fixed gpu::filter2D border interpolation for CV_32FC1 type

added additional tests for gpu filters
fixed gpu features2D tests
This commit is contained in:
Vladislav Vinogradov 2012-03-21 14:38:23 +00:00
parent c1a6cb6221
commit 059cef57e6
16 changed files with 1730 additions and 1515 deletions

View File

@ -1661,7 +1661,7 @@ public:
};
//! Constructor
explicit ORB_GPU(int nFeatures = 500, float scaleFactor = 1.2f, int nLevels = 3, int edgeThreshold = 31,
explicit ORB_GPU(int nFeatures = 500, float scaleFactor = 1.2f, int nLevels = 8, int edgeThreshold = 31,
int firstLevel = 0, int WTA_K = 2, int scoreType = 0, int patchSize = 31);
//! Compute the ORB features on an image

View File

@ -46,16 +46,16 @@
#include "opencv2/gpu/device/saturate_cast.hpp"
#include "opencv2/gpu/device/border_interpolate.hpp"
namespace cv { namespace gpu { namespace device
namespace cv { namespace gpu { namespace device
{
namespace imgproc
namespace imgproc
{
/////////////////////////////////// MeanShiftfiltering ///////////////////////////////////////////////
texture<uchar4, 2> tex_meanshift;
__device__ short2 do_mean_shift(int x0, int y0, unsigned char* out,
size_t out_step, int cols, int rows,
__device__ short2 do_mean_shift(int x0, int y0, unsigned char* out,
size_t out_step, int cols, int rows,
int sp, int sr, int maxIter, float eps)
{
int isr2 = sr*sr;
@ -78,7 +78,7 @@ namespace cv { namespace gpu { namespace device
{
int rowCount = 0;
for( int x = minx; x <= maxx; x++ )
{
{
uchar4 t = tex2D( tex_meanshift, x, y );
int norm2 = (t.x - c.x) * (t.x - c.x) + (t.y - c.y) * (t.y - c.y) + (t.z - c.z) * (t.z - c.z);
@ -128,16 +128,16 @@ namespace cv { namespace gpu { namespace device
do_mean_shift(x0, y0, out, out_step, cols, rows, sp, sr, maxIter, eps);
}
__global__ void meanshiftproc_kernel(unsigned char* outr, size_t outrstep,
unsigned char* outsp, size_t outspstep,
int cols, int rows,
__global__ void meanshiftproc_kernel(unsigned char* outr, size_t outrstep,
unsigned char* outsp, size_t outspstep,
int cols, int rows,
int sp, int sr, int maxIter, float eps)
{
int x0 = blockIdx.x * blockDim.x + threadIdx.x;
int y0 = blockIdx.y * blockDim.y + threadIdx.y;
if( x0 < cols && y0 < rows )
{
{
int basesp = (blockIdx.y * blockDim.y + threadIdx.y) * outspstep + (blockIdx.x * blockDim.x + threadIdx.x) * 2 * sizeof(short);
*(short2*)(outsp + basesp) = do_mean_shift(x0, y0, outr, outrstep, cols, rows, sp, sr, maxIter, eps);
}
@ -159,10 +159,10 @@ namespace cv { namespace gpu { namespace device
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
//cudaSafeCall( cudaUnbindTexture( tex_meanshift ) );
//cudaSafeCall( cudaUnbindTexture( tex_meanshift ) );
}
void meanShiftProc_gpu(const DevMem2Db& src, DevMem2Db dstr, DevMem2Db dstsp, int sp, int sr, int maxIter, float eps, cudaStream_t stream)
void meanShiftProc_gpu(const DevMem2Db& src, DevMem2Db dstr, DevMem2Db dstsp, int sp, int sr, int maxIter, float eps, cudaStream_t stream)
{
dim3 grid(1, 1, 1);
dim3 threads(32, 8, 1);
@ -178,14 +178,14 @@ namespace cv { namespace gpu { namespace device
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
//cudaSafeCall( cudaUnbindTexture( tex_meanshift ) );
//cudaSafeCall( cudaUnbindTexture( tex_meanshift ) );
}
/////////////////////////////////// drawColorDisp ///////////////////////////////////////////////
template <typename T>
__device__ unsigned int cvtPixel(T d, int ndisp, float S = 1, float V = 1)
{
{
unsigned int H = ((ndisp-d) * 240)/ndisp;
unsigned int hi = (H/60) % 6;
@ -195,7 +195,7 @@ namespace cv { namespace gpu { namespace device
