Anatoly Baksheev 0747f2d863 1) NPP_staging as sources. Binaries removed.
2) NVidia tests for GPU
3) FD sample that uses NVidia's interface.
2011-02-04 15:15:25 +00:00

903 lines
24 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2009-2010, NVIDIA Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef _ncv_hpp_
#define _ncv_hpp_
#if (defined WIN32 || defined _WIN32 || defined WINCE) && defined CVAPI_EXPORTS //&& !defined(__CUDACC__)
#define NCV_EXPORTS __declspec(dllexport)
#else
#define NCV_EXPORTS
#endif
#include <cuda_runtime.h>
//==============================================================================
//
// Compile-time assert functionality
//
//==============================================================================
/**
* Compile-time assert namespace
*/
namespace NcvCTprep
{
template <bool x>
struct CT_ASSERT_FAILURE;
template <>
struct CT_ASSERT_FAILURE<true> {};
template <int x>
struct assertTest{};
}
#define NCV_CT_PREP_PASTE_AUX(a,b) a##b ///< Concatenation indirection macro
#define NCV_CT_PREP_PASTE(a,b) NCV_CT_PREP_PASTE_AUX(a, b) ///< Concatenation macro
/**
* Performs compile-time assertion of a condition on the file scope
*/
#define NCV_CT_ASSERT(X) \
typedef NcvCTprep::assertTest<sizeof(NcvCTprep::CT_ASSERT_FAILURE< (bool)(X) >)> \
NCV_CT_PREP_PASTE(__ct_assert_typedef_, __LINE__)
//==============================================================================
//
// Alignment macros
//
//==============================================================================
#if !defined(__align__) && !defined(__CUDACC__)
#if defined(_WIN32) || defined(_WIN64)
#define __align__(n) __declspec(align(n))
#elif defined(__unix__)
#define __align__(n) __attribute__((__aligned__(n)))
#endif
#endif
//==============================================================================
//
// Integral and compound types of guaranteed size
//
//==============================================================================
typedef bool NcvBool;
typedef long long Ncv64s;
typedef unsigned long long Ncv64u;
typedef int Ncv32s;
typedef unsigned int Ncv32u;
typedef short Ncv16s;
typedef unsigned short Ncv16u;
typedef char Ncv8s;
typedef unsigned char Ncv8u;
typedef float Ncv32f;
typedef double Ncv64f;
struct NcvRect8u
{
Ncv8u x;
Ncv8u y;
Ncv8u width;
Ncv8u height;
NcvRect8u() : x(0), y(0), width(0), height(0) {};
NcvRect8u(Ncv8u x, Ncv8u y, Ncv8u width, Ncv8u height) : x(x), y(y), width(width), height(height) {}
};
struct NcvRect32s
{
Ncv32s x; ///< x-coordinate of upper left corner.
Ncv32s y; ///< y-coordinate of upper left corner.
Ncv32s width; ///< Rectangle width.
Ncv32s height; ///< Rectangle height.
NcvRect32s() : x(0), y(0), width(0), height(0) {};
NcvRect32s(Ncv32s x, Ncv32s y, Ncv32s width, Ncv32s height) : x(x), y(y), width(width), height(height) {}
};
struct NcvRect32u
{
Ncv32u x; ///< x-coordinate of upper left corner.
Ncv32u y; ///< y-coordinate of upper left corner.
Ncv32u width; ///< Rectangle width.
Ncv32u height; ///< Rectangle height.
NcvRect32u() : x(0), y(0), width(0), height(0) {};
NcvRect32u(Ncv32u x, Ncv32u y, Ncv32u width, Ncv32u height) : x(x), y(y), width(width), height(height) {}
};
struct NcvSize32s
{
Ncv32s width; ///< Rectangle width.
Ncv32s height; ///< Rectangle height.
NcvSize32s() : width(0), height(0) {};
NcvSize32s(Ncv32s width, Ncv32s height) : width(width), height(height) {}
};
struct NcvSize32u
{
Ncv32u width; ///< Rectangle width.
Ncv32u height; ///< Rectangle height.
NcvSize32u() : width(0), height(0) {};
NcvSize32u(Ncv32u width, Ncv32u height) : width(width), height(height) {}
};
NCV_CT_ASSERT(sizeof(NcvBool) <= 4);
NCV_CT_ASSERT(sizeof(Ncv64s) == 8);
NCV_CT_ASSERT(sizeof(Ncv64u) == 8);
NCV_CT_ASSERT(sizeof(Ncv32s) == 4);
NCV_CT_ASSERT(sizeof(Ncv32u) == 4);
NCV_CT_ASSERT(sizeof(Ncv16s) == 2);
NCV_CT_ASSERT(sizeof(Ncv16u) == 2);
NCV_CT_ASSERT(sizeof(Ncv8s) == 1);
NCV_CT_ASSERT(sizeof(Ncv8u) == 1);
NCV_CT_ASSERT(sizeof(Ncv32f) == 4);
NCV_CT_ASSERT(sizeof(Ncv64f) == 8);
NCV_CT_ASSERT(sizeof(NcvRect8u) == sizeof(Ncv32u));
NCV_CT_ASSERT(sizeof(NcvRect32s) == 4 * sizeof(Ncv32s));
NCV_CT_ASSERT(sizeof(NcvRect32u) == 4 * sizeof(Ncv32u));
NCV_CT_ASSERT(sizeof(NcvSize32u) == 2 * sizeof(Ncv32u));
//==============================================================================
//
// Persistent constants
//
//==============================================================================
const Ncv32u K_WARP_SIZE = 32;
const Ncv32u K_LOG2_WARP_SIZE = 5;
//==============================================================================
//
// Error handling
//
//==============================================================================
#define NCV_CT_PREP_STRINGIZE_AUX(x) #x
#define NCV_CT_PREP_STRINGIZE(x) NCV_CT_PREP_STRINGIZE_AUX(x)
NCV_EXPORTS void ncvDebugOutput(const char *msg, ...);
typedef void NCVDebugOutputHandler(const char* msg);
NCV_EXPORTS void ncvSetDebugOutputHandler(NCVDebugOutputHandler* func);
#define ncvAssertPrintCheck(pred, msg) \
((pred) ? true : (ncvDebugOutput("\n%s\n", \
"NCV Assertion Failed: " msg ", file=" __FILE__ ", line=" NCV_CT_PREP_STRINGIZE(__LINE__) \
), false))
#define ncvAssertPrintReturn(pred, msg, err) \
if (ncvAssertPrintCheck(pred, msg)) ; else return err
#define ncvAssertReturn(pred, err) \
do \
{ \
if (!(pred)) \
{ \
ncvDebugOutput("\n%s%d%s\n", "NCV Assertion Failed: retcode=", (int)err, ", file=" __FILE__ ", line=" NCV_CT_PREP_STRINGIZE(__LINE__)); \
return err; \
} \
} while (0)
#define ncvAssertReturnNcvStat(ncvOp) \
do \
{ \
NCVStatus _ncvStat = ncvOp; \
if (NCV_SUCCESS != _ncvStat) \
{ \
ncvDebugOutput("\n%s%d%s\n", "NCV Assertion Failed: NcvStat=", (int)_ncvStat, ", file=" __FILE__ ", line=" NCV_CT_PREP_STRINGIZE(__LINE__)); \
return _ncvStat; \
} \
} while (0)
#define ncvAssertCUDAReturn(cudacall, errCode) \
do \
{ \
cudaError_t resCall = cudacall; \
cudaError_t resGLE = cudaGetLastError(); \
if (cudaSuccess != resCall || cudaSuccess != resGLE) \
{ \
ncvDebugOutput("\n%s%d%s\n", "NCV CUDA Assertion Failed: cudaError_t=", (int)(resCall | resGLE), ", file=" __FILE__ ", line=" NCV_CT_PREP_STRINGIZE(__LINE__)); \
return errCode; \
} \
} while (0)
/**
* Return-codes for status notification, errors and warnings
*/
enum NCVStatus
{
//NCV statuses
NCV_SUCCESS,
NCV_CUDA_ERROR,
NCV_NPP_ERROR,
NCV_FILE_ERROR,
NCV_NULL_PTR,
NCV_INCONSISTENT_INPUT,
NCV_TEXTURE_BIND_ERROR,
NCV_DIMENSIONS_INVALID,
NCV_INVALID_ROI,
NCV_INVALID_STEP,
NCV_INVALID_SCALE,
NCV_ALLOCATOR_NOT_INITIALIZED,
NCV_ALLOCATOR_BAD_ALLOC,
NCV_ALLOCATOR_BAD_DEALLOC,
NCV_ALLOCATOR_INSUFFICIENT_CAPACITY,
NCV_ALLOCATOR_DEALLOC_ORDER,
NCV_ALLOCATOR_BAD_REUSE,
NCV_MEM_COPY_ERROR,
NCV_MEM_RESIDENCE_ERROR,
NCV_MEM_INSUFFICIENT_CAPACITY,
NCV_HAAR_INVALID_PIXEL_STEP,
NCV_HAAR_TOO_MANY_FEATURES_IN_CLASSIFIER,
NCV_HAAR_TOO_MANY_FEATURES_IN_CASCADE,
NCV_HAAR_TOO_LARGE_FEATURES,
NCV_HAAR_XML_LOADING_EXCEPTION,
NCV_NOIMPL_HAAR_TILTED_FEATURES,
NCV_WARNING_HAAR_DETECTIONS_VECTOR_OVERFLOW,
//NPP statuses
NPPST_SUCCESS = NCV_SUCCESS, ///< Successful operation (same as NPP_NO_ERROR)
NPPST_ERROR, ///< Unknown error
NPPST_CUDA_KERNEL_EXECUTION_ERROR, ///< CUDA kernel execution error
NPPST_NULL_POINTER_ERROR, ///< NULL pointer argument error
NPPST_TEXTURE_BIND_ERROR, ///< CUDA texture binding error or non-zero offset returned
NPPST_MEMCPY_ERROR, ///< CUDA memory copy error
NPPST_MEM_ALLOC_ERR, ///< CUDA memory allocation error
NPPST_MEMFREE_ERR, ///< CUDA memory deallocation error
//NPPST statuses
NPPST_INVALID_ROI, ///< Invalid region of interest argument
NPPST_INVALID_STEP, ///< Invalid image lines step argument (check sign, alignment, relation to image width)
NPPST_INVALID_SCALE, ///< Invalid scale parameter passed
NPPST_MEM_INSUFFICIENT_BUFFER, ///< Insufficient user-allocated buffer
NPPST_MEM_RESIDENCE_ERROR, ///< Memory residence error detected (check if pointers should be device or pinned)
NPPST_MEM_INTERNAL_ERROR, ///< Internal memory management error
};
#define NCV_SET_SKIP_COND(x) \
bool __ncv_skip_cond = x
#define NCV_RESET_SKIP_COND(x) \
__ncv_skip_cond = x
#define NCV_SKIP_COND_BEGIN \
if (!__ncv_skip_cond) {
#define NCV_SKIP_COND_END \
}
//==============================================================================
//
// Timer
//
//==============================================================================
typedef struct _NcvTimer *NcvTimer;
NCV_EXPORTS NcvTimer ncvStartTimer(void);
NCV_EXPORTS double ncvEndQueryTimerUs(NcvTimer t);
NCV_EXPORTS double ncvEndQueryTimerMs(NcvTimer t);
//==============================================================================
//
// Memory management classes template compound types
//
//==============================================================================
/**
* Calculates the aligned top bound value
*/
NCV_EXPORTS Ncv32u alignUp(Ncv32u what, Ncv32u alignment);
/**
* NCVMemoryType
*/
enum NCVMemoryType
{
NCVMemoryTypeNone,
NCVMemoryTypeHostPageable,
NCVMemoryTypeHostPinned,
NCVMemoryTypeDevice
};
/**
* NCVMemPtr
*/
struct NCV_EXPORTS NCVMemPtr
{
void *ptr;
NCVMemoryType memtype;
void clear();
};
/**
* NCVMemSegment
*/
struct NCV_EXPORTS NCVMemSegment
{
NCVMemPtr begin;
size_t size;
void clear();
};
/**
* INCVMemAllocator (Interface)
*/
class NCV_EXPORTS INCVMemAllocator
{
public:
virtual ~INCVMemAllocator() = 0;
virtual NCVStatus alloc(NCVMemSegment &seg, size_t size) = 0;
virtual NCVStatus dealloc(NCVMemSegment &seg) = 0;
virtual NcvBool isInitialized(void) const = 0;
virtual NcvBool isCounting(void) const = 0;
virtual NCVMemoryType memType(void) const = 0;
virtual Ncv32u alignment(void) const = 0;
virtual size_t maxSize(void) const = 0;
};
inline INCVMemAllocator::~INCVMemAllocator() {}
/**
* NCVMemStackAllocator
*/
class NCV_EXPORTS NCVMemStackAllocator : public INCVMemAllocator
{
NCVMemStackAllocator();
NCVMemStackAllocator(const NCVMemStackAllocator &);
public:
explicit NCVMemStackAllocator(Ncv32u alignment);
NCVMemStackAllocator(NCVMemoryType memT, size_t capacity, Ncv32u alignment, void *reusePtr=NULL);
virtual ~NCVMemStackAllocator();
virtual NCVStatus alloc(NCVMemSegment &seg, size_t size);
virtual NCVStatus dealloc(NCVMemSegment &seg);
virtual NcvBool isInitialized(void) const;
virtual NcvBool isCounting(void) const;
virtual NCVMemoryType memType(void) const;
virtual Ncv32u alignment(void) const;
virtual size_t maxSize(void) const;
private:
NCVMemoryType _memType;
Ncv32u _alignment;
Ncv8u *allocBegin;
Ncv8u *begin;
Ncv8u *end;
size_t currentSize;
size_t _maxSize;
NcvBool bReusesMemory;
};
/**
* NCVMemNativeAllocator
*/
class NCV_EXPORTS NCVMemNativeAllocator : public INCVMemAllocator
{
public:
NCVMemNativeAllocator(NCVMemoryType memT, Ncv32u alignment);
virtual ~NCVMemNativeAllocator();
virtual NCVStatus alloc(NCVMemSegment &seg, size_t size);
virtual NCVStatus dealloc(NCVMemSegment &seg);
virtual NcvBool isInitialized(void) const;
virtual NcvBool isCounting(void) const;
virtual NCVMemoryType memType(void) const;
virtual Ncv32u alignment(void) const;
virtual size_t maxSize(void) const;
private:
NCVMemNativeAllocator();
NCVMemNativeAllocator(const NCVMemNativeAllocator &);
NCVMemoryType _memType;
Ncv32u _alignment;
size_t currentSize;
size_t _maxSize;
};
/**
* Copy dispatcher
*/
NCV_EXPORTS NCVStatus memSegCopyHelper(void *dst, NCVMemoryType dstType,
const void *src, NCVMemoryType srcType,
size_t sz, cudaStream_t cuStream);
/**
* NCVVector (1D)
*/
template <class T>
class NCVVector
{
NCVVector(const NCVVector &);
public:
NCVVector()
{
clear();
}
virtual ~NCVVector() {}
void clear()
{
_ptr = NULL;
_length = 0;
_memtype = NCVMemoryTypeNone;
}
NCVStatus copySolid(NCVVector<T> &dst, cudaStream_t cuStream, size_t howMuch=0)
{
if (howMuch == 0)
{
ncvAssertReturn(dst._length == this->_length, NCV_MEM_COPY_ERROR);
howMuch = this->_length * sizeof(T);
}
else
{
ncvAssertReturn(dst._length * sizeof(T) >= howMuch &&
this->_length * sizeof(T) >= howMuch &&
howMuch > 0, NCV_MEM_COPY_ERROR);
}
ncvAssertReturn((this->_ptr != NULL || this->_memtype == NCVMemoryTypeNone) &&
(dst._ptr != NULL || dst._memtype == NCVMemoryTypeNone), NCV_NULL_PTR);
NCVStatus ncvStat = NCV_SUCCESS;
if (this->_memtype != NCVMemoryTypeNone)
{
ncvStat = memSegCopyHelper(dst._ptr, dst._memtype,
this->_ptr, this->_memtype,
howMuch, cuStream);
}
return ncvStat;
}
T *ptr() const {return this->_ptr;}
size_t length() const {return this->_length;}
NCVMemoryType memType() const {return this->_memtype;}
protected:
T *_ptr;
size_t _length;
NCVMemoryType _memtype;
};
/**
* NCVVectorAlloc
*/
template <class T>
class NCVVectorAlloc : public NCVVector<T>
{
NCVVectorAlloc();
NCVVectorAlloc(const NCVVectorAlloc &);
NCVVectorAlloc& operator=(const NCVVectorAlloc<T>&);
public:
NCVVectorAlloc(INCVMemAllocator &allocator, Ncv32u length)
:
allocator(allocator)
{
NCVStatus ncvStat;
this->clear();
this->allocatedMem.clear();
ncvStat = allocator.alloc(this->allocatedMem, length * sizeof(T));
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "NCVVectorAlloc ctor:: alloc failed", );
this->_ptr = (T *)this->allocatedMem.begin.ptr;
this->_length = length;
this->_memtype = this->allocatedMem.begin.memtype;
}
~NCVVectorAlloc()
{
NCVStatus ncvStat;
ncvStat = allocator.dealloc(this->allocatedMem);
ncvAssertPrintCheck(ncvStat == NCV_SUCCESS, "NCVVectorAlloc dtor:: dealloc failed");
this->clear();
}
NcvBool isMemAllocated() const
{
return (this->allocatedMem.begin.ptr != NULL) || (this->allocator.isCounting());
}
Ncv32u getAllocatorsAlignment() const
{
return allocator.alignment();
}
NCVMemSegment getSegment() const
{
return allocatedMem;
}
private:
INCVMemAllocator &allocator;
NCVMemSegment allocatedMem;
};
/**
* NCVVectorReuse
*/
template <class T>
class NCVVectorReuse : public NCVVector<T>
{
NCVVectorReuse();
NCVVectorReuse(const NCVVectorReuse &);
public:
explicit NCVVectorReuse(const NCVMemSegment &memSegment)
{
this->bReused = false;
this->clear();
this->_length = memSegment.size / sizeof(T);
this->_ptr = (T *)memSegment.begin.ptr;
this->_memtype = memSegment.begin.memtype;
this->bReused = true;
}
NCVVectorReuse(const NCVMemSegment &memSegment, Ncv32u length)
{
this->bReused = false;
this->clear();
ncvAssertPrintReturn(length * sizeof(T) <= memSegment.size, \
"NCVVectorReuse ctor:: memory binding failed due to size mismatch", );
this->_length = length;
this->_ptr = (T *)memSegment.begin.ptr;
this->_memtype = memSegment.begin.memtype;
this->bReused = true;
}
NcvBool isMemReused() const
{
return this->bReused;
}
private:
NcvBool bReused;
};
/**
* NCVMatrix (2D)
*/
template <class T>
class NCVMatrix
{
NCVMatrix(const NCVMatrix &);
public:
NCVMatrix()
{
clear();
}
virtual ~NCVMatrix() {}
void clear()
{
_ptr = NULL;
_pitch = 0;
_width = 0;
_height = 0;
_memtype = NCVMemoryTypeNone;
}
Ncv32u stride() const
{
return _pitch / sizeof(T);
}
NCVStatus copySolid(NCVMatrix<T> &dst, cudaStream_t cuStream, size_t howMuch=0)
{
if (howMuch == 0)
{
ncvAssertReturn(dst._pitch == this->_pitch &&
dst._height == this->_height, NCV_MEM_COPY_ERROR);
howMuch = this->_pitch * this->_height;
}
else
{
ncvAssertReturn(dst._pitch * dst._height >= howMuch &&
this->_pitch * this->_height >= howMuch &&
howMuch > 0, NCV_MEM_COPY_ERROR);
}
ncvAssertReturn((this->_ptr != NULL || this->_memtype == NCVMemoryTypeNone) &&
(dst._ptr != NULL || dst._memtype == NCVMemoryTypeNone), NCV_NULL_PTR);
NCVStatus ncvStat = NCV_SUCCESS;
if (this->_memtype != NCVMemoryTypeNone)
{
ncvStat = memSegCopyHelper(dst._ptr, dst._memtype,
this->_ptr, this->_memtype,
howMuch, cuStream);
}
return ncvStat;
}
T *ptr() const {return this->_ptr;}
Ncv32u width() const {return this->_width;}
Ncv32u height() const {return this->_height;}
Ncv32u pitch() const {return this->_pitch;}
NCVMemoryType memType() const {return this->_memtype;}
protected:
T *_ptr;
Ncv32u _width;
Ncv32u _height;
Ncv32u _pitch;
NCVMemoryType _memtype;
};
/**
* NCVMatrixAlloc
*/
template <class T>
class NCVMatrixAlloc : public NCVMatrix<T>
{
NCVMatrixAlloc();
NCVMatrixAlloc(const NCVMatrixAlloc &);
NCVMatrixAlloc& operator=(const NCVMatrixAlloc &);
public:
NCVMatrixAlloc(INCVMemAllocator &allocator, Ncv32u width, Ncv32u height, Ncv32u pitch=0)
:
allocator(allocator)
{
NCVStatus ncvStat;
this->clear();
this->allocatedMem.clear();
Ncv32u widthBytes = width * sizeof(T);
Ncv32u pitchBytes = alignUp(widthBytes, allocator.alignment());
if (pitch != 0)
{
ncvAssertPrintReturn(pitch >= pitchBytes &&
(pitch & (allocator.alignment() - 1)) == 0,
"NCVMatrixAlloc ctor:: incorrect pitch passed", );
pitchBytes = pitch;
}
Ncv32u requiredAllocSize = pitchBytes * height;
ncvStat = allocator.alloc(this->allocatedMem, requiredAllocSize);
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "NCVMatrixAlloc ctor:: alloc failed", );
this->_ptr = (T *)this->allocatedMem.begin.ptr;
this->_width = width;
this->_height = height;
this->_pitch = pitchBytes;
this->_memtype = this->allocatedMem.begin.memtype;
}
~NCVMatrixAlloc()
{
NCVStatus ncvStat;
ncvStat = allocator.dealloc(this->allocatedMem);
ncvAssertPrintCheck(ncvStat == NCV_SUCCESS, "NCVMatrixAlloc dtor:: dealloc failed");
this->clear();
}
NcvBool isMemAllocated() const
{
return (this->allocatedMem.begin.ptr != NULL) || (this->allocator.isCounting());
}
Ncv32u getAllocatorsAlignment() const
{
return allocator.alignment();
}
NCVMemSegment getSegment() const
{
return allocatedMem;
}
private:
INCVMemAllocator &allocator;
NCVMemSegment allocatedMem;
};
/**
* NCVMatrixReuse
*/
template <class T>
class NCVMatrixReuse : public NCVMatrix<T>
{
NCVMatrixReuse();
NCVMatrixReuse(const NCVMatrixReuse &);
public:
NCVMatrixReuse(const NCVMemSegment &memSegment, Ncv32u alignment, Ncv32u width, Ncv32u height, Ncv32u pitch=0, NcvBool bSkipPitchCheck=false)
{
this->bReused = false;
this->clear();
Ncv32u widthBytes = width * sizeof(T);
Ncv32u pitchBytes = alignUp(widthBytes, alignment);
if (pitch != 0)
{
if (!bSkipPitchCheck)
{
ncvAssertPrintReturn(pitch >= pitchBytes &&
(pitch & (alignment - 1)) == 0,
"NCVMatrixReuse ctor:: incorrect pitch passed", );
}
else
{
ncvAssertPrintReturn(pitch >= widthBytes, "NCVMatrixReuse ctor:: incorrect pitch passed", );
}
pitchBytes = pitch;
}
ncvAssertPrintReturn(pitchBytes * height <= memSegment.size, \
"NCVMatrixReuse ctor:: memory binding failed due to size mismatch", );
this->_width = width;
this->_height = height;
this->_pitch = pitchBytes;
this->_ptr = (T *)memSegment.begin.ptr;
this->_memtype = memSegment.begin.memtype;
this->bReused = true;
}
NcvBool isMemReused() const
{
return this->bReused;
}
private:
NcvBool bReused;
};
#endif // _ncv_hpp_