fixed gpu::filter2D border interpolation for CV_32FC1 type

added additional tests for gpu filters
fixed gpu features2D tests
This commit is contained in:
Vladislav Vinogradov
2012-03-21 14:38:23 +00:00
parent c1a6cb6221
commit 059cef57e6
16 changed files with 1730 additions and 1515 deletions

View File

@@ -41,10 +41,12 @@
#include "precomp.hpp"
namespace {
////////////////////////////////////////////////////////////////////////////////
// Add_Array
PARAM_TEST_CASE(Add_Array, cv::gpu::DeviceInfo, cv::Size, std::pair<MatDepth, MatDepth>, int, UseRoi)
PARAM_TEST_CASE(Add_Array, cv::gpu::DeviceInfo, cv::Size, std::pair<MatDepth, MatDepth>, Channels, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
cv::Size size;
@@ -90,7 +92,7 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, Add_Array, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
DEPTH_PAIRS,
testing::Values(1, 2, 3, 4),
ALL_CHANNELS,
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
@@ -139,7 +141,7 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, Add_Scalar, testing::Combine(
////////////////////////////////////////////////////////////////////////////////
// Subtract_Array
PARAM_TEST_CASE(Subtract_Array, cv::gpu::DeviceInfo, cv::Size, std::pair<MatDepth, MatDepth>, int, UseRoi)
PARAM_TEST_CASE(Subtract_Array, cv::gpu::DeviceInfo, cv::Size, std::pair<MatDepth, MatDepth>, Channels, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
cv::Size size;
@@ -185,7 +187,7 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, Subtract_Array, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
DEPTH_PAIRS,
testing::Values(1, 2, 3, 4),
ALL_CHANNELS,
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
@@ -234,7 +236,7 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, Subtract_Scalar, testing::Combine(
////////////////////////////////////////////////////////////////////////////////
// Multiply_Array
PARAM_TEST_CASE(Multiply_Array, cv::gpu::DeviceInfo, cv::Size, std::pair<MatDepth, MatDepth>, int, UseRoi)
PARAM_TEST_CASE(Multiply_Array, cv::gpu::DeviceInfo, cv::Size, std::pair<MatDepth, MatDepth>, Channels, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
cv::Size size;
@@ -279,7 +281,7 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, Multiply_Array, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
DEPTH_PAIRS,
testing::Values(1, 2, 3, 4),
ALL_CHANNELS,
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
@@ -425,7 +427,7 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, Multiply_Scalar, testing::Combine(
////////////////////////////////////////////////////////////////////////////////
// Divide_Array
PARAM_TEST_CASE(Divide_Array, cv::gpu::DeviceInfo, cv::Size, std::pair<MatDepth, MatDepth>, int, UseRoi)
PARAM_TEST_CASE(Divide_Array, cv::gpu::DeviceInfo, cv::Size, std::pair<MatDepth, MatDepth>, Channels, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
cv::Size size;
@@ -470,7 +472,7 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, Divide_Array, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
DEPTH_PAIRS,
testing::Values(1, 2, 3, 4),
ALL_CHANNELS,
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
@@ -794,31 +796,28 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, Sqr, testing::Combine(
////////////////////////////////////////////////////////////////////////////////
// Sqrt
namespace
template <typename T> void sqrtImpl(const cv::Mat& src, cv::Mat& dst)
{
template <typename T> void sqrtImpl(const cv::Mat& src, cv::Mat& dst)
dst.create(src.size(), src.type());
for (int y = 0; y < src.rows; ++y)
{
dst.create(src.size(), src.type());
for (int y = 0; y < src.rows; ++y)
{
for (int x = 0; x < src.cols; ++x)
dst.at<T>(y, x) = static_cast<T>(std::sqrt(static_cast<float>(src.at<T>(y, x))));
}
for (int x = 0; x < src.cols; ++x)
dst.at<T>(y, x) = static_cast<T>(std::sqrt(static_cast<float>(src.at<T>(y, x))));
}
}
void sqrtGold(const cv::Mat& src, cv::Mat& dst)
void sqrtGold(const cv::Mat& src, cv::Mat& dst)
{
typedef void (*func_t)(const cv::Mat& src, cv::Mat& dst);
const func_t funcs[] =
{
typedef void (*func_t)(const cv::Mat& src, cv::Mat& dst);
sqrtImpl<uchar>, sqrtImpl<schar>, sqrtImpl<ushort>, sqrtImpl<short>,
sqrtImpl<int>, sqrtImpl<float>
};
const func_t funcs[] =
{
sqrtImpl<uchar>, sqrtImpl<schar>, sqrtImpl<ushort>, sqrtImpl<short>,
sqrtImpl<int>, sqrtImpl<float>
};
funcs[src.depth()](src, dst);
}
funcs[src.depth()](src, dst);
}
PARAM_TEST_CASE(Sqrt, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi)
@@ -864,31 +863,28 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, Sqrt, testing::Combine(
////////////////////////////////////////////////////////////////////////////////
// Log
namespace
template <typename T> void logImpl(const cv::Mat& src, cv::Mat& dst)
{
template <typename T> void logImpl(const cv::Mat& src, cv::Mat& dst)
dst.create(src.size(), src.type());
for (int y = 0; y < src.rows; ++y)
{
dst.create(src.size(), src.type());
for (int y = 0; y < src.rows; ++y)
{
for (int x = 0; x < src.cols; ++x)
dst.at<T>(y, x) = static_cast<T>(std::log(static_cast<float>(src.at<T>(y, x))));
}
for (int x = 0; x < src.cols; ++x)
dst.at<T>(y, x) = static_cast<T>(std::log(static_cast<float>(src.at<T>(y, x))));
}
}
void logGold(const cv::Mat& src, cv::Mat& dst)
void logGold(const cv::Mat& src, cv::Mat& dst)
{
typedef void (*func_t)(const cv::Mat& src, cv::Mat& dst);
const func_t funcs[] =
{
typedef void (*func_t)(const cv::Mat& src, cv::Mat& dst);
logImpl<uchar>, logImpl<schar>, logImpl<ushort>, logImpl<short>,
logImpl<int>, logImpl<float>
};
const func_t funcs[] =
{
logImpl<uchar>, logImpl<schar>, logImpl<ushort>, logImpl<short>,
logImpl<int>, logImpl<float>
};
funcs[src.depth()](src, dst);
}
funcs[src.depth()](src, dst);
}
PARAM_TEST_CASE(Log, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi)
@@ -974,6 +970,9 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, Exp, testing::Combine(
////////////////////////////////////////////////////////////////////////////////
// compare
CV_ENUM(CmpCode, cv::CMP_EQ, cv::CMP_GT, cv::CMP_GE, cv::CMP_LT, cv::CMP_LE, cv::CMP_NE)
#define ALL_CMP_CODES testing::Values(CmpCode(cv::CMP_EQ), CmpCode(cv::CMP_NE), CmpCode(cv::CMP_GT), CmpCode(cv::CMP_GE), CmpCode(cv::CMP_LT), CmpCode(cv::CMP_LE))
PARAM_TEST_CASE(Compare, cv::gpu::DeviceInfo, cv::Size, MatDepth, CmpCode, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
@@ -1088,7 +1087,7 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, Bitwise_Array, testing::Combine(
//////////////////////////////////////////////////////////////////////////////
// Bitwise_Scalar
PARAM_TEST_CASE(Bitwise_Scalar, cv::gpu::DeviceInfo, cv::Size, MatDepth, int)
PARAM_TEST_CASE(Bitwise_Scalar, cv::gpu::DeviceInfo, cv::Size, MatDepth, Channels)
{
cv::gpu::DeviceInfo devInfo;
cv::Size size;
@@ -1150,43 +1149,40 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, Bitwise_Scalar, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Values(MatDepth(CV_8U), MatDepth(CV_16U), MatDepth(CV_32S)),
testing::Values(1, 3, 4)));
IMAGE_CHANNELS));
//////////////////////////////////////////////////////////////////////////////
// RShift
namespace
template <typename T> void rhiftImpl(const cv::Mat& src, cv::Scalar_<int> val, cv::Mat& dst)
{
template <typename T> void rhiftImpl(const cv::Mat& src, cv::Scalar_<int> val, cv::Mat& dst)
const int cn = src.channels();
dst.create(src.size(), src.type());
for (int y = 0; y < src.rows; ++y)
{
const int cn = src.channels();
dst.create(src.size(), src.type());
for (int y = 0; y < src.rows; ++y)
for (int x = 0; x < src.cols; ++x)
{
for (int x = 0; x < src.cols; ++x)
{
for (int c = 0; c < cn; ++c)
dst.at<T>(y, x * cn + c) = src.at<T>(y, x * cn + c) >> val.val[c];
}
for (int c = 0; c < cn; ++c)
dst.at<T>(y, x * cn + c) = src.at<T>(y, x * cn + c) >> val.val[c];
}
}
void rhiftGold(const cv::Mat& src, cv::Scalar_<int> val, cv::Mat& dst)
{
typedef void (*func_t)(const cv::Mat& src, cv::Scalar_<int> val, cv::Mat& dst);
const func_t funcs[] =
{
rhiftImpl<uchar>, rhiftImpl<schar>, rhiftImpl<ushort>, rhiftImpl<short>, rhiftImpl<int>
};
funcs[src.depth()](src, val, dst);
}
}
PARAM_TEST_CASE(RShift, cv::gpu::DeviceInfo, cv::Size, MatDepth, int, UseRoi)
void rhiftGold(const cv::Mat& src, cv::Scalar_<int> val, cv::Mat& dst)
{
typedef void (*func_t)(const cv::Mat& src, cv::Scalar_<int> val, cv::Mat& dst);
const func_t funcs[] =
{
rhiftImpl<uchar>, rhiftImpl<schar>, rhiftImpl<ushort>, rhiftImpl<short>, rhiftImpl<int>
};
funcs[src.depth()](src, val, dst);
}
PARAM_TEST_CASE(RShift, cv::gpu::DeviceInfo, cv::Size, MatDepth, Channels, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
cv::Size size;
@@ -1229,44 +1225,41 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, RShift, testing::Combine(
MatDepth(CV_16U),
MatDepth(CV_16S),
MatDepth(CV_32S)),
testing::Values(1, 3, 4),
IMAGE_CHANNELS,
WHOLE_SUBMAT));
//////////////////////////////////////////////////////////////////////////////
// LShift
namespace
template <typename T> void lhiftImpl(const cv::Mat& src, cv::Scalar_<int> val, cv::Mat& dst)
{
template <typename T> void lhiftImpl(const cv::Mat& src, cv::Scalar_<int> val, cv::Mat& dst)
const int cn = src.channels();
dst.create(src.size(), src.type());
for (int y = 0; y < src.rows; ++y)
{
const int cn = src.channels();
dst.create(src.size(), src.type());
for (int y = 0; y < src.rows; ++y)
for (int x = 0; x < src.cols; ++x)
{
for (int x = 0; x < src.cols; ++x)
{
for (int c = 0; c < cn; ++c)
dst.at<T>(y, x * cn + c) = src.at<T>(y, x * cn + c) << val.val[c];
}
for (int c = 0; c < cn; ++c)
dst.at<T>(y, x * cn + c) = src.at<T>(y, x * cn + c) << val.val[c];
}
}
void lhiftGold(const cv::Mat& src, cv::Scalar_<int> val, cv::Mat& dst)
{
typedef void (*func_t)(const cv::Mat& src, cv::Scalar_<int> val, cv::Mat& dst);
const func_t funcs[] =
{
lhiftImpl<uchar>, lhiftImpl<schar>, lhiftImpl<ushort>, lhiftImpl<short>, lhiftImpl<int>
};
funcs[src.depth()](src, val, dst);
}
}
PARAM_TEST_CASE(LShift, cv::gpu::DeviceInfo, cv::Size, MatDepth, int, UseRoi)
void lhiftGold(const cv::Mat& src, cv::Scalar_<int> val, cv::Mat& dst)
{
typedef void (*func_t)(const cv::Mat& src, cv::Scalar_<int> val, cv::Mat& dst);
const func_t funcs[] =
{
lhiftImpl<uchar>, lhiftImpl<schar>, lhiftImpl<ushort>, lhiftImpl<short>, lhiftImpl<int>
};
funcs[src.depth()](src, val, dst);
}
PARAM_TEST_CASE(LShift, cv::gpu::DeviceInfo, cv::Size, MatDepth, Channels, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
cv::Size size;
@@ -1305,7 +1298,7 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, LShift, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Values(MatDepth(CV_8U), MatDepth(CV_16U), MatDepth(CV_32S)),
testing::Values(1, 3, 4),
IMAGE_CHANNELS,
WHOLE_SUBMAT));
//////////////////////////////////////////////////////////////////////////////
@@ -1411,7 +1404,7 @@ PARAM_TEST_CASE(Pow, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi)
TEST_P(Pow, Accuracy)
{
cv::Mat src = randomMat(size, depth, 0.0, 100.0);
cv::Mat src = randomMat(size, depth, 0.0, 10.0);
double power = randomDouble(2.0, 4.0);
if (src.depth() < CV_32F)
@@ -1423,7 +1416,7 @@ TEST_P(Pow, Accuracy)
cv::Mat dst_gold;
cv::pow(src, power, dst_gold);
EXPECT_MAT_NEAR(dst_gold, dst, depth < CV_32F ? 0.0 : 1e-6);
EXPECT_MAT_NEAR(dst_gold, dst, depth < CV_32F ? 0.0 : 1e-1);
}
INSTANTIATE_TEST_CASE_P(GPU_Core, Pow, testing::Combine(
@@ -1486,6 +1479,9 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, AddWeighted, testing::Combine(
//////////////////////////////////////////////////////////////////////////////
// GEMM
CV_FLAGS(GemmFlags, 0, cv::GEMM_1_T, cv::GEMM_2_T, cv::GEMM_3_T);
#define ALL_GEMM_FLAGS testing::Values(GemmFlags(0), GemmFlags(cv::GEMM_1_T), GemmFlags(cv::GEMM_2_T), GemmFlags(cv::GEMM_3_T), GemmFlags(cv::GEMM_1_T | cv::GEMM_2_T), GemmFlags(cv::GEMM_1_T | cv::GEMM_3_T), GemmFlags(cv::GEMM_1_T | cv::GEMM_2_T | cv::GEMM_3_T))
PARAM_TEST_CASE(GEMM, cv::gpu::DeviceInfo, cv::Size, MatType, GemmFlags, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
@@ -1579,6 +1575,10 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, Transpose, testing::Combine(
////////////////////////////////////////////////////////////////////////////////
// Flip
enum {FLIP_BOTH = 0, FLIP_X = 1, FLIP_Y = -1};
CV_ENUM(FlipCode, FLIP_BOTH, FLIP_X, FLIP_Y)
#define ALL_FLIP_CODES testing::Values(FlipCode(FLIP_BOTH), FlipCode(FLIP_X), FlipCode(FLIP_Y))
PARAM_TEST_CASE(Flip, cv::gpu::DeviceInfo, cv::Size, MatType, FlipCode, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
@@ -1772,7 +1772,9 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, Magnitude, testing::Combine(
////////////////////////////////////////////////////////////////////////////////
// Phase
PARAM_TEST_CASE(Phase, cv::gpu::DeviceInfo, cv::Size, bool, UseRoi)
IMPLEMENT_PARAM_CLASS(AngleInDegrees, bool)
PARAM_TEST_CASE(Phase, cv::gpu::DeviceInfo, cv::Size, AngleInDegrees, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
cv::Size size;
@@ -1807,13 +1809,13 @@ TEST_P(Phase, Accuracy)
INSTANTIATE_TEST_CASE_P(GPU_Core, Phase, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Bool(),
testing::Values(AngleInDegrees(false), AngleInDegrees(true)),
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
// CartToPolar
PARAM_TEST_CASE(CartToPolar, cv::gpu::DeviceInfo, cv::Size, bool, UseRoi)
PARAM_TEST_CASE(CartToPolar, cv::gpu::DeviceInfo, cv::Size, AngleInDegrees, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
cv::Size size;
@@ -1851,13 +1853,13 @@ TEST_P(CartToPolar, Accuracy)
INSTANTIATE_TEST_CASE_P(GPU_Core, CartToPolar, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Bool(),
testing::Values(AngleInDegrees(false), AngleInDegrees(true)),
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
// polarToCart
PARAM_TEST_CASE(PolarToCart, cv::gpu::DeviceInfo, cv::Size, bool, UseRoi)
PARAM_TEST_CASE(PolarToCart, cv::gpu::DeviceInfo, cv::Size, AngleInDegrees, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
cv::Size size;
@@ -1895,7 +1897,7 @@ TEST_P(PolarToCart, Accuracy)
INSTANTIATE_TEST_CASE_P(GPU_Core, PolarToCart, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Bool(),
testing::Values(AngleInDegrees(false), AngleInDegrees(true)),
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
@@ -2026,84 +2028,81 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, NormDiff, testing::Combine(
//////////////////////////////////////////////////////////////////////////////
// Sum
namespace
template <typename T>
cv::Scalar absSumImpl(const cv::Mat& src)
{
template <typename T>
cv::Scalar absSumImpl(const cv::Mat& src)
const int cn = src.channels();
cv::Scalar sum = cv::Scalar::all(0);
for (int y = 0; y < src.rows; ++y)
{
const int cn = src.channels();
cv::Scalar sum = cv::Scalar::all(0);
for (int y = 0; y < src.rows; ++y)
for (int x = 0; x < src.cols; ++x)
{
for (int x = 0; x < src.cols; ++x)
for (int c = 0; c < cn; ++c)
sum[c] += std::abs(src.at<T>(y, x * cn + c));
}
}
return sum;
}
cv::Scalar absSumGold(const cv::Mat& src)
{
typedef cv::Scalar (*func_t)(const cv::Mat& src);
static const func_t funcs[] =
{
absSumImpl<uchar>,
absSumImpl<schar>,
absSumImpl<ushort>,
absSumImpl<short>,
absSumImpl<int>,
absSumImpl<float>,
absSumImpl<double>
};
return funcs[src.depth()](src);
}
template <typename T>
cv::Scalar sqrSumImpl(const cv::Mat& src)
{
const int cn = src.channels();
cv::Scalar sum = cv::Scalar::all(0);
for (int y = 0; y < src.rows; ++y)
{
for (int x = 0; x < src.cols; ++x)
{
for (int c = 0; c < cn; ++c)
{
for (int c = 0; c < cn; ++c)
sum[c] += std::abs(src.at<T>(y, x * cn + c));
const T val = src.at<T>(y, x * cn + c);
sum[c] += val * val;
}
}
return sum;
}
cv::Scalar absSumGold(const cv::Mat& src)
return sum;
}
cv::Scalar sqrSumGold(const cv::Mat& src)
{
typedef cv::Scalar (*func_t)(const cv::Mat& src);
static const func_t funcs[] =
{
typedef cv::Scalar (*func_t)(const cv::Mat& src);
sqrSumImpl<uchar>,
sqrSumImpl<schar>,
sqrSumImpl<ushort>,
sqrSumImpl<short>,
sqrSumImpl<int>,
sqrSumImpl<float>,
sqrSumImpl<double>
};
static const func_t funcs[] =
{
absSumImpl<uchar>,
absSumImpl<schar>,
absSumImpl<ushort>,
absSumImpl<short>,
absSumImpl<int>,
absSumImpl<float>,
absSumImpl<double>
};
return funcs[src.depth()](src);
}
template <typename T>
cv::Scalar sqrSumImpl(const cv::Mat& src)
{
const int cn = src.channels();
cv::Scalar sum = cv::Scalar::all(0);
for (int y = 0; y < src.rows; ++y)
{
for (int x = 0; x < src.cols; ++x)
{
for (int c = 0; c < cn; ++c)
{
const T val = src.at<T>(y, x * cn + c);
sum[c] += val * val;
}
}
}
return sum;
}
cv::Scalar sqrSumGold(const cv::Mat& src)
{
typedef cv::Scalar (*func_t)(const cv::Mat& src);
static const func_t funcs[] =
{
sqrSumImpl<uchar>,
sqrSumImpl<schar>,
sqrSumImpl<ushort>,
sqrSumImpl<short>,
sqrSumImpl<int>,
sqrSumImpl<float>,
sqrSumImpl<double>
};
return funcs[src.depth()](src);
}
return funcs[src.depth()](src);
}
PARAM_TEST_CASE(Sum, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi)
@@ -2164,57 +2163,6 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, Sum, testing::Combine(
////////////////////////////////////////////////////////////////////////////////
// MinMax
namespace
{
void minMaxLocGold(const cv::Mat& src, double* minVal_, double* maxVal_ = 0, cv::Point* minLoc_ = 0, cv::Point* maxLoc_ = 0, const cv::Mat& mask = cv::Mat())
{
if (src.depth() != CV_8S)
{
cv::minMaxLoc(src, minVal_, maxVal_, minLoc_, maxLoc_, mask);
return;
}
// OpenCV's minMaxLoc doesn't support CV_8S type
double minVal = std::numeric_limits<double>::max();
cv::Point minLoc(-1, -1);
double maxVal = -std::numeric_limits<double>::max();
cv::Point maxLoc(-1, -1);
for (int y = 0; y < src.rows; ++y)
{
const schar* src_row = src.ptr<signed char>(y);
const uchar* mask_row = mask.empty() ? 0 : mask.ptr<unsigned char>(y);
for (int x = 0; x < src.cols; ++x)
{
if (!mask_row || mask_row[x])
{
schar val = src_row[x];
if (val < minVal)
{
minVal = val;
minLoc = cv::Point(x, y);
}
if (val > maxVal)
{
maxVal = val;
maxLoc = cv::Point(x, y);
}
}
}
}
if (minVal_) *minVal_ = minVal;
if (maxVal_) *maxVal_ = maxVal;
if (minLoc_) *minLoc_ = minLoc;
if (maxLoc_) *maxLoc_ = maxLoc;
}
}
PARAM_TEST_CASE(MinMax, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
@@ -2278,31 +2226,28 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, MinMax, testing::Combine(
////////////////////////////////////////////////////////////////////////////////
// MinMaxLoc
namespace
template <typename T>
void expectEqualImpl(const cv::Mat& src, cv::Point loc_gold, cv::Point loc)
{
template <typename T>
void expectEqualImpl(const cv::Mat& src, cv::Point loc_gold, cv::Point loc)
EXPECT_EQ(src.at<T>(loc_gold.y, loc_gold.x), src.at<T>(loc.y, loc.x));
}
void expectEqual(const cv::Mat& src, cv::Point loc_gold, cv::Point loc)
{
typedef void (*func_t)(const cv::Mat& src, cv::Point loc_gold, cv::Point loc);
static const func_t funcs[] =
{
EXPECT_EQ(src.at<T>(loc_gold.y, loc_gold.x), src.at<T>(loc.y, loc.x));
}
expectEqualImpl<uchar>,
expectEqualImpl<schar>,
expectEqualImpl<ushort>,
expectEqualImpl<short>,
expectEqualImpl<int>,
expectEqualImpl<float>,
expectEqualImpl<double>
};
void expectEqual(const cv::Mat& src, cv::Point loc_gold, cv::Point loc)
{
typedef void (*func_t)(const cv::Mat& src, cv::Point loc_gold, cv::Point loc);
static const func_t funcs[] =
{
expectEqualImpl<uchar>,
expectEqualImpl<schar>,
expectEqualImpl<ushort>,
expectEqualImpl<short>,
expectEqualImpl<int>,
expectEqualImpl<float>,
expectEqualImpl<double>
};
funcs[src.depth()](src, loc_gold, loc);
}
funcs[src.depth()](src, loc_gold, loc);
}
PARAM_TEST_CASE(MinMaxLoc, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi)
@@ -2420,7 +2365,10 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, CountNonZero, testing::Combine(
//////////////////////////////////////////////////////////////////////////////
// Reduce
PARAM_TEST_CASE(Reduce, cv::gpu::DeviceInfo, cv::Size, MatDepth, int, ReduceCode, UseRoi)
CV_ENUM(ReduceCode, CV_REDUCE_SUM, CV_REDUCE_AVG, CV_REDUCE_MAX, CV_REDUCE_MIN)
#define ALL_REDUCE_CODES testing::Values(ReduceCode(CV_REDUCE_SUM), ReduceCode(CV_REDUCE_AVG), ReduceCode(CV_REDUCE_MAX), ReduceCode(CV_REDUCE_MIN))
PARAM_TEST_CASE(Reduce, cv::gpu::DeviceInfo, cv::Size, MatDepth, Channels, ReduceCode, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
cv::Size size;
@@ -2448,6 +2396,7 @@ PARAM_TEST_CASE(Reduce, cv::gpu::DeviceInfo, cv::Size, MatDepth, int, ReduceCode
dst_depth = (reduceOp == CV_REDUCE_MAX || reduceOp == CV_REDUCE_MIN) ? depth : CV_32F;
dst_type = CV_MAKE_TYPE(dst_depth, channels);
}
};
TEST_P(Reduce, Rows)
@@ -2486,6 +2435,8 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, Reduce, testing::Combine(
MatDepth(CV_16U),
MatDepth(CV_16S),
MatDepth(CV_32F)),
testing::Values(1, 2, 3, 4),
ALL_CHANNELS,
ALL_REDUCE_CODES,
WHOLE_SUBMAT));
} // namespace