float t = V * (1 - (1 - f) * S);
float3 res;
if (hi == 0) //R = V, G = t, B = p
{
res.x = p;
@ -208,15 +208,15 @@ namespace cv { namespace gpu { namespace device
res.x = p;
res.y = V;
res.z = q;
}
}
if (hi == 2) // R = p, G = V, B = t
{
res.x = t;
res.y = V;
res.z = p;
}
if (hi == 3) // R = p, G = q, B = V
{
res.x = V;
@ -242,15 +242,15 @@ namespace cv { namespace gpu { namespace device
const unsigned int r = (unsigned int)(::max(0.f, ::min(res.z, 1.f)) * 255.f);
const unsigned int a = 255U;
return (a << 24) + (r << 16) + (g << 8) + b;
}
return (a << 24) + (r << 16) + (g << 8) + b;
}
__global__ void drawColorDisp(uchar* disp, size_t disp_step, uchar* out_image, size_t out_step, int width, int height, int ndisp)
{
const int x = (blockIdx.x * blockDim.x + threadIdx.x) << 2;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if(x < width && y < height)
if(x < width && y < height)
{
uchar4 d4 = *(uchar4*)(disp + y * disp_step + x);
@ -259,7 +259,7 @@ namespace cv { namespace gpu { namespace device
res.y = cvtPixel(d4.y, ndisp);
res.z = cvtPixel(d4.z, ndisp);
res.w = cvtPixel(d4.w, ndisp);
uint4* line = (uint4*)(out_image + y * out_step);
line[x >> 2] = res;
}
@ -270,12 +270,12 @@ namespace cv { namespace gpu { namespace device
const int x = (blockIdx.x * blockDim.x + threadIdx.x) << 1;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if(x < width && y < height)
if(x < width && y < height)
{
short2 d2 = *(short2*)(disp + y * disp_step + x);
uint2 res;
res.x = cvtPixel(d2.x, ndisp);
res.x = cvtPixel(d2.x, ndisp);
res.y = cvtPixel(d2.y, ndisp);
uint2* line = (uint2*)(out_image + y * out_step);
@ -290,12 +290,12 @@ namespace cv { namespace gpu { namespace device
dim3 grid(1, 1, 1);
grid.x = divUp(src.cols, threads.x << 2);
grid.y = divUp(src.rows, threads.y);
drawColorDisp<<<grid, threads, 0, stream>>>(src.data, src.step, dst.data, dst.step, src.cols, src.rows, ndisp);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
cudaSafeCall( cudaDeviceSynchronize() );
}
void drawColorDisp_gpu(const DevMem2D_<short>& src, const DevMem2Db& dst, int ndisp, const cudaStream_t& stream)
@ -304,10 +304,10 @@ namespace cv { namespace gpu { namespace device
dim3 grid(1, 1, 1);
grid.x = divUp(src.cols, threads.x << 1);
grid.y = divUp(src.rows, threads.y);
drawColorDisp<<<grid, threads, 0, stream>>>(src.data, src.step / sizeof(short), dst.data, dst.step, src.cols, src.rows, ndisp);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
@ -318,7 +318,7 @@ namespace cv { namespace gpu { namespace device
template <typename T>
__global__ void reprojectImageTo3D(const T* disp, size_t disp_step, float* xyzw, size_t xyzw_step, int rows, int cols)
{
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
@ -328,7 +328,7 @@ namespace cv { namespace gpu { namespace device
float qx = cq[1] * y + cq[3], qy = cq[5] * y + cq[7];
float qz = cq[9] * y + cq[11], qw = cq[13] * y + cq[15];
qx += x * cq[0];
qx += x * cq[0];
qy += x * cq[4];
qz += x * cq[8];
qw += x * cq[12];
@ -457,7 +457,7 @@ namespace cv { namespace gpu { namespace device
bindTexture(&harrisDxTex, Dx);
bindTexture(&harrisDyTex, Dy);
switch (border_type)
switch (border_type)
{
case BORDER_REFLECT101_GPU:
cornerHarris_kernel<<<grid, block, 0, stream>>>(block_size, k, dst, BrdRowReflect101<void>(Dx.cols), BrdColReflect101<void>(Dx.rows));
@ -565,7 +565,7 @@ namespace cv { namespace gpu { namespace device
{
dim3 block(32, 8);
dim3 grid(divUp(Dx.cols, block.x), divUp(Dx.rows, block.y));
bindTexture(&minEigenValDxTex, Dx);
bindTexture(&minEigenValDyTex, Dy);
@ -630,10 +630,10 @@ namespace cv { namespace gpu { namespace device
__global__ void mulSpectrumsKernel(const PtrStep<cufftComplex> a, const PtrStep<cufftComplex> b, DevMem2D_<cufftComplex> c)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x < c.cols && y < c.rows)
if (x < c.cols && y < c.rows)
{
c.ptr(y)[x] = cuCmulf(a.ptr(y)[x], b.ptr(y)[x]);
}
@ -658,10 +658,10 @@ namespace cv { namespace gpu { namespace device
__global__ void mulSpectrumsKernel_CONJ(const PtrStep<cufftComplex> a, const PtrStep<cufftComplex> b, DevMem2D_<cufftComplex> c)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x < c.cols && y < c.rows)
if (x < c.cols && y < c.rows)
{
c.ptr(y)[x] = cuCmulf(a.ptr(y)[x], cuConjf(b.ptr(y)[x]));
}
@ -689,7 +689,7 @@ namespace cv { namespace gpu { namespace device
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x < c.cols && y < c.rows)
if (x < c.cols && y < c.rows)
{
cufftComplex v = cuCmulf(a.ptr(y)[x], b.ptr(y)[x]);
c.ptr(y)[x] = make_cuFloatComplex(cuCrealf(v) * scale, cuCimagf(v) * scale);
@ -718,7 +718,7 @@ namespace cv { namespace gpu { namespace device
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x < c.cols && y < c.rows)
if (x < c.cols && y < c.rows)
{
cufftComplex v = cuCmulf(a.ptr(y)[x], cuConjf(b.ptr(y)[x]));
c.ptr(y)[x] = make_cuFloatComplex(cuCrealf(v) * scale, cuCimagf(v) * scale);
@ -736,7 +736,7 @@ namespace cv { namespace gpu { namespace device
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
}
//////////////////////////////////////////////////////////////////////////
// buildWarpMaps
@ -842,7 +842,7 @@ namespace cv { namespace gpu { namespace device
void buildWarpPlaneMaps(int tl_u, int tl_v, DevMem2Df map_x, DevMem2Df map_y,
const float k_rinv[9], const float r_kinv[9], const float t[3],
const float k_rinv[9], const float r_kinv[9], const float t[3],
float scale, cudaStream_t stream)
{
cudaSafeCall(cudaMemcpyToSymbol(build_warp_maps::ck_rinv, k_rinv, 9*sizeof(float)));
@ -911,27 +911,28 @@ namespace cv { namespace gpu { namespace device
__constant__ float c_filter2DKernel[FILTER2D_MAX_KERNEL_SIZE * FILTER2D_MAX_KERNEL_SIZE];
texture<float, cudaTextureType2D, cudaReadModeElementType> filter2DTex(0, cudaFilterModePoint, cudaAddressModeBorder);
texture<float, cudaTextureType2D, cudaReadModeElementType> filter2DTex(0, cudaFilterModePoint, cudaAddressModeClamp);
__global__ void filter2D(int ofsX, int ofsY, DevMem2Df dst, const int kWidth, const int kHeight, const int anchorX, const int anchorY)
__global__ void filter2D(int ofsX, int ofsY, PtrStepf dst, const int kWidth, const int kHeight, const int anchorX, const int anchorY, const BrdReflect101<float> brd)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x >= dst.cols || y >= dst.rows)
if (x > brd.last_col || y > brd.last_row)
return;
float res = 0;
const int baseX = ofsX + x - anchorX;
const int baseY = ofsY + y - anchorY;
int kInd = 0;
for (int i = 0; i < kHeight; ++i)
{
for (int j = 0; j < kWidth; ++j)
res += tex2D(filter2DTex, baseX + j, baseY + i) * c_filter2DKernel[kInd++];
{
const int srcX = ofsX + brd.idx_col(x - anchorX + j);
const int srcY = ofsY + brd.idx_row(y - anchorY + i);
res += tex2D(filter2DTex, srcX, srcY) * c_filter2DKernel[kInd++];
}
}
dst.ptr(y)[x] = res;
@ -946,7 +947,9 @@ namespace cv { namespace gpu { namespace device
bindTexture(&filter2DTex, src);
filter2D<<<grid, block, 0, stream>>>(ofsX, ofsY, dst, kWidth, kHeight, anchorX, anchorY);
BrdReflect101<float> brd(dst.rows, dst.cols);
filter2D<<<grid, block, 0, stream>>>(ofsX, ofsY, dst, kWidth, kHeight, anchorX, anchorY, brd);
cudaSafeCall(cudaGetLastError());
if (stream == 0)

View File

@ -119,7 +119,7 @@ namespace
{
int scale = nDivisor && (kernel.depth() == CV_32F || kernel.depth() == CV_64F) ? 256 : 1;
if (nDivisor) *nDivisor = scale;
Mat temp(kernel.size(), type);
kernel.convertTo(temp, type, scale);
Mat cont_krnl = temp.reshape(1, 1);
@ -134,7 +134,7 @@ namespace
}
gpu_krnl.upload(cont_krnl);
}
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
@ -144,7 +144,7 @@ namespace
{
struct Filter2DEngine_GPU : public FilterEngine_GPU
{
Filter2DEngine_GPU(const Ptr<BaseFilter_GPU>& filter2D_, int srcType_, int dstType_) :
Filter2DEngine_GPU(const Ptr<BaseFilter_GPU>& filter2D_, int srcType_, int dstType_) :
filter2D(filter2D_), srcType(srcType_), dstType(dstType_)
{}
@ -189,9 +189,9 @@ namespace
{
struct SeparableFilterEngine_GPU : public FilterEngine_GPU
{
SeparableFilterEngine_GPU(const Ptr<BaseRowFilter_GPU>& rowFilter_, const Ptr<BaseColumnFilter_GPU>& columnFilter_,
SeparableFilterEngine_GPU(const Ptr<BaseRowFilter_GPU>& rowFilter_, const Ptr<BaseColumnFilter_GPU>& columnFilter_,
int srcType_, int bufType_, int dstType_) :
rowFilter(rowFilter_), columnFilter(columnFilter_),
rowFilter(rowFilter_), columnFilter(columnFilter_),
srcType(srcType_), bufType(bufType_), dstType(dstType_)
{
ksize = Size(rowFilter->ksize, columnFilter->ksize);
@ -199,11 +199,11 @@ namespace
pbuf = &buf;
}
SeparableFilterEