadeClassifierImpl
minNeighbors,
scaleStep, 1,
flags,
*gpuAllocator, *cpuAllocator, devProp.major, devProp.minor, 0);
*gpuAllocator, *cpuAllocator, devProp, 0);
ncvAssertReturnNcvStat(ncvStat);
ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR);
@@ -146,8 +146,8 @@ private:
ncvAssertCUDAReturn(cudaGetDeviceProperties(&devProp, devId), NCV_CUDA_ERROR);
// Load the classifier from file (assuming its size is about 1 mb) using a simple allocator
gpuCascadeAllocator = new NCVMemNativeAllocator(NCVMemoryTypeDevice);
cpuCascadeAllocator = new NCVMemNativeAllocator(NCVMemoryTypeHostPinned);
gpuCascadeAllocator = new NCVMemNativeAllocator(NCVMemoryTypeDevice, devProp.textureAlignment);
cpuCascadeAllocator = new NCVMemNativeAllocator(NCVMemoryTypeHostPinned, devProp.textureAlignment);
ncvAssertPrintReturn(gpuCascadeAllocator->isInitialized(), "Error creating cascade GPU allocator", NCV_CUDA_ERROR);
ncvAssertPrintReturn(cpuCascadeAllocator->isInitialized(), "Error creating cascade CPU allocator", NCV_CUDA_ERROR);
@@ -212,7 +212,7 @@ private:
roi.height = d_src.height();
Ncv32u numDetections;
ncvStat = ncvDetectObjectsMultiScale_device(d_src, roi, d_rects, numDetections, haar, *h_haarStages,
*d_haarStages, *d_haarNodes, *d_haarFeatures, haar.ClassifierSize, 4, 1.2f, 1, 0, gpuCounter, cpuCounter, devProp.major, devProp.minor, 0);
*d_haarStages, *d_haarNodes, *d_haarFeatures, haar.ClassifierSize, 4, 1.2f, 1, 0, gpuCounter, cpuCounter, devProp, 0);
ncvAssertReturnNcvStat(ncvStat);
ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR);

View File

@@ -560,16 +560,19 @@ void cv::gpu::integralBuffered(const GpuMat& src, GpuMat& sum, GpuMat& buffer)
sum.create(src.rows + 1, src.cols + 1, CV_32S);
NppStSize32u roiSize;
NcvSize32u roiSize;
roiSize.width = src.cols;
roiSize.height = src.rows;
NppSt32u bufSize;
nppSafeCall( nppiStIntegralGetSize_8u32u(roiSize, &bufSize) );
cudaDeviceProp prop;
cudaSafeCall( cudaGetDeviceProperties(&prop, cv::gpu::getDevice()) );
Ncv32u bufSize;
nppSafeCall( nppiStIntegralGetSize_8u32u(roiSize, &bufSize, prop) );
ensureSizeIsEnough(1, bufSize, CV_8UC1, buffer);
nppSafeCall( nppiStIntegral_8u32u_C1R(const_cast<NppSt8u*>(src.ptr<NppSt8u>()), src.step,
sum.ptr<NppSt32u>(), sum.step, roiSize, buffer.ptr<NppSt8u>(), bufSize) );
nppSafeCall( nppiStIntegral_8u32u_C1R(const_cast<Ncv8u*>(src.ptr<Ncv8u>()), src.step,
sum.ptr<Ncv32u>(), sum.step, roiSize, buffer.ptr<Ncv8u>(), bufSize, prop) );
cudaSafeCall( cudaThreadSynchronize() );
}
@@ -600,19 +603,20 @@ void cv::gpu::sqrIntegral(const GpuMat& src, GpuMat& sqsum)
{
CV_Assert(src.type() == CV_8U);
NppStSize32u roiSize;
NcvSize32u roiSize;
roiSize.width = src.cols;
roiSize.height = src.rows;
NppSt32u bufSize;
nppSafeCall(nppiStSqrIntegralGetSize_8u64u(roiSize, &bufSize));
cudaDeviceProp prop;
cudaSafeCall( cudaGetDeviceProperties(&prop, cv::gpu::getDevice()) );
Ncv32u bufSize;
nppSafeCall(nppiStSqrIntegralGetSize_8u64u(roiSize, &bufSize, prop));
GpuMat buf(1, bufSize, CV_8U);
sqsum.create(src.rows + 1, src.cols + 1, CV_64F);
nppSafeCall(nppiStSqrIntegral_8u64u_C1R(
const_cast<NppSt8u*>(src.ptr<NppSt8u>(0)), src.step,
sqsum.ptr<NppSt64u>(0), sqsum.step, roiSize,
buf.ptr<NppSt8u>(0), bufSize));
nppSafeCall(nppiStSqrIntegral_8u64u_C1R(const_cast<Ncv8u*>(src.ptr<Ncv8u>(0)), src.step,
sqsum.ptr<Ncv64u>(0), sqsum.step, roiSize, buf.ptr<Ncv8u>(0), bufSize, prop));
cudaSafeCall( cudaThreadSynchronize() );
}

View File

@@ -1,362 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2009-2010, NVIDIA Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include <cstdio>
#include <cuda_runtime.h>
#define CV_NO_BACKWARD_COMPATIBILITY
#include "opencv2/opencv.hpp"
#include "NCVHaarObjectDetection.hpp"
using namespace cv;
using namespace std;
const Size preferredVideoFrameSize(640, 480);
string preferredClassifier = "haarcascade_frontalface_alt.xml";
string wndTitle = "NVIDIA Computer Vision SDK :: Face Detection in Video Feed";
void printSyntax(void)
{
printf("Syntax: FaceDetectionFeed.exe [-c cameranum | -v filename] classifier.xml\n");
}
void imagePrintf(Mat& img, int lineOffsY, Scalar color, const char *format, ...)
{
int fontFace = CV_FONT_HERSHEY_PLAIN;
double fontScale = 1;
int baseline;
Size textSize = cv::getTextSize("T", fontFace, fontScale, 1, &baseline);
va_list arg_ptr;
va_start(arg_ptr, format);
int len = _vscprintf(format, arg_ptr) + 1;
vector<char> strBuf(len);
vsprintf_s(&strBuf[0], len, format, arg_ptr);
Point org(1, 3 * textSize.height * (lineOffsY + 1) / 2);
putText(img, &strBuf[0], org, fontFace, fontScale, color);
va_end(arg_ptr);
}
NCVStatus process(Mat *srcdst,
Ncv32u width, Ncv32u height,
NcvBool bShowAllHypotheses, NcvBool bLargestFace,
HaarClassifierCascadeDescriptor &haar,
NCVVector<HaarStage64> &d_haarStages, NCVVector<HaarClassifierNode128> &d_haarNodes,
NCVVector<HaarFeature64> &d_haarFeatures, NCVVector<HaarStage64> &h_haarStages,
INCVMemAllocator &gpuAllocator,
INCVMemAllocator &cpuAllocator,
cudaDeviceProp &devProp)
{
ncvAssertReturn(!((srcdst == NULL) ^ gpuAllocator.isCounting()), NCV_NULL_PTR);
NCVStatus ncvStat;
NCV_SET_SKIP_COND(gpuAllocator.isCounting());
NCVMatrixAlloc<Ncv8u> d_src(gpuAllocator, width, height);
ncvAssertReturn(d_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
NCVMatrixAlloc<Ncv8u> h_src(cpuAllocator, width, height);
ncvAssertReturn(h_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
NCVVectorAlloc<NcvRect32u> d_rects(gpuAllocator, 100);
ncvAssertReturn(d_rects.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
Mat h_src_hdr(Size(width, height), CV_8U, h_src.ptr(), h_src.stride());
NCV_SKIP_COND_BEGIN
(*srcdst).copyTo(h_src_hdr);
ncvStat = h_src.copySolid(d_src, 0);
ncvAssertReturnNcvStat(ncvStat);
ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR);
NCV_SKIP_COND_END
NcvSize32u roi;
roi.width = d_src.width();
roi.height = d_src.height();
Ncv32u numDetections;
ncvStat = ncvDetectObjectsMultiScale_device(
d_src, roi, d_rects, numDetections, haar, h_haarStages,
d_haarStages, d_haarNodes, d_haarFeatures,
haar.ClassifierSize,
bShowAllHypotheses ? 0 : 4,
1.2f, 1,
(bLargestFace ? NCVPipeObjDet_FindLargestObject : 0) | NCVPipeObjDet_VisualizeInPlace,
gpuAllocator, cpuAllocator, devProp.major, devProp.minor, 0);
ncvAssertReturnNcvStat(ncvStat);
ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR);
NCV_SKIP_COND_BEGIN
ncvStat = d_src.copySolid(h_src, 0);
ncvAssertReturnNcvStat(ncvStat);
ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR);
h_src_hdr.copyTo(*srcdst);
NCV_SKIP_COND_END
return NCV_SUCCESS;
}
int main( int argc, const char** argv )
{
NCVStatus ncvStat;
printf("NVIDIA Computer Vision SDK\n");
printf("Face Detection in video and live feed\n");
printf("=========================================\n");
printf(" Esc - Quit\n");
printf(" Space - Switch between NCV and OpenCV\n");
printf(" L - Switch between FullSearch and LargestFace modes\n");
printf(" U - Toggle unfiltered hypotheses visualization in FullSearch\n");
if (argc != 4 && argc != 1)
return printSyntax(), -1;
VideoCapture capture;
Size frameSize;
if (argc == 1 || strcmp(argv[1], "-c") == 0)
{
// Camera input is specified
int camIdx = (argc == 3) ? atoi(argv[2]) : 0;
if(!capture.open(camIdx))
return printf("Error opening camera\n"), -1;
capture.set(CV_CAP_PROP_FRAME_WIDTH, preferredVideoFrameSize.width);
capture.set(CV_CAP_PROP_FRAME_HEIGHT, preferredVideoFrameSize.height);
capture.set(CV_CAP_PROP_FPS, 25);
frameSize = preferredVideoFrameSize;
}
else if (strcmp(argv[1], "-v") == 0)
{
// Video file input (avi)
if(!capture.open(argv[2]))
return printf("Error opening video file\n"), -1;
frameSize.width = (int)capture.get(CV_CAP_PROP_FRAME_WIDTH);
frameSize.height = (int)capture.get(CV_CAP_PROP_FRAME_HEIGHT);
}
else
return printSyntax(), -1;
NcvBool bUseOpenCV = true;
NcvBool bLargestFace = true;
NcvBool bShowAllHypotheses = false;
string classifierFile = (argc == 1) ? preferredClassifier : argv[3];
CascadeClassifier classifierOpenCV;
if (!classifierOpenCV.load(classifierFile))
return printf("Error (in OpenCV) opening classifier\n"), printSyntax(), -1;
int devId;
ncvAssertCUDAReturn(cudaGetDevice(&devId), -1);
cudaDeviceProp devProp;
ncvAssertCUDAReturn(cudaGetDeviceProperties(&devProp, devId), -1);
printf("Using GPU %d %s, arch=%d.%d\n", devId, devProp.name, devProp.major, devProp.minor);
//==============================================================================
//
// Load the classifier from file (assuming its size is about 1 mb)
// using a simple allocator
//
//==============================================================================
NCVMemNativeAllocator gpuCascadeAllocator(NCVMemoryTypeDevice);
ncvAssertPrintReturn(gpuCascadeAllocator.isInitialized(), "Error creating cascade GPU allocator", -1);
NCVMemNativeAllocator cpuCascadeAllocator(NCVMemoryTypeHostPinned);
ncvAssertPrintReturn(cpuCascadeAllocator.isInitialized(), "Error creating cascade CPU allocator", -1);
Ncv32u haarNumStages, haarNumNodes, haarNumFeatures;
ncvStat = ncvHaarGetClassifierSize(classifierFile, haarNumStages, haarNumNodes, haarNumFeatures);
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error reading classifier size (check the file)", -1);
NCVVectorAlloc<HaarStage64> h_haarStages(cpuCascadeAllocator, haarNumStages);
ncvAssertPrintReturn(h_haarStages.isMemAllocated(), "Error in cascade CPU allocator", -1);
NCVVectorAlloc<HaarClassifierNode128> h_haarNodes(cpuCascadeAllocator, haarNumNodes);
ncvAssertPrintReturn(h_haarNodes.isMemAllocated(), "Error in cascade CPU allocator", -1);
NCVVectorAlloc<HaarFeature64> h_haarFeatures(cpuCascadeAllocator, haarNumFeatures);
ncvAssertPrintReturn(h_haarFeatures.isMemAllocated(), "Error in cascade CPU allocator", -1);
HaarClassifierCascadeDescriptor haar;
ncvStat = ncvHaarLoadFromFile_host(classifierFile, haar, h_haarStages, h_haarNodes, h_haarFeatures);
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error loading classifier", -1);
NCVVectorAlloc<HaarStage64> d_haarStages(gpuCascadeAllocator, haarNumStages);
ncvAssertPrintReturn(d_haarStages.isMemAllocated(), "Error in cascade GPU allocator", -1);
NCVVectorAlloc<HaarClassifierNode128> d_haarNodes(gpuCascadeAllocator, haarNumNodes);
ncvAssertPrintReturn(d_haarNodes.isMemAllocated(), "Error in cascade GPU allocator", -1);
NCVVectorAlloc<HaarFeature64> d_haarFeatures(gpuCascadeAllocator, haarNumFeatures);
ncvAssertPrintReturn(d_haarFeatures.isMemAllocated(), "Error in cascade GPU allocator", -1);
ncvStat = h_haarStages.copySolid(d_haarStages, 0);
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", -1);
ncvStat = h_haarNodes.copySolid(d_haarNodes, 0);
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", -1);
ncvStat = h_haarFeatures.copySolid(d_haarFeatures, 0);
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", -1);
//==============================================================================
//
// Calculate memory requirements and create real allocators
//
//==============================================================================
NCVMemStackAllocator gpuCounter(devProp.textureAlignment);
ncvAssertPrintReturn(gpuCounter.isInitialized(), "Error creating GPU memory counter", -1);
NCVMemStackAllocator cpuCounter(devProp.textureAlignment);
ncvAssertPrintReturn(cpuCounter.isInitialized(), "Error creating CPU memory counter", -1);
ncvStat = process(NULL, frameSize.width, frameSize.height,
false, false, haar,
d_haarStages, d_haarNodes,
d_haarFeatures, h_haarStages,
gpuCounter, cpuCounter, devProp);
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error in memory counting pass", -1);
NCVMemStackAllocator gpuAllocator(NCVMemoryTypeDevice, gpuCounter.maxSize(), devProp.textureAlignment);
ncvAssertPrintReturn(gpuAllocator.isInitialized(), "Error creating GPU memory allocator", -1);
NCVMemStackAllocator cpuAllocator(NCVMemoryTypeHostPinned, cpuCounter.maxSize(), devProp.textureAlignment);
ncvAssertPrintReturn(cpuAllocator.isInitialized(), "Error creating CPU memory allocator", -1);
printf("Initialized for frame size [%dx%d]\n", frameSize.width, frameSize.height);
//==============================================================================
//
// Main processing loop
//
//==============================================================================
namedWindow(wndTitle, 1);
Mat frame, gray, frameDisp;
for(;;)
{
// For camera and video file, capture the next image
capture >> frame;
if (frame.empty())
break;
cvtColor(frame, gray, CV_BGR2GRAY);
// process
NcvSize32u minSize = haar.ClassifierSize;
if (bLargestFace)
{
Ncv32u ratioX = preferredVideoFrameSize.width / minSize.width;
Ncv32u ratioY = preferredVideoFrameSize.height / minSize.height;
Ncv32u ratioSmallest = std::min(ratioX, ratioY);
ratioSmallest = (Ncv32u)std::max(ratioSmallest / 2.5f, 1.f);
minSize.width *= ratioSmallest;
minSize.height *= ratioSmallest;
}
NcvTimer timer = ncvStartTimer();
if (!bUseOpenCV)
{
ncvStat = process(&gray, frameSize.width, frameSize.height,
bShowAllHypotheses, bLargestFace, haar,
d_haarStages, d_haarNodes,
d_haarFeatures, h_haarStages,
gpuAllocator, cpuAllocator, devProp);
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error in memory counting pass", -1);
}
else
{
vector<Rect> rectsOpenCV;
classifierOpenCV.detectMultiScale(
gray,
rectsOpenCV,
1.2f,
bShowAllHypotheses && !bLargestFace ? 0 : 4,
(bLargestFace ? CV_HAAR_FIND_BIGGEST_OBJECT : 0) | CV_HAAR_SCALE_IMAGE,
Size(minSize.width, minSize.height));
for (size_t rt = 0; rt < rectsOpenCV.size(); ++rt)
rectangle(gray, rectsOpenCV[rt], Scalar(255));
}
Ncv32f avgTime = (Ncv32f)ncvEndQueryTimerMs(timer);
cvtColor(gray, frameDisp, CV_GRAY2BGR);
imagePrintf(frameDisp, 0, CV_RGB(255, 0,0), "Space - Switch NCV%s / OpenCV%s", bUseOpenCV?"":" (ON)", bUseOpenCV?" (ON)":"");
imagePrintf(frameDisp, 1, CV_RGB(255, 0,0), "L - Switch FullSearch%s / LargestFace%s modes", bLargestFace?"":" (ON)", bLargestFace?" (ON)":"");
imagePrintf(frameDisp, 2, CV_RGB(255, 0,0), "U - Toggle unfiltered hypotheses visualization in FullSearch %s", bShowAllHypotheses?"(ON)":"(OFF)");
imagePrintf(frameDisp, 3, CV_RGB(118,185,0), " Running at %f FPS on %s", 1000.0f / avgTime, bUseOpenCV?"CPU":"GPU");
cv::imshow(wndTitle, frameDisp);
switch (cvWaitKey(1))
{
case ' ':
bUseOpenCV = !bUseOpenCV;
break;
case 'L':case 'l':
bLargestFace = !bLargestFace;
break;
case 'U':case 'u':
bShowAllHypotheses = !bShowAllHypotheses;
break;
case 27:
return 0;
}
}
return 0;
}

View File

@@ -57,8 +57,8 @@
#include <algorithm>
#include "npp.h"
#include "NCV.hpp"
#include "NPP_staging/NPP_staging.hpp"
#include "NCVRuntimeTemplates.hpp"
#include "NCVHaarObjectDetection.hpp"
@@ -970,8 +970,7 @@ NCVStatus ncvApplyHaarClassifierCascade_device(NCVMatrix<Ncv32u> &d_integralImag
Ncv32f scaleArea,
INCVMemAllocator &gpuAllocator,
INCVMemAllocator &cpuAllocator,
Ncv32u devPropMajor,
Ncv32u devPropMinor,
cudaDeviceProp &devProp,
cudaStream_t cuStream)
{
ncvAssertReturn(d_integralImage.memType() == d_weights.memType() &&
@@ -1077,15 +1076,15 @@ NCVStatus ncvApplyHaarClassifierCascade_device(NCVMatrix<Ncv32u> &d_integralImag
Ncv32f scaleAreaPixels = scaleArea * ((haar.ClassifierSize.width - 2*HAAR_STDDEV_BORDER) *
(haar.ClassifierSize.height - 2*HAAR_STDDEV_BORDER));
NcvBool bTexCacheCascade = devPropMajor < 2;
NcvBool bTexCacheCascade = devProp.major < 2;
NcvBool bTexCacheIImg = true; //this works better even on Fermi so far
NcvBool bDoAtomicCompaction = devPropMajor >= 2 || (devPropMajor == 1 && devPropMinor >= 3);
NcvBool bDoAtomicCompaction = devProp.major >= 2 || (devProp.major == 1 && devProp.minor >= 3);
NCVVector<Ncv32u> *d_ptrNowData = &d_vecPixelMask;
NCVVector<Ncv32u> *d_ptrNowTmp = &d_vecPixelMaskTmp;
Ncv32u szNppCompactTmpBuf;
nppsStCompactGetSize_32u(d_vecPixelMask.length(), &szNppCompactTmpBuf);
nppsStCompactGetSize_32u(d_vecPixelMask.length(), &szNppCompactTmpBuf, devProp);
if (bDoAtomicCompaction)
{
szNppCompactTmpBuf = 0;
@@ -1185,11 +1184,11 @@ NCVStatus ncvApplyHaarClassifierCascade_device(NCVMatrix<Ncv32u> &d_integralImag
}
else
{
NppStStatus nppSt;
NCVStatus nppSt;
nppSt = nppsStCompact_32u(d_ptrNowTmp->ptr(), d_vecPixelMask.length(),
d_ptrNowData->ptr(), hp_numDet, OBJDET_MASK_ELEMENT_INVALID_32U,
d_tmpBufCompact.ptr(), szNppCompactTmpBuf);
ncvAssertReturn(nppSt == NPP_SUCCESS, NCV_NPP_ERROR);
d_tmpBufCompact.ptr(), szNppCompactTmpBuf, devProp);
ncvAssertReturn(nppSt == NPPST_SUCCESS, NCV_NPP_ERROR);
}
numDetections = *hp_numDet;
}
@@ -1240,11 +1239,11 @@ NCVStatus ncvApplyHaarClassifierCascade_device(NCVMatrix<Ncv32u> &d_integralImag
}
else
{
NppStStatus nppSt;
NCVStatus nppSt;
nppSt = nppsStCompact_32u(d_ptrNowData->ptr(), d_vecPixelMask.length(),
d_ptrNowTmp->ptr(), hp_numDet, OBJDET_MASK_ELEMENT_INVALID_32U,
d_tmpBufCompact.ptr(), szNppCompactTmpBuf);
ncvAssertReturn(nppSt == NPP_SUCCESS, NCV_NPP_ERROR);
d_tmpBufCompact.ptr(), szNppCompactTmpBuf, devProp);
ncvAssertReturnNcvStat(nppSt);
}
swap(d_ptrNowData, d_ptrNowTmp);
@@ -1310,11 +1309,11 @@ NCVStatus ncvApplyHaarClassifierCascade_device(NCVMatrix<Ncv32u> &d_integralImag
}
else
{
NppStStatus nppSt;
NCVStatus nppSt;
nppSt = nppsStCompact_32u(d_ptrNowData->ptr(), numDetections,
d_ptrNowTmp->ptr(), hp_numDet, OBJDET_MASK_ELEMENT_INVALID_32U,
d_tmpBufCompact.ptr(), szNppCompactTmpBuf);
ncvAssertReturn(nppSt == NPP_SUCCESS, NCV_NPP_ERROR);
d_tmpBufCompact.ptr(), szNppCompactTmpBuf, devProp);
ncvAssertReturnNcvStat(nppSt);
}
swap(d_ptrNowData, d_ptrNowTmp);
@@ -1371,11 +1370,11 @@ NCVStatus ncvApplyHaarClassifierCascade_device(NCVMatrix<Ncv32u> &d_integralImag
}
else
{
NppStStatus nppSt;
NCVStatus nppSt;
nppSt = nppsStCompact_32u(d_ptrNowData->ptr(), numDetections,
d_ptrNowTmp->ptr(), hp_numDet, OBJDET_MASK_ELEMENT_INVALID_32U,
d_tmpBufCompact.ptr(), szNppCompactTmpBuf);
ncvAssertReturn(nppSt == NPP_SUCCESS, NCV_NPP_ERROR);
d_tmpBufCompact.ptr(), szNppCompactTmpBuf, devProp);
ncvAssertReturnNcvStat(nppSt);
}
swap(d_ptrNowData, d_ptrNowTmp);
@@ -1715,8 +1714,7 @@ NCVStatus ncvDetectObjectsMultiScale_device(NCVMatrix<Ncv8u> &d_srcImg,
INCVMemAllocator &gpuAllocator,
INCVMemAllocator &cpuAllocator,
Ncv32u devPropMajor,
Ncv32u devPropMinor,
cudaDeviceProp &devProp,
cudaStream_t cuStream)
{
ncvAssertReturn(d_srcImg.memType() == d_dstRects.memType() &&
@@ -1773,12 +1771,12 @@ NCVStatus ncvDetectObjectsMultiScale_device(NCVMatrix<Ncv8u> &d_srcImg,
NCVVectorAlloc<NcvRect32u> h_hypothesesIntermediate(cpuAllocator, d_srcImg.width() * d_srcImg.height());
ncvAssertReturn(h_hypothesesIntermediate.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
NppStStatus nppStat;
NCVStatus nppStat;
Ncv32u szTmpBufIntegral, szTmpBufSqIntegral;
nppStat = nppiStIntegralGetSize_8u32u(NppStSize32u(d_srcImg.width(), d_srcImg.height()), &szTmpBufIntegral);
ncvAssertReturn(nppStat == NPP_SUCCESS, NCV_NPP_ERROR);
nppStat = nppiStSqrIntegralGetSize_8u64u(NppStSize32u(d_srcImg.width(), d_srcImg.height()), &szTmpBufSqIntegral);
ncvAssertReturn(nppStat == NPP_SUCCESS, NCV_NPP_ERROR);
nppStat = nppiStIntegralGetSize_8u32u(NcvSize32u(d_srcImg.width(), d_srcImg.height()), &szTmpBufIntegral, devProp);
ncvAssertReturnNcvStat(nppStat);
nppStat = nppiStSqrIntegralGetSize_8u64u(NcvSize32u(d_srcImg.width(), d_srcImg.height()), &szTmpBufSqIntegral, devProp);
ncvAssertReturnNcvStat(nppStat);
NCVVectorAlloc<Ncv8u> d_tmpIIbuf(gpuAllocator, std::max(szTmpBufIntegral, szTmpBufSqIntegral));
ncvAssertReturn(d_tmpIIbuf.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
@@ -1786,15 +1784,15 @@ NCVStatus ncvDetectObjectsMultiScale_device(NCVMatrix<Ncv8u> &d_srcImg,
nppStat = nppiStIntegral_8u32u_C1R(d_srcImg.ptr(), d_srcImg.pitch(),
d_integralImage.ptr(), d_integralImage.pitch(),
NppStSize32u(d_srcImg.width(), d_srcImg.height()),
d_tmpIIbuf.ptr(), szTmpBufIntegral);
ncvAssertReturn(nppStat == NPP_SUCCESS, NCV_NPP_ERROR);
NcvSize32u(d_srcImg.width(), d_srcImg.height()),
d_tmpIIbuf.ptr(), szTmpBufIntegral, devProp);
ncvAssertReturnNcvStat(nppStat);
nppStat = nppiStSqrIntegral_8u64u_C1R(d_srcImg.ptr(), d_srcImg.pitch(),
d_sqIntegralImage.ptr(), d_sqIntegralImage.pitch(),
NppStSize32u(d_srcImg.width(), d_srcImg.height()),
d_tmpIIbuf.ptr(), szTmpBufSqIntegral);
ncvAssertReturn(nppStat == NPP_SUCCESS, NCV_NPP_ERROR);
NcvSize32u(d_srcImg.width(), d_srcImg.height()),
d_tmpIIbuf.ptr(), szTmpBufSqIntegral, devProp);
ncvAssertReturnNcvStat(nppStat);
NCV_SKIP_COND_END
@@ -1859,7 +1857,7 @@ NCVStatus ncvDetectObjectsMultiScale_device(NCVMatrix<Ncv8u> &d_srcImg,
Ncv32u scale = scalesVector[i];
NcvSize32u srcRoi, scaledIIRoi, searchRoi;
NppStSize32u srcIIRoi;
NcvSize32u srcIIRoi;
srcRoi.width = d_srcImg.width();
srcRoi.height = d_srcImg.height();
srcIIRoi.width = srcRoi.width + 1;
@@ -1875,15 +1873,15 @@ NCVStatus ncvDetectObjectsMultiScale_device(NCVMatrix<Ncv8u> &d_srcImg,
d_integralImage.ptr(), d_integralImage.pitch(),
d_scaledIntegralImage.ptr(), d_scaledIntegralImage.pitch(),
srcIIRoi, scale, true);
ncvAssertReturn(nppStat == NPP_SUCCESS, NCV_NPP_ERROR);
ncvAssertReturnNcvStat(nppStat);
nppStat = nppiStDownsampleNearest_64u_C1R(
d_sqIntegralImage.ptr(), d_sqIntegralImage.pitch(),
d_scaledSqIntegralImage.ptr(), d_scaledSqIntegralImage.pitch(),
srcIIRoi, scale, true);
ncvAssertReturn(nppStat == NPP_SUCCESS, NCV_NPP_ERROR);
ncvAssertReturnNcvStat(nppStat);
const NppStRect32u rect(
const NcvRect32u rect(
HAAR_STDDEV_BORDER,
HAAR_STDDEV_BORDER,
haar.ClassifierSize.width - 2*HAAR_STDDEV_BORDER,
@@ -1892,9 +1890,9 @@ NCVStatus ncvDetectObjectsMultiScale_device(NCVMatrix<Ncv8u> &d_srcImg,
d_scaledIntegralImage.ptr(), d_scaledIntegralImage.pitch(),
d_scaledSqIntegralImage.ptr(), d_scaledSqIntegralImage.pitch(),
d_rectStdDev.ptr(), d_rectStdDev.pitch(),
NppStSize32u(searchRoi.width, searchRoi.height), rect,
NcvSize32u(searchRoi.width, searchRoi.height), rect,
(Ncv32f)scale*scale, true);
ncvAssertReturn(nppStat == NPP_SUCCESS, NCV_NPP_ERROR);
ncvAssertReturnNcvStat(nppStat);
NCV_SKIP_COND_END
@@ -1904,8 +1902,8 @@ NCVStatus ncvDetectObjectsMultiScale_device(NCVMatrix<Ncv8u> &d_srcImg,
detectionsOnThisScale,
haar, h_HaarStages, d_HaarStages, d_HaarNodes, d_HaarFeatures, false,
searchRoi, pixelStep, (Ncv32f)scale*scale,
gpuAllocator, cpuAllocator, devPropMajor, devPropMinor, cuStream);
ncvAssertReturn(ncvStat == NCV_SUCCESS, ncvStat);
gpuAllocator, cpuAllocator, devProp, cuStream);
ncvAssertReturnNcvStat(nppStat);
NCV_SKIP_COND_BEGIN
@@ -2250,6 +2248,10 @@ NCVStatus ncvGrowDetectionsVector_host(NCVVector<Ncv32u> &pixelMask,
return ncvStat;
}
NCVStatus ncvFilterHypotheses_host(NCVVector<NcvRect32u> &hypotheses,
Ncv32u &numHypotheses,
Ncv32u minNeighbors,
@@ -2539,7 +2541,7 @@ NCVStatus ncvHaarLoadFromFile_host(const std::string &filename,
}
NCVStatus ncvHaarStoreNVBIN_host(std::string &filename,
NCVStatus ncvHaarStoreNVBIN_host(const std::string &filename,
HaarClassifierCascadeDescriptor haar,
NCVVector<HaarStage64> &h_HaarStages,
NCVVector<HaarClassifierNode128> &h_HaarNodes,

View File

@@ -75,13 +75,13 @@ struct HaarFeature64
#define HaarFeature64_CreateCheck_MaxRectField 0xFF
__host__ NCVStatus setRect(Ncv32u rectX, Ncv32u rectY, Ncv32u rectWidth, Ncv32u rectHeight, Ncv32u clsWidth, Ncv32u clsHeight)
__host__ NCVStatus setRect(Ncv32u rectX, Ncv32u rectY, Ncv32u rectWidth, Ncv32u rectHeight, Ncv32u /*clsWidth*/, Ncv32u /*clsHeight*/)
{
ncvAssertReturn(rectWidth <= HaarFeature64_CreateCheck_MaxRectField && rectHeight <= HaarFeature64_CreateCheck_MaxRectField, NCV_HAAR_TOO_LARGE_FEATURES);
((NcvRect8u*)&(this->_ui2.x))->x = rectX;
((NcvRect8u*)&(this->_ui2.x))->y = rectY;
((NcvRect8u*)&(this->_ui2.x))->width = rectWidth;
((NcvRect8u*)&(this->_ui2.x))->height = rectHeight;
((NcvRect8u*)&(this->_ui2.x))->x = (Ncv8u)rectX;
((NcvRect8u*)&(this->_ui2.x))->y = (Ncv8u)rectY;
((NcvRect8u*)&(this->_ui2.x))->width = (Ncv8u)rectWidth;
((NcvRect8u*)&(this->_ui2.x))->height = (Ncv8u)rectHeight;
return NCV_SUCCESS;
}
@@ -306,11 +306,11 @@ struct HaarStage64
};
NPPST_CT_ASSERT(sizeof(HaarFeature64) == 8);
NPPST_CT_ASSERT(sizeof(HaarFeatureDescriptor32) == 4);
NPPST_CT_ASSERT(sizeof(HaarClassifierNodeDescriptor32) == 4);
NPPST_CT_ASSERT(sizeof(HaarClassifierNode128) == 16);
NPPST_CT_ASSERT(sizeof(HaarStage64) == 8);
NCV_CT_ASSERT(sizeof(HaarFeature64) == 8);
NCV_CT_ASSERT(sizeof(HaarFeatureDescriptor32) == 4);
NCV_CT_ASSERT(sizeof(HaarClassifierNodeDescriptor32) == 4);
NCV_CT_ASSERT(sizeof(HaarClassifierNode128) == 16);
NCV_CT_ASSERT(sizeof(HaarStage64) == 8);
//==============================================================================
@@ -347,7 +347,7 @@ enum
NCVPipeObjDet_VisualizeInPlace = 0x004,
};
NCV_EXPORTS
NCVStatus ncvDetectObjectsMultiScale_device(NCVMatrix<Ncv8u> &d_srcImg,
NcvSize32u srcRoi,
NCVVector<NcvRect32u> &d_dstRects,
@@ -367,15 +367,14 @@ NCVStatus ncvDetectObjectsMultiScale_device(NCVMatrix<Ncv8u> &d_srcImg,
INCVMemAllocator &gpuAllocator,
INCVMemAllocator &cpuAllocator,
Ncv32u devPropMajor,
Ncv32u devPropMinor,
cudaDeviceProp &devProp,
cudaStream_t cuStream);
#define OBJDET_MASK_ELEMENT_INVALID_32U 0xFFFFFFFF
#define HAAR_STDDEV_BORDER 1
NCV_EXPORTS
NCVStatus ncvApplyHaarClassifierCascade_device(NCVMatrix<Ncv32u> &d_integralImage,
NCVMatrix<Ncv32f> &d_weights,
NCVMatrixAlloc<Ncv32u> &d_pixelMask,
@@ -391,11 +390,10 @@ NCVStatus ncvApplyHaarClassifierCascade_device(NCVMatrix<Ncv32u> &d_integralImag
Ncv32f scaleArea,
INCVMemAllocator &gpuAllocator,
INCVMemAllocator &cpuAllocator,
Ncv32u devPropMajor,
Ncv32u devPropMinor,
cudaDeviceProp &devProp,
cudaStream_t cuStream);
NCV_EXPORTS
NCVStatus ncvApplyHaarClassifierCascade_host(NCVMatrix<Ncv32u> &h_integralImage,
NCVMatrix<Ncv32f> &h_weights,
NCVMatrixAlloc<Ncv32u> &h_pixelMask,
@@ -409,7 +407,7 @@ NCVStatus ncvApplyHaarClassifierCascade_host(NCVMatrix<Ncv32u> &h_integralImage,
Ncv32u pixelStep,
Ncv32f scaleArea);
NCV_EXPORTS
NCVStatus ncvDrawRects_8u_device(Ncv8u *d_dst,
Ncv32u dstStride,
Ncv32u dstWidth,
@@ -419,7 +417,7 @@ NCVStatus ncvDrawRects_8u_device(Ncv8u *d_dst,
Ncv8u color,
cudaStream_t cuStream);
NCV_EXPORTS
NCVStatus ncvDrawRects_32u_device(Ncv32u *d_dst,
Ncv32u dstStride,
Ncv32u dstWidth,
@@ -429,7 +427,7 @@ NCVStatus ncvDrawRects_32u_device(Ncv32u *d_dst,
Ncv32u color,
cudaStream_t cuStream);
NCV_EXPORTS
NCVStatus ncvDrawRects_8u_host(Ncv8u *h_dst,
Ncv32u dstStride,
Ncv32u dstWidth,
@@ -438,7 +436,7 @@ NCVStatus ncvDrawRects_8u_host(Ncv8u *h_dst,
Ncv32u numRects,
Ncv8u color);
NCV_EXPORTS
NCVStatus ncvDrawRects_32u_host(Ncv32u *h_dst,
Ncv32u dstStride,
Ncv32u dstWidth,
@@ -450,7 +448,7 @@ NCVStatus ncvDrawRects_32u_host(Ncv32u *h_dst,
#define RECT_SIMILARITY_PROPORTION 0.2f
NCV_EXPORTS
NCVStatus ncvGrowDetectionsVector_device(NCVVector<Ncv32u> &pixelMask,
Ncv32u numPixelMaskDetections,
NCVVector<NcvRect32u> &hypotheses,
@@ -461,7 +459,7 @@ NCVStatus ncvGrowDetectionsVector_device(NCVVector<Ncv32u> &pixelMask,
Ncv32f curScale,
cudaStream_t cuStream);
NCV_EXPORTS
NCVStatus ncvGrowDetectionsVector_host(NCVVector<Ncv32u> &pixelMask,
Ncv32u numPixelMaskDetections,
NCVVector<NcvRect32u> &hypotheses,
@@ -471,18 +469,18 @@ NCVStatus ncvGrowDetectionsVector_host(NCVVector<Ncv32u> &pixelMask,
Ncv32u rectHeight,
Ncv32f curScale);
NCV_EXPORTS
NCVStatus ncvFilterHypotheses_host(NCVVector<NcvRect32u> &hypotheses,
Ncv32u &numHypotheses,
Ncv32u minNeighbors,
Ncv32f intersectEps,
NCVVector<Ncv32u> *hypothesesWeights);
NCV_EXPORTS
NCVStatus ncvHaarGetClassifierSize(const std::string &filename, Ncv32u &numStages,
Ncv32u &numNodes, Ncv32u &numFeatures);
NCV_EXPORTS
NCVStatus ncvHaarLoadFromFile_host(const std::string &filename,
HaarClassifierCascadeDescriptor &haar,
NCVVector<HaarStage64> &h_HaarStages,
@@ -490,6 +488,7 @@ NCVStatus ncvHaarLoadFromFile_host(const std::string &filename,
NCVVector<HaarFeature64> &h_HaarFeatures);
NCV_EXPORTS
NCVStatus ncvHaarStoreNVBIN_host(const std::string &filename,
HaarClassifierCascadeDescriptor haar,
NCVVector<HaarStage64> &h_HaarStages,

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,637 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2009-2010, NVIDIA Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef _npp_staging_hpp_
#define _npp_staging_hpp_
#include "NCV.hpp"
/**
* \file NPP_staging.hpp
* NPP Staging Library
*/
/** \defgroup core_npp NPPST Core
* Basic functions for CUDA streams management.
* @{
*/
/**
* Gets an active CUDA stream used by NPPST
* NOT THREAD SAFE
* \return Current CUDA stream
*/
cudaStream_t nppStGetActiveCUDAstream();
/**
* Sets an active CUDA stream used by NPPST
* NOT THREAD SAFE
* \param cudaStream [IN] cudaStream CUDA stream to become current
* \return CUDA stream used before
*/
cudaStream_t nppStSetActiveCUDAstream(cudaStream_t cudaStream);
/*@}*/
/** \defgroup nppi NPPST Image Processing
* @{
*/
/**
* Downsamples (decimates) an image using the nearest neighbor algorithm. 32-bit unsigned pixels, single channel.
*
* \param d_src [IN] Source image pointer (CUDA device memory)
* \param srcStep [IN] Source image line step
* \param d_dst [OUT] Destination image pointer (CUDA device memory)
* \param dstStep [IN] Destination image line step
* \param srcRoi [IN] Region of interest in the source image
* \param scale [IN] Downsampling scale factor (positive integer)
* \param readThruTexture [IN] Performance hint to cache source in texture (true) or read directly (false)
*
* \return NCV status code
*/
NCV_EXPORTS
NCVStatus nppiStDownsampleNearest_32u_C1R(Ncv32u *d_src, Ncv32u srcStep,
Ncv32u *d_dst, Ncv32u dstStep,
NcvSize32u srcRoi, Ncv32u scale,
NcvBool readThruTexture);
/**
* Downsamples (decimates) an image using the nearest neighbor algorithm. 32-bit signed pixels, single channel.
* \see nppiStDownsampleNearest_32u_C1R
*/
NCV_EXPORTS
NCVStatus nppiStDownsampleNearest_32s_C1R(Ncv32s *d_src, Ncv32u srcStep,
Ncv32s *d_dst, Ncv32u dstStep,
NcvSize32u srcRoi, Ncv32u scale,
NcvBool readThruTexture);
/**
* Downsamples (decimates) an image using the nearest neighbor algorithm. 32-bit float pixels, single channel.
* \see nppiStDownsampleNearest_32u_C1R
*/
NCV_EXPORTS
NCVStatus nppiStDownsampleNearest_32f_C1R(Ncv32f *d_src, Ncv32u srcStep,
Ncv32f *d_dst, Ncv32u dstStep,
NcvSize32u srcRoi, Ncv32u scale,
NcvBool readThruTexture);
/**
* Downsamples (decimates) an image using the nearest neighbor algorithm. 64-bit unsigned pixels, single channel.
* \see nppiStDownsampleNearest_32u_C1R
*/
NCV_EXPORTS
NCVStatus nppiStDownsampleNearest_64u_C1R(Ncv64u *d_src, Ncv32u srcStep,
Ncv64u *d_dst, Ncv32u dstStep,
NcvSize32u srcRoi, Ncv32u scale,
NcvBool readThruTexture);
/**
* Downsamples (decimates) an image using the nearest neighbor algorithm. 64-bit signed pixels, single channel.
* \see nppiStDownsampleNearest_32u_C1R
*/
NCV_EXPORTS
NCVStatus nppiStDownsampleNearest_64s_C1R(Ncv64s *d_src, Ncv32u srcStep,
Ncv64s *d_dst, Ncv32u dstStep,
NcvSize32u srcRoi, Ncv32u scale,
NcvBool readThruTexture);
/**
* Downsamples (decimates) an image using the nearest neighbor algorithm. 64-bit float pixels, single channel.
* \see nppiStDownsampleNearest_32u_C1R
*/
NCV_EXPORTS
NCVStatus nppiStDownsampleNearest_64f_C1R(Ncv64f *d_src, Ncv32u srcStep,
Ncv64f *d_dst, Ncv32u dstStep,
NcvSize32u srcRoi, Ncv32u scale,
NcvBool readThruTexture);
/**
* Downsamples (decimates) an image using the nearest neighbor algorithm. 32-bit unsigned pixels, single channel. Host implementation.
*
* \param h_src [IN] Source image pointer (Host or pinned memory)
* \param srcStep [IN] Source image line step
* \param h_dst [OUT] Destination image pointer (Host or pinned memory)
* \param dstStep [IN] Destination image line step
* \param srcRoi [IN] Region of interest in the source image
* \param scale [IN] Downsampling scale factor (positive integer)
*
* \return NCV status code
*/
NCV_EXPORTS
NCVStatus nppiStDownsampleNearest_32u_C1R_host(Ncv32u *h_src, Ncv32u srcStep,
Ncv32u *h_dst, Ncv32u dstStep,
NcvSize32u srcRoi, Ncv32u scale);
/**
* Downsamples (decimates) an image using the nearest neighbor algorithm. 32-bit signed pixels, single channel. Host implementation.
* \see nppiStDownsampleNearest_32u_C1R_host
*/
NCV_EXPORTS
NCVStatus nppiStDownsampleNearest_32s_C1R_host(Ncv32s *h_src, Ncv32u srcStep,
Ncv32s *h_dst, Ncv32u dstStep,
NcvSize32u srcRoi, Ncv32u scale);
/**
* Downsamples (decimates) an image using the nearest neighbor algorithm. 32-bit float pixels, single channel. Host implementation.
* \see nppiStDownsampleNearest_32u_C1R_host
*/
NCV_EXPORTS
NCVStatus nppiStDownsampleNearest_32f_C1R_host(Ncv32f *h_src, Ncv32u srcStep,
Ncv32f *h_dst, Ncv32u dstStep,
NcvSize32u srcRoi, Ncv32u scale);
/**
* Downsamples (decimates) an image using the nearest neighbor algorithm. 64-bit unsigned pixels, single channel. Host implementation.
* \see nppiStDownsampleNearest_32u_C1R_host
*/
NCV_EXPORTS
NCVStatus nppiStDownsampleNearest_64u_C1R_host(Ncv64u *h_src, Ncv32u srcStep,
Ncv64u *h_dst, Ncv32u dstStep,
NcvSize32u srcRoi, Ncv32u scale);
/**
* Downsamples (decimates) an image using the nearest neighbor algorithm. 64-bit signed pixels, single channel. Host implementation.
* \see nppiStDownsampleNearest_32u_C1R_host
*/
NCV_EXPORTS
NCVStatus nppiStDownsampleNearest_64s_C1R_host(Ncv64s *h_src, Ncv32u srcStep,
Ncv64s *h_dst, Ncv32u dstStep,
NcvSize32u srcRoi, Ncv32u scale);
/**
* Downsamples (decimates) an image using the nearest neighbor algorithm. 64-bit float pixels, single channel. Host implementation.
* \see nppiStDownsampleNearest_32u_C1R_host
*/
NCV_EXPORTS
NCVStatus nppiStDownsampleNearest_64f_C1R_host(Ncv64f *h_src, Ncv32u srcStep,
Ncv64f *h_dst, Ncv32u dstStep,
NcvSize32u srcRoi, Ncv32u scale);
/**
* Computes standard deviation for each rectangular region of the input image using integral images.
*
* \param d_sum [IN] Integral image pointer (CUDA device memory)
* \param sumStep [IN] Integral image line step
* \param d_sqsum [IN] Squared integral image pointer (CUDA device memory)
* \param sqsumStep [IN] Squared integral image line step
* \param d_norm [OUT] Stddev image pointer (CUDA device memory). Each pixel contains stddev of a rect with top-left corner at the original location in the image
* \param normStep [IN] Stddev image line step
* \param roi [IN] Region of interest in the source image
* \param rect [IN] Rectangular region to calculate stddev over
* \param scaleArea [IN] Multiplication factor to account decimated scale
* \param readThruTexture [IN] Performance hint to cache source in texture (true) or read directly (false)
*
* \return NCV status code
*/
NCV_EXPORTS
NCVStatus nppiStRectStdDev_32f_C1R(Ncv32u *d_sum, Ncv32u sumStep,
Ncv64u *d_sqsum, Ncv32u sqsumStep,
Ncv32f *d_norm, Ncv32u normStep,
NcvSize32u roi, NcvRect32u rect,
Ncv32f scaleArea, NcvBool readThruTexture);
/**
* Computes standard deviation for each rectangular region of the input image using integral images. Host implementation
*
* \param h_sum [IN] Integral image pointer (Host or pinned memory)
* \param sumStep [IN] Integral image line step
* \param h_sqsum [IN] Squared integral image pointer (Host or pinned memory)
* \param sqsumStep [IN] Squared integral image line step
* \param h_norm [OUT] Stddev image pointer (Host or pinned memory). Each pixel contains stddev of a rect with top-left corner at the original location in the image
* \param normStep [IN] Stddev image line step
* \param roi [IN] Region of interest in the source image
* \param rect [IN] Rectangular region to calculate stddev over
* \param scaleArea [IN] Multiplication factor to account decimated scale
*
* \return NCV status code
*/
NCV_EXPORTS
NCVStatus nppiStRectStdDev_32f_C1R_host(Ncv32u *h_sum, Ncv32u sumStep,
Ncv64u *h_sqsum, Ncv32u sqsumStep,
Ncv32f *h_norm, Ncv32u normStep,
NcvSize32u roi, NcvRect32u rect,
Ncv32f scaleArea);
/**
* Transposes an image. 32-bit unsigned pixels, single channel
*
* \param d_src [IN] Source image pointer (CUDA device memory)
* \param srcStride [IN] Source image line step
* \param d_dst [OUT] Destination image pointer (CUDA device memory)
* \param dstStride [IN] Destination image line step
* \param srcRoi [IN] Region of interest of the source image
*
* \return NCV status code
*/
NCV_EXPORTS
NCVStatus nppiStTranspose_32u_C1R(Ncv32u *d_src, Ncv32u srcStride,
Ncv32u *d_dst, Ncv32u dstStride, NcvSize32u srcRoi);
/**
* Transposes an image. 32-bit signed pixels, single channel
* \see nppiStTranspose_32u_C1R
*/
NCV_EXPORTS
NCVStatus nppiStTranspose_32s_C1R(Ncv32s *d_src, Ncv32u srcStride,
Ncv32s *d_dst, Ncv32u dstStride, NcvSize32u srcRoi);
/**
* Transposes an image. 32-bit float pixels, single channel
* \see nppiStTranspose_32u_C1R
*/
NCV_EXPORTS
NCVStatus nppiStTranspose_32f_C1R(Ncv32f *d_src, Ncv32u srcStride,
Ncv32f *d_dst, Ncv32u dstStride, NcvSize32u srcRoi);
/**
* Transposes an image. 64-bit unsigned pixels, single channel
* \see nppiStTranspose_32u_C1R
*/
NCV_EXPORTS
NCVStatus nppiStTranspose_64u_C1R(Ncv64u *d_src, Ncv32u srcStride,
Ncv64u *d_dst, Ncv32u dstStride, NcvSize32u srcRoi);
/**
* Transposes an image. 64-bit signed pixels, single channel
* \see nppiStTranspose_32u_C1R
*/
NCV_EXPORTS
NCVStatus nppiStTranspose_64s_C1R(Ncv64s *d_src, Ncv32u srcStride,
Ncv64s *d_dst, Ncv32u dstStride, NcvSize32u srcRoi);
/**
* Transposes an image. 64-bit float pixels, single channel
* \see nppiStTranspose_32u_C1R
*/
NCV_EXPORTS
NCVStatus nppiStTranspose_64f_C1R(Ncv64f *d_src, Ncv32u srcStride,
Ncv64f *d_dst, Ncv32u dstStride, NcvSize32u srcRoi);
/**
* Transposes an image. 32-bit unsigned pixels, single channel. Host implementation
*
* \param h_src [IN] Source image pointer (Host or pinned memory)
* \param srcStride [IN] Source image line step
* \param h_dst [OUT] Destination image pointer (Host or pinned memory)
* \param dstStride [IN] Destination image line step
* \param srcRoi [IN] Region of interest of the source image
*
* \return NCV status code
*/
NCV_EXPORTS
NCVStatus nppiStTranspose_32u_C1R_host(Ncv32u *h_src, Ncv32u srcStride,
Ncv32u *h_dst, Ncv32u dstStride, NcvSize32u srcRoi);
/**
* Transposes an image. 32-bit signed pixels, single channel. Host implementation
* \see nppiStTranspose_32u_C1R_host
*/
NCV_EXPORTS
NCVStatus nppiStTranspose_32s_C1R_host(Ncv32s *h_src, Ncv32u srcStride,
Ncv32s *h_dst, Ncv32u dstStride, NcvSize32u srcRoi);
/**
* Transposes an image. 32-bit float pixels, single channel. Host implementation
* \see nppiStTranspose_32u_C1R_host
*/
NCV_EXPORTS
NCVStatus nppiStTranspose_32f_C1R_host(Ncv32f *h_src, Ncv32u srcStride,
Ncv32f *h_dst, Ncv32u dstStride, NcvSize32u srcRoi);
/**
* Transposes an image. 64-bit unsigned pixels, single channel. Host implementation
* \see nppiStTranspose_32u_C1R_host
*/
NCV_EXPORTS
NCVStatus nppiStTranspose_64u_C1R_host(Ncv64u *h_src, Ncv32u srcStride,
Ncv64u *h_dst, Ncv32u dstStride, NcvSize32u srcRoi);
/**
* Transposes an image. 64-bit signed pixels, single channel. Host implementation
* \see nppiStTranspose_32u_C1R_host
*/
NCV_EXPORTS
NCVStatus nppiStTranspose_64s_C1R_host(Ncv64s *h_src, Ncv32u srcStride,
Ncv64s *h_dst, Ncv32u dstStride, NcvSize32u srcRoi);
/**
* Transposes an image. 64-bit float pixels, single channel. Host implementation
* \see nppiStTranspose_32u_C1R_host
*/
NCV_EXPORTS
NCVStatus nppiStTranspose_64f_C1R_host(Ncv64f *h_src, Ncv32u srcStride,
Ncv64f *h_dst, Ncv32u dstStride, NcvSize32u srcRoi);
/**
* Calculates the size of the temporary buffer for integral image creation
*
* \param roiSize [IN] Size of the input image
* \param pBufsize [OUT] Pointer to host variable that returns the size of the temporary buffer (in bytes)
* \param devProp [IN] CUDA device properties structure, containing texture alignment information
*
* \return NCV status code
*/
NCV_EXPORTS
NCVStatus nppiStIntegralGetSize_8u32u(NcvSize32u roiSize, Ncv32u *pBufsize, cudaDeviceProp &devProp);
/**
* Calculates the size of the temporary buffer for integral image creation
* \see nppiStIntegralGetSize_8u32u
*/
NCV_EXPORTS
NCVStatus nppiStIntegralGetSize_32f32f(NcvSize32u roiSize, Ncv32u *pBufsize, cudaDeviceProp &devProp);
/**
* Creates an integral image representation for the input image
*
* \param d_src [IN] Source image pointer (CUDA device memory)
* \param srcStep [IN] Source image line step
* \param d_dst [OUT] Destination integral image pointer (CUDA device memory)
* \param dstStep [IN] Destination image line step
* \param roiSize [IN] Region of interest of the source image
* \param pBuffer [IN] Pointer to the pre-allocated temporary buffer (CUDA device memory)
* \param bufSize [IN] Size of the pBuffer in bytes
* \param devProp [IN] CUDA device properties structure, containing texture alignment information
*
* \return NCV status code
*/
NCV_EXPORTS
NCVStatus nppiStIntegral_8u32u_C1R(Ncv8u *d_src, Ncv32u srcStep,
Ncv32u *d_dst, Ncv32u dstStep, NcvSize32u roiSize,
Ncv8u *pBuffer, Ncv32u bufSize, cudaDeviceProp &devProp);
/**
* Creates an integral image representation for the input image
* \see nppiStIntegral_8u32u_C1R
*/
NCV_EXPORTS
NCVStatus nppiStIntegral_32f32f_C1R(Ncv32f *d_src, Ncv32u srcStep,
Ncv32f *d_dst, Ncv32u dstStep, NcvSize32u roiSize,
Ncv8u *pBuffer, Ncv32u bufSize, cudaDeviceProp &devProp);
/**
* Creates an integral image representation for the input image. Host implementation
*
* \param h_src [IN] Source image pointer (Host or pinned memory)
* \param srcStep [IN] Source image line step
* \param h_dst [OUT] Destination integral image pointer (Host or pinned memory)
* \param dstStep [IN] Destination image line step
* \param roiSize [IN] Region of interest of the source image
*
* \return NCV status code
*/
NCV_EXPORTS
NCVStatus nppiStIntegral_8u32u_C1R_host(Ncv8u *h_src, Ncv32u srcStep,
Ncv32u *h_dst, Ncv32u dstStep, NcvSize32u roiSize);
/**
* Creates an integral image representation for the input image. Host implementation
* \see nppiStIntegral_8u32u_C1R_host
*/
NCV_EXPORTS
NCVStatus nppiStIntegral_32f32f_C1R_host(Ncv32f *h_src, Ncv32u srcStep,
Ncv32f *h_dst, Ncv32u dstStep, NcvSize32u roiSize);
/**
* Calculates the size of the temporary buffer for squared integral image creation
*
* \param roiSize [IN] Size of the input image
* \param pBufsize [OUT] Pointer to host variable that returns the size of the temporary buffer (in bytes)
* \param devProp [IN] CUDA device properties structure, containing texture alignment information
*
* \return NCV status code
*/
NCV_EXPORTS
NCVStatus nppiStSqrIntegralGetSize_8u64u(NcvSize32u roiSize, Ncv32u *pBufsize, cudaDeviceProp &devProp);
/**
* Creates a squared integral image representation for the input image
*
* \param d_src [IN] Source image pointer (CUDA device memory)
* \param srcStep [IN] Source image line step
* \param d_dst [OUT] Destination squared integral image pointer (CUDA device memory)
* \param dstStep [IN] Destination image line step
* \param roiSize [IN] Region of interest of the source image
* \param pBuffer [IN] Pointer to the pre-allocated temporary buffer (CUDA device memory)
* \param bufSize [IN] Size of the pBuffer in bytes
* \param devProp [IN] CUDA device properties structure, containing texture alignment information
*
* \return NCV status code
*/
NCV_EXPORTS
NCVStatus nppiStSqrIntegral_8u64u_C1R(Ncv8u *d_src, Ncv32u srcStep,
Ncv64u *d_dst, Ncv32u dstStep, NcvSize32u roiSize,
Ncv8u *pBuffer, Ncv32u bufSize, cudaDeviceProp &devProp);
/**
* Creates a squared integral image representation for the input image. Host implementation
*
* \param h_src [IN] Source image pointer (Host or pinned memory)
* \param srcStep [IN] Source image line step
* \param h_dst [OUT] Destination squared integral image pointer (Host or pinned memory)
* \param dstStep [IN] Destination image line step
* \param roiSize [IN] Region of interest of the source image
*
* \return NCV status code
*/
NCV_EXPORTS
NCVStatus nppiStSqrIntegral_8u64u_C1R_host(Ncv8u *h_src, Ncv32u srcStep,
Ncv64u *h_dst, Ncv32u dstStep, NcvSize32u roiSize);
/*@}*/
/** \defgroup npps NPPST Signal Processing
* @{
*/
/**
* Calculates the size of the temporary buffer for vector compaction. 32-bit unsigned values
*
* \param srcLen [IN] Length of the input vector in elements
* \param pBufsize [OUT] Pointer to host variable that returns the size of the temporary buffer (in bytes)
* \param devProp [IN] CUDA device properties structure, containing texture alignment information
*
* \return NCV status code
*/
NCV_EXPORTS
NCVStatus nppsStCompactGetSize_32u(Ncv32u srcLen, Ncv32u *pBufsize, cudaDeviceProp &devProp);
/**
* Calculates the size of the temporary buffer for vector compaction. 32-bit signed values
* \see nppsStCompactGetSize_32u
*/
NCVStatus nppsStCompactGetSize_32s(Ncv32u srcLen, Ncv32u *pBufsize, cudaDeviceProp &devProp);
/**
* Calculates the size of the temporary buffer for vector compaction. 32-bit float values
* \see nppsStCompactGetSize_32u
*/
NCVStatus nppsStCompactGetSize_32f(Ncv32u srcLen, Ncv32u *pBufsize, cudaDeviceProp &devProp);
/**
* Compacts the input vector by removing elements of specified value. 32-bit unsigned values
*
* \param d_src [IN] Source vector pointer (CUDA device memory)
* \param srcLen [IN] Source vector length
* \param d_dst [OUT] Destination vector pointer (CUDA device memory)
* \param p_dstLen [OUT] Pointer to the destination vector length (Pinned memory or NULL)
* \param elemRemove [IN] The value to be removed
* \param pBuffer [IN] Pointer to the pre-allocated temporary buffer (CUDA device memory)
* \param bufSize [IN] Size of the pBuffer in bytes
* \param devProp [IN] CUDA device properties structure, containing texture alignment information
*
* \return NCV status code
*/
NCV_EXPORTS
NCVStatus nppsStCompact_32u(Ncv32u *d_src, Ncv32u srcLen,
Ncv32u *d_dst, Ncv32u *p_dstLen,
Ncv32u elemRemove, Ncv8u *pBuffer,
Ncv32u bufSize, cudaDeviceProp &devProp);
/**
* Compacts the input vector by removing elements of specified value. 32-bit signed values
* \see nppsStCompact_32u
*/
NCV_EXPORTS
NCVStatus nppsStCompact_32s(Ncv32s *d_src, Ncv32u srcLen,
Ncv32s *d_dst, Ncv32u *p_dstLen,
Ncv32s elemRemove, Ncv8u *pBuffer,
Ncv32u bufSize, cudaDeviceProp &devProp);
/**
* Compacts the input vector by removing elements of specified value. 32-bit float values
* \see nppsStCompact_32u
*/
NCV_EXPORTS
NCVStatus nppsStCompact_32f(Ncv32f *d_src, Ncv32u srcLen,
Ncv32f *d_dst, Ncv32u *p_dstLen,
Ncv32f elemRemove, Ncv8u *pBuffer,
Ncv32u bufSize, cudaDeviceProp &devProp);
/**
* Compacts the input vector by removing elements of specified value. 32-bit unsigned values. Host implementation
*
* \param h_src [IN] Source vector pointer (CUDA device memory)
* \param srcLen [IN] Source vector length
* \param h_dst [OUT] Destination vector pointer (CUDA device memory)
* \param dstLen [OUT] Pointer to the destination vector length (can be NULL)
* \param elemRemove [IN] The value to be removed
*
* \return NCV status code
*/
NCV_EXPORTS
NCVStatus nppsStCompact_32u_host(Ncv32u *h_src, Ncv32u srcLen,
Ncv32u *h_dst, Ncv32u *dstLen, Ncv32u elemRemove);
/**
* Compacts the input vector by removing elements of specified value. 32-bit signed values. Host implementation
* \see nppsStCompact_32u_host
*/
NCV_EXPORTS
NCVStatus nppsStCompact_32s_host(Ncv32s *h_src, Ncv32u srcLen,
Ncv32s *h_dst, Ncv32u *dstLen, Ncv32s elemRemove);
/**
* Compacts the input vector by removing elements of specified value. 32-bit float values. Host implementation
* \see nppsStCompact_32u_host
*/
NCV_EXPORTS
NCVStatus nppsStCompact_32f_host(Ncv32f *h_src, Ncv32u srcLen,
Ncv32f *h_dst, Ncv32u *dstLen, Ncv32f elemRemove);
/*@}*/
#endif // _npp_staging_hpp_

View File

@@ -40,15 +40,13 @@
//M*/
#include <precomp.hpp>
#if !defined (HAVE_CUDA)
#else /* !defined (HAVE_CUDA) */
#include <ios>
#include <stdarg.h>
#include "NCV.hpp"
@@ -94,17 +92,6 @@ void ncvSetDebugOutputHandler(NCVDebugOutputHandler *func)
//==============================================================================
NCVStatus GPUAlignmentValue(Ncv32u &alignment)
{
int curDev;
cudaDeviceProp curProp;
ncvAssertCUDAReturn(cudaGetDevice(&curDev), NCV_CUDA_ERROR);
ncvAssertCUDAReturn(cudaGetDeviceProperties(&curProp, curDev), NCV_CUDA_ERROR);
alignment = curProp.textureAlignment; //GPUAlignmentValue(curProp.major);
return NCV_SUCCESS;
}
Ncv32u alignUp(Ncv32u what, Ncv32u alignment)
{
Ncv32u alignMask = alignment-1;
@@ -216,7 +203,7 @@ NCVMemStackAllocator::NCVMemStackAllocator(Ncv32u alignment)
}
NCVMemStackAllocator::NCVMemStackAllocator(NCVMemoryType memT, size_t capacity, Ncv32u alignment)
NCVMemStackAllocator::NCVMemStackAllocator(NCVMemoryType memT, size_t capacity, Ncv32u alignment, void *reusePtr)
:
currentSize(0),
_maxSize(0),
@@ -229,17 +216,26 @@ NCVMemStackAllocator::NCVMemStackAllocator(NCVMemoryType memT, size_t capacity,
allocBegin = NULL;
switch (memT)
if (reusePtr == NULL)
{
case NCVMemoryTypeDevice:
ncvAssertCUDAReturn(cudaMalloc(&allocBegin, capacity), );
break;
case NCVMemoryTypeHostPinned:
ncvAssertCUDAReturn(cudaMallocHost(&allocBegin, capacity), );
break;
case NCVMemoryTypeHostPageable:
allocBegin = (Ncv8u *)malloc(capacity);
break;
bReusesMemory = false;
switch (memT)
{
case NCVMemoryTypeDevice:
ncvAssertCUDAReturn(cudaMalloc(&allocBegin, capacity), );
break;
case NCVMemoryTypeHostPinned:
ncvAssertCUDAReturn(cudaMallocHost(&allocBegin, capacity), );
break;
case NCVMemoryTypeHostPageable:
allocBegin = (Ncv8u *)malloc(capacity);
break;
}
}
else
{
bReusesMemory = true;
allocBegin = (Ncv8u *)reusePtr;
}
if (capacity == 0)
@@ -260,18 +256,23 @@ NCVMemStackAllocator::~NCVMemStackAllocator()
if (allocBegin != NULL)
{
ncvAssertPrintCheck(currentSize == 0, "NCVMemStackAllocator dtor:: not all objects were deallocated properly, forcing destruction");
switch (_memType)
if (!bReusesMemory)
{
case NCVMemoryTypeDevice:
ncvAssertCUDAReturn(cudaFree(allocBegin), );
break;
case NCVMemoryTypeHostPinned:
ncvAssertCUDAReturn(cudaFreeHost(allocBegin), );
break;
case NCVMemoryTypeHostPageable:
free(allocBegin);
break;
switch (_memType)
{
case NCVMemoryTypeDevice:
ncvAssertCUDAReturn(cudaFree(allocBegin), );
break;
case NCVMemoryTypeHostPinned:
ncvAssertCUDAReturn(cudaFreeHost(allocBegin), );
break;
case NCVMemoryTypeHostPageable:
free(allocBegin);
break;
}
}
allocBegin = NULL;
}
}
@@ -356,14 +357,14 @@ size_t NCVMemStackAllocator::maxSize(void) const
//===================================================================
NCVMemNativeAllocator::NCVMemNativeAllocator(NCVMemoryType memT)
NCVMemNativeAllocator::NCVMemNativeAllocator(NCVMemoryType memT, Ncv32u alignment)
:
currentSize(0),
_maxSize(0),
_memType(memT)
_memType(memT),
_alignment(alignment)
{
ncvAssertPrintReturn(memT != NCVMemoryTypeNone, "NCVMemNativeAllocator ctor:: counting not permitted for this allocator type", );
ncvAssertPrintReturn(NCV_SUCCESS == GPUAlignmentValue(this->_alignment), "NCVMemNativeAllocator ctor:: couldn't get device _alignment", );
}

View File

@@ -42,8 +42,49 @@
#ifndef _ncv_hpp_
#define _ncv_hpp_
#if (defined WIN32 || defined _WIN32 || defined WINCE) && defined CVAPI_EXPORTS //&& !defined(__CUDACC__)
#define NCV_EXPORTS __declspec(dllexport)
#else
#define NCV_EXPORTS
#endif
#include <cuda_runtime.h>
#include "npp_staging.h"
//==============================================================================
//
// Compile-time assert functionality
//
//==============================================================================
/**
* Compile-time assert namespace
*/
namespace NcvCTprep
{
template <bool x>
struct CT_ASSERT_FAILURE;
template <>
struct CT_ASSERT_FAILURE<true> {};
template <int x>
struct assertTest{};
}
#define NCV_CT_PREP_PASTE_AUX(a,b) a##b ///< Concatenation indirection macro
#define NCV_CT_PREP_PASTE(a,b) NCV_CT_PREP_PASTE_AUX(a, b) ///< Concatenation macro
/**
* Performs compile-time assertion of a condition on the file scope
*/
#define NCV_CT_ASSERT(X) \
typedef NcvCTprep::assertTest<sizeof(NcvCTprep::CT_ASSERT_FAILURE< (bool)(X) >)> \
NCV_CT_PREP_PASTE(__ct_assert_typedef_, __LINE__)
//==============================================================================
@@ -82,62 +123,72 @@ typedef float Ncv32f;
typedef double Ncv64f;
typedef struct
struct NcvRect8u
{
Ncv8u x;
Ncv8u y;
Ncv8u width;
Ncv8u height;
} NcvRect8u;
NcvRect8u() : x(0), y(0), width(0), height(0) {};
NcvRect8u(Ncv8u x, Ncv8u y, Ncv8u width, Ncv8u height) : x(x), y(y), width(width), height(height) {}
};
typedef struct
struct NcvRect32s
{
Ncv32s x; ///< x-coordinate of upper left corner.
Ncv32s y; ///< y-coordinate of upper left corner.
Ncv32s width; ///< Rectangle width.
Ncv32s height; ///< Rectangle height.
} NcvRect32s;
NcvRect32s() : x(0), y(0), width(0), height(0) {};
NcvRect32s(Ncv32s x, Ncv32s y, Ncv32s width, Ncv32s height) : x(x), y(y), width(width), height(height) {}
};
typedef struct
struct NcvRect32u
{
Ncv32u x; ///< x-coordinate of upper left corner.
Ncv32u y; ///< y-coordinate of upper left corner.
Ncv32u width; ///< Rectangle width.
Ncv32u height; ///< Rectangle height.
} NcvRect32u;
NcvRect32u() : x(0), y(0), width(0), height(0) {};
NcvRect32u(Ncv32u x, Ncv32u y, Ncv32u width, Ncv32u height) : x(x), y(y), width(width), height(height) {}
};
typedef struct
struct NcvSize32s
{
Ncv32s width; ///< Rectangle width.
Ncv32s height; ///< Rectangle height.
} NcvSize32s;
NcvSize32s() : width(0), height(0) {};
NcvSize32s(Ncv32s width, Ncv32s height) : width(width), height(height) {}
};
typedef struct
struct NcvSize32u
{
Ncv32u width; ///< Rectangle width.
Ncv32u height; ///< Rectangle height.
} NcvSize32u;
NcvSize32u() : width(0), height(0) {};
NcvSize32u(Ncv32u width, Ncv32u height) : width(width), height(height) {}
};
NPPST_CT_ASSERT(sizeof(NcvBool) <= 4);
NPPST_CT_ASSERT(sizeof(Ncv64s) == 8);
NPPST_CT_ASSERT(sizeof(Ncv64u) == 8);
NPPST_CT_ASSERT(sizeof(Ncv32s) == 4);
NPPST_CT_ASSERT(sizeof(Ncv32u) == 4);
NPPST_CT_ASSERT(sizeof(Ncv16s) == 2);
NPPST_CT_ASSERT(sizeof(Ncv16u) == 2);
NPPST_CT_ASSERT(sizeof(Ncv8s) == 1);
NPPST_CT_ASSERT(sizeof(Ncv8u) == 1);
NPPST_CT_ASSERT(sizeof(Ncv32f) == 4);
NPPST_CT_ASSERT(sizeof(Ncv64f) == 8);
NPPST_CT_ASSERT(sizeof(NcvRect8u) == sizeof(Ncv32u));
NPPST_CT_ASSERT(sizeof(NcvRect32s) == 4 * sizeof(Ncv32s));
NPPST_CT_ASSERT(sizeof(NcvRect32u) == 4 * sizeof(Ncv32u));
NPPST_CT_ASSERT(sizeof(NcvSize32u) == 2 * sizeof(Ncv32u));
NCV_CT_ASSERT(sizeof(NcvBool) <= 4);
NCV_CT_ASSERT(sizeof(Ncv64s) == 8);
NCV_CT_ASSERT(sizeof(Ncv64u) == 8);
NCV_CT_ASSERT(sizeof(Ncv32s) == 4);
NCV_CT_ASSERT(sizeof(Ncv32u) == 4);
NCV_CT_ASSERT(sizeof(Ncv16s) == 2);
NCV_CT_ASSERT(sizeof(Ncv16u) == 2);
NCV_CT_ASSERT(sizeof(Ncv8s) == 1);
NCV_CT_ASSERT(sizeof(Ncv8u) == 1);
NCV_CT_ASSERT(sizeof(Ncv32f) == 4);
NCV_CT_ASSERT(sizeof(Ncv64f) == 8);
NCV_CT_ASSERT(sizeof(NcvRect8u) == sizeof(Ncv32u));
NCV_CT_ASSERT(sizeof(NcvRect32s) == 4 * sizeof(Ncv32s));
NCV_CT_ASSERT(sizeof(NcvRect32u) == 4 * sizeof(Ncv32u));
NCV_CT_ASSERT(sizeof(NcvSize32u) == 2 * sizeof(Ncv32u));
//==============================================================================
@@ -162,13 +213,13 @@ const Ncv32u K_LOG2_WARP_SIZE = 5;
#define NCV_CT_PREP_STRINGIZE(x) NCV_CT_PREP_STRINGIZE_AUX(x)
void ncvDebugOutput(const char *msg, ...);
NCV_EXPORTS void ncvDebugOutput(const char *msg, ...);
typedef void NCVDebugOutputHandler(const char* msg);
void ncvSetDebugOutputHandler(NCVDebugOutputHandler* func);
NCV_EXPORTS void ncvSetDebugOutputHandler(NCVDebugOutputHandler* func);
#define ncvAssertPrintCheck(pred, msg) \
@@ -222,6 +273,7 @@ void ncvSetDebugOutputHandler(NCVDebugOutputHandler* func);
*/
enum NCVStatus
{
//NCV statuses
NCV_SUCCESS,
NCV_CUDA_ERROR,
@@ -257,6 +309,24 @@ enum NCVStatus
NCV_NOIMPL_HAAR_TILTED_FEATURES,
NCV_WARNING_HAAR_DETECTIONS_VECTOR_OVERFLOW,
//NPP statuses
NPPST_SUCCESS = NCV_SUCCESS, ///< Successful operation (same as NPP_NO_ERROR)
NPPST_ERROR, ///< Unknown error
NPPST_CUDA_KERNEL_EXECUTION_ERROR, ///< CUDA kernel execution error
NPPST_NULL_POINTER_ERROR, ///< NULL pointer argument error
NPPST_TEXTURE_BIND_ERROR, ///< CUDA texture binding error or non-zero offset returned
NPPST_MEMCPY_ERROR, ///< CUDA memory copy error
NPPST_MEM_ALLOC_ERR, ///< CUDA memory allocation error
NPPST_MEMFREE_ERR, ///< CUDA memory deallocation error
//NPPST statuses
NPPST_INVALID_ROI, ///< Invalid region of interest argument
NPPST_INVALID_STEP, ///< Invalid image lines step argument (check sign, alignment, relation to image width)
NPPST_INVALID_SCALE, ///< Invalid scale parameter passed
NPPST_MEM_INSUFFICIENT_BUFFER, ///< Insufficient user-allocated buffer
NPPST_MEM_RESIDENCE_ERROR, ///< Memory residence error detected (check if pointers should be device or pinned)
NPPST_MEM_INTERNAL_ERROR, ///< Internal memory management error
};
@@ -285,11 +355,11 @@ enum NCVStatus
typedef struct _NcvTimer *NcvTimer;
NcvTimer ncvStartTimer(void);
NCV_EXPORTS NcvTimer ncvStartTimer(void);
double ncvEndQueryTimerUs(NcvTimer t);
NCV_EXPORTS double ncvEndQueryTimerUs(NcvTimer t);
double ncvEndQueryTimerMs(NcvTimer t);
NCV_EXPORTS double ncvEndQueryTimerMs(NcvTimer t);
//==============================================================================
@@ -299,16 +369,10 @@ double ncvEndQueryTimerMs(NcvTimer t);
//==============================================================================
/**
* Alignment of GPU memory chunks in bytes
*/
NCVStatus GPUAlignmentValue(Ncv32u &alignment);
/**
* Calculates the aligned top bound value
*/
Ncv32u alignUp(Ncv32u what, Ncv32u alignment);
NCV_EXPORTS Ncv32u alignUp(Ncv32u what, Ncv32u alignment);
/**
@@ -326,7 +390,7 @@ enum NCVMemoryType
/**
* NCVMemPtr
*/
struct NCVMemPtr
struct NCV_EXPORTS NCVMemPtr
{
void *ptr;
NCVMemoryType memtype;
@@ -337,7 +401,7 @@ struct NCVMemPtr
/**
* NCVMemSegment
*/
struct NCVMemSegment
struct NCV_EXPORTS NCVMemSegment
{
NCVMemPtr begin;
size_t size;
@@ -348,7 +412,7 @@ struct NCVMemSegment
/**
* INCVMemAllocator (Interface)
*/
class INCVMemAllocator
class NCV_EXPORTS INCVMemAllocator
{
public:
virtual ~INCVMemAllocator() = 0;
@@ -370,7 +434,7 @@ inline INCVMemAllocator::~INCVMemAllocator() {}
/**
* NCVMemStackAllocator
*/
class NCVMemStackAllocator : public INCVMemAllocator
class NCV_EXPORTS NCVMemStackAllocator : public INCVMemAllocator
{
NCVMemStackAllocator();
NCVMemStackAllocator(const NCVMemStackAllocator &);
@@ -378,7 +442,7 @@ class NCVMemStackAllocator : public INCVMemAllocator
public:
explicit NCVMemStackAllocator(Ncv32u alignment);
NCVMemStackAllocator(NCVMemoryType memT, size_t capacity, Ncv32u alignment);
NCVMemStackAllocator(NCVMemoryType memT, size_t capacity, Ncv32u alignment, void *reusePtr=NULL);
virtual ~NCVMemStackAllocator();
virtual NCVStatus alloc(NCVMemSegment &seg, size_t size);
@@ -400,17 +464,18 @@ private:
Ncv8u *end;
size_t currentSize;
size_t _maxSize;
NcvBool bReusesMemory;
};
/**
* NCVMemNativeAllocator
*/
class NCVMemNativeAllocator : public INCVMemAllocator
class NCV_EXPORTS NCVMemNativeAllocator : public INCVMemAllocator
{
public:
NCVMemNativeAllocator(NCVMemoryType memT);
NCVMemNativeAllocator(NCVMemoryType memT, Ncv32u alignment);
virtual ~NCVMemNativeAllocator();
virtual NCVStatus alloc(NCVMemSegment &seg, size_t size);
@@ -438,9 +503,9 @@ private:
/**
* Copy dispatcher
*/
NCVStatus memSegCopyHelper(void *dst, NCVMemoryType dstType,
const void *src, NCVMemoryType srcType,
size_t sz, cudaStream_t cuStream);
NCV_EXPORTS NCVStatus memSegCopyHelper(void *dst, NCVMemoryType dstType,
const void *src, NCVMemoryType srcType,
size_t sz, cudaStream_t cuStream);
/**
@@ -514,6 +579,7 @@ class NCVVectorAlloc : public NCVVector<T>
{
NCVVectorAlloc();
NCVVectorAlloc(const NCVVectorAlloc &);
NCVVectorAlloc& operator=(const NCVVectorAlloc<T>&);
public:
@@ -563,8 +629,7 @@ public:
return allocatedMem;
}
private:
private:
INCVMemAllocator &allocator;
NCVMemSegment allocatedMem;
};
@@ -707,7 +772,7 @@ class NCVMatrixAlloc : public NCVMatrix<T>
{
NCVMatrixAlloc();
NCVMatrixAlloc(const NCVMatrixAlloc &);
NCVMatrixAlloc& operator=(const NCVMatrixAlloc &);
public:
NCVMatrixAlloc(INCVMemAllocator &allocator, Ncv32u width, Ncv32u height, Ncv32u pitch=0)

View File

@@ -1,3 +1,51 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2009-2010, NVIDIA Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef _ncvruntimetemplates_hpp_
#define _ncvruntimetemplates_hpp_
#include <stdarg.h>
#include <vector>
////////////////////////////////////////////////////////////////////////////////
// The Loki Library
// Copyright (c) 2001 by Andrei Alexandrescu
@@ -14,13 +62,6 @@
// http://loki-lib.sourceforge.net/index.php?n=Main.License
////////////////////////////////////////////////////////////////////////////////
#ifndef _ncvruntimetemplates_hpp_
#define _ncvruntimetemplates_hpp_
#include <stdarg.h>
#include <vector>
namespace Loki
{
//==============================================================================

View File

@@ -68,51 +68,51 @@ namespace cv { namespace gpu { namespace device
//! Read Write Traits
template <size_t src_elem_size, size_t dst_elem_size>
struct UnReadWriteTraits_
{
enum {shift=1};
};
template <size_t src_elem_size>
struct UnReadWriteTraits_<src_elem_size, 1>
{
enum {shift=4};
};
template <size_t src_elem_size>
struct UnReadWriteTraits_<src_elem_size, 2>
{
enum {shift=2};
template <size_t src_elem_size, size_t dst_elem_size>
struct UnReadWriteTraits_
{
enum {shift=1};
};
template <typename T, typename D> struct UnReadWriteTraits
{
enum {shift=UnReadWriteTraits_<sizeof(T), sizeof(D)>::shift};
typedef typename TypeVec<T, shift>::vec_t read_type;
typedef typename TypeVec<D, shift>::vec_t write_type;
template <size_t src_elem_size>
struct UnReadWriteTraits_<src_elem_size, 1>
{
enum {shift=4};
};
template <size_t src_elem_size>
struct UnReadWriteTraits_<src_elem_size, 2>
{
enum {shift=2};
};
template <typename T, typename D> struct UnReadWriteTraits
{
enum {shift=UnReadWriteTraits_<sizeof(T), sizeof(D)>::shift};
typedef typename TypeVec<T, shift>::vec_t read_type;
typedef typename TypeVec<D, shift>::vec_t write_type;
};
template <size_t src_elem_size1, size_t src_elem_size2, size_t dst_elem_size>
struct BinReadWriteTraits_
{
enum {shift=1};
template <size_t src_elem_size1, size_t src_elem_size2, size_t dst_elem_size>
struct BinReadWriteTraits_
{
enum {shift=1};
};
template <size_t src_elem_size1, size_t src_elem_size2>
struct BinReadWriteTraits_<src_elem_size1, src_elem_size2, 1>
{
enum {shift=4};
template <size_t src_elem_size1, size_t src_elem_size2>
struct BinReadWriteTraits_<src_elem_size1, src_elem_size2, 1>
{
enum {shift=4};
};
template <size_t src_elem_size1, size_t src_elem_size2>
struct BinReadWriteTraits_<src_elem_size1, src_elem_size2, 2>
{
enum {shift=2};
template <size_t src_elem_size1, size_t src_elem_size2>
struct BinReadWriteTraits_<src_elem_size1, src_elem_size2, 2>
{
enum {shift=2};
};
template <typename T1, typename T2, typename D> struct BinReadWriteTraits
{
enum {shift=BinReadWriteTraits_<sizeof(T1), sizeof(T2), sizeof(D)>::shift};
typedef typename TypeVec<T1, shift>::vec_t read_type1;
typedef typename TypeVec<T2, shift>::vec_t read_type2;
typedef typename TypeVec<D , shift>::vec_t write_type;
template <typename T1, typename T2, typename D> struct BinReadWriteTraits
{
enum {shift=BinReadWriteTraits_<sizeof(T1), sizeof(T2), sizeof(D)>::shift};
typedef typename TypeVec<T1, shift>::vec_t read_type1;
typedef typename TypeVec<T2, shift>::vec_t read_type2;
typedef typename TypeVec<D , shift>::vec_t write_type;
};
//! Transform kernels
@@ -122,14 +122,14 @@ namespace cv { namespace gpu { namespace device
{
template <typename T, typename D, typename UnOp, typename Mask>
static __device__ void unroll(const T& src, D& dst, const Mask& mask, UnOp& op, int x_shifted, int y)
{
{
if (mask(y, x_shifted))
dst.x = op(src.x);
}
template <typename T1, typename T2, typename D, typename BinOp, typename Mask>
static __device__ void unroll(const T1& src1, const T2& src2, D& dst, const Mask& mask, BinOp& op, int x_shifted, int y)
{
{
if (mask(y, x_shifted))
dst.x = op(src1.x, src2.x);
}
@@ -138,18 +138,18 @@ namespace cv { namespace gpu { namespace device
{
template <typename T, typename D, typename UnOp, typename Mask>
static __device__ void unroll(const T& src, D& dst, const Mask& mask, UnOp& op, int x_shifted, int y)
{
{
if (mask(y, x_shifted))
dst.x = op(src.x);
dst.x = op(src.x);
if (mask(y, x_shifted + 1))
dst.y = op(src.y);
}
template <typename T1, typename T2, typename D, typename BinOp, typename Mask>
static __device__ void unroll(const T1& src1, const T2& src2, D& dst, const Mask& mask, BinOp& op, int x_shifted, int y)
{
{
if (mask(y, x_shifted))
dst.x = op(src1.x, src2.x);
dst.x = op(src1.x, src2.x);
if (mask(y, x_shifted + 1))
dst.y = op(src1.y, src2.y);
}
@@ -158,22 +158,22 @@ namespace cv { namespace gpu { namespace device
{
template <typename T, typename D, typename UnOp, typename Mask>
static __device__ void unroll(const T& src, D& dst, const Mask& mask, UnOp& op, int x_shifted, int y)
{
{
if (mask(y, x_shifted))
dst.x = op(src.x);
dst.x = op(src.x);
if (mask(y, x_shifted + 1))
dst.y = op(src.y);
dst.y = op(src.y);
if (mask(y, x_shifted + 2))
dst.z = op(src.z);
}
template <typename T1, typename T2, typename D, typename BinOp, typename Mask>
static __device__ void unroll(const T1& src1, const T2& src2, D& dst, const Mask& mask, BinOp& op, int x_shifted, int y)
{
{
if (mask(y, x_shifted))
dst.x = op(src1.x, src2.x);
dst.x = op(src1.x, src2.x);
if (mask(y, x_shifted + 1))
dst.y = op(src1.y, src2.y);
dst.y = op(src1.y, src2.y);
if (mask(y, x_shifted + 2))
dst.z = op(src1.z, src2.z);
}
@@ -182,65 +182,65 @@ namespace cv { namespace gpu { namespace device
{
template <typename T, typename D, typename UnOp, typename Mask>
static __device__ void unroll(const T& src, D& dst, const Mask& mask, UnOp& op, int x_shifted, int y)
{
{
if (mask(y, x_shifted))
dst.x = op(src.x);
dst.x = op(src.x);
if (mask(y, x_shifted + 1))
dst.y = op(src.y);
dst.y = op(src.y);
if (mask(y, x_shifted + 2))
dst.z = op(src.z);
dst.z = op(src.z);
if (mask(y, x_shifted + 3))
dst.w = op(src.w);
}
template <typename T1, typename T2, typename D, typename BinOp, typename Mask>
static __device__ void unroll(const T1& src1, const T2& src2, D& dst, const Mask& mask, BinOp& op, int x_shifted, int y)
{
{
if (mask(y, x_shifted))
dst.x = op(src1.x, src2.x);
dst.x = op(src1.x, src2.x);
if (mask(y, x_shifted + 1))
dst.y = op(src1.y, src2.y);
dst.y = op(src1.y, src2.y);
if (mask(y, x_shifted + 2))
dst.z = op(src1.z, src2.z);
dst.z = op(src1.z, src2.z);
if (mask(y, x_shifted + 3))
dst.w = op(src1.w, src2.w);
}
};
template <typename T, typename D, typename UnOp, typename Mask>
__global__ static void transformSmart(const DevMem2D_<T> src_, PtrStep_<D> dst_, const Mask mask, UnOp op)
{
typedef typename UnReadWriteTraits<T, D>::read_type read_type;
typedef typename UnReadWriteTraits<T, D>::write_type write_type;
const int shift = UnReadWriteTraits<T, D>::shift;
const int x = threadIdx.x + blockIdx.x * blockDim.x;
const int y = threadIdx.y + blockIdx.y * blockDim.y;
const int x_shifted = x * shift;
if (y < src_.rows)
{
const T* src = src_.ptr(y);
D* dst = dst_.ptr(y);
if (x_shifted + shift - 1 < src_.cols)
{
read_type src_n_el = ((const read_type*)src)[x];
write_type dst_n_el;
OpUnroller<shift>::unroll(src_n_el, dst_n_el, mask, op, x_shifted, y);
((write_type*)dst)[x] = dst_n_el;
}
else
{
for (int real_x = x_shifted; real_x < src_.cols; ++real_x)
{
if (mask(y, real_x))
dst[real_x] = op(src[real_x]);
}
}
}
template <typename T, typename D, typename UnOp, typename Mask>
__global__ static void transformSmart(const DevMem2D_<T> src_, PtrStep_<D> dst_, const Mask mask, UnOp op)
{
typedef typename UnReadWriteTraits<T, D>::read_type read_type;
typedef typename UnReadWriteTraits<T, D>::write_type write_type;
const int shift = UnReadWriteTraits<T, D>::shift;
const int x = threadIdx.x + blockIdx.x * blockDim.x;
const int y = threadIdx.y + blockIdx.y * blockDim.y;
const int x_shifted = x * shift;
if (y < src_.rows)
{
const T* src = src_.ptr(y);
D* dst = dst_.ptr(y);
if (x_shifted + shift - 1 < src_.cols)
{
read_type src_n_el = ((const read_type*)src)[x];
write_type dst_n_el;
OpUnroller<shift>::unroll(src_n_el, dst_n_el, mask, op, x_shifted, y);
((write_type*)dst)[x] = dst_n_el;
}
else
{
for (int real_x = x_shifted; real_x < src_.cols; ++real_x)
{
if (mask(y, real_x))
dst[real_x] = op(src[real_x]);
}
}
}
}
template <typename T, typename D, typename UnOp, typename Mask>
@@ -255,44 +255,44 @@ namespace cv { namespace gpu { namespace device
}
}
template <typename T1, typename T2, typename D, typename BinOp, typename Mask>
__global__ static void transformSmart(const DevMem2D_<T1> src1_, const PtrStep_<T2> src2_, PtrStep_<D> dst_,
const Mask mask, BinOp op)
{
typedef typename BinReadWriteTraits<T1, T2, D>::read_type1 read_type1;
typedef typename BinReadWriteTraits<T1, T2, D>::read_type2 read_type2;
typedef typename BinReadWriteTraits<T1, T2, D>::write_type write_type;
const int shift = BinReadWriteTraits<T1, T2, D>::shift;
const int x = threadIdx.x + blockIdx.x * blockDim.x;
const int y = threadIdx.y + blockIdx.y * blockDim.y;
const int x_shifted = x * shift;
if (y < src1_.rows)
{
const T1* src1 = src1_.ptr(y);
const T2* src2 = src2_.ptr(y);
D* dst = dst_.ptr(y);
if (x_shifted + shift - 1 < src1_.cols)
{
read_type1 src1_n_el = ((const read_type1*)src1)[x];
read_type2 src2_n_el = ((const read_type2*)src2)[x];
write_type dst_n_el;
OpUnroller<shift>::unroll(src1_n_el, src2_n_el, dst_n_el, mask, op, x_shifted, y);
((write_type*)dst)[x] = dst_n_el;
}
else
{
for (int real_x = x_shifted; real_x < src1_.cols; ++real_x)
{
if (mask(y, real_x))
dst[real_x] = op(src1[real_x], src2[real_x]);
}
}
}
template <typename T1, typename T2, typename D, typename BinOp, typename Mask>
__global__ static void transformSmart(const DevMem2D_<T1> src1_, const PtrStep_<T2> src2_, PtrStep_<D> dst_,
const Mask mask, BinOp op)
{
typedef typename BinReadWriteTraits<T1, T2, D>::read_type1 read_type1;
typedef typename BinReadWriteTraits<T1, T2, D>::read_type2 read_type2;
typedef typename BinReadWriteTraits<T1, T2, D>::write_type write_type;
const int shift = BinReadWriteTraits<T1, T2, D>::shift;
const int x = threadIdx.x + blockIdx.x * blockDim.x;
const int y = threadIdx.y + blockIdx.y * blockDim.y;
const int x_shifted = x * shift;
if (y < src1_.rows)
{
const T1* src1 = src1_.ptr(y);
const T2* src2 = src2_.ptr(y);
D* dst = dst_.ptr(y);
if (x_shifted + shift - 1 < src1_.cols)
{
read_type1 src1_n_el = ((const read_type1*)src1)[x];
read_type2 src2_n_el = ((const read_type2*)src2)[x];
write_type dst_n_el;
OpUnroller<shift>::unroll(src1_n_el, src2_n_el, dst_n_el, mask, op, x_shifted, y);
((write_type*)dst)[x] = dst_n_el;
}
else
{
for (int real_x = x_shifted; real_x < src1_.cols; ++real_x)
{
if (mask(y, real_x))
dst[real_x] = op(src1[real_x], src2[real_x]);
}
}
}
}
template <typename T1, typename T2, typename D, typename BinOp, typename Mask>
@@ -355,11 +355,11 @@ namespace cv
template <typename T, typename D, typename UnOp, typename Mask>
static void call(const DevMem2D_<T>& src, const DevMem2D_<D>& dst, UnOp op, const Mask& mask,
cudaStream_t stream = 0)
{
{
const int shift = device::UnReadWriteTraits<T, D>::shift;
dim3 threads(16, 16, 1);
dim3 grid(1, 1, 1);
dim3 grid(1, 1, 1);
grid.x = divUp(src.cols, threads.x * shift);
grid.y = divUp(src.rows, threads.y);
@@ -373,7 +373,7 @@ namespace cv
template <typename T1, typename T2, typename D, typename BinOp, typename Mask>
static void call(const DevMem2D_<T1>& src1, const DevMem2D_<T2>& src2, const DevMem2D_<D>& dst,
BinOp op, const Mask& mask, cudaStream_t stream = 0)
{
{
const int shift = device::BinReadWriteTraits<T1, T2, D>::shift;
dim3 threads(16, 16, 1);
@@ -392,7 +392,7 @@ namespace cv
template <typename T, typename D, typename UnOp, typename Mask>
static void transform_caller(const DevMem2D_<T>& src, const DevMem2D_<D>& dst, UnOp op, const Mask& mask,
cudaStream_t stream = 0)
{
{
TransformChooser<device::VecTraits<T>::cn == 1 && device::VecTraits<D>::cn == 1 && device::UnReadWriteTraits<T, D>::shift != 1>::call(src, dst, op, mask, stream);
}

View File

@@ -69,9 +69,9 @@
#include "cufft.h"
#include "opencv2/gpu/stream_accessor.hpp"
#include "npp.h"
#include "npp_staging.h"
#include "nvidia/NCV.hpp"
#include "nvidia/core/NCV.hpp"
#include "nvidia/NPP_staging/npp_staging.hpp"
#include "nvidia/NCVHaarObjectDetection.hpp"
#define CUDART_MINIMUM_REQUIRED_VERSION 3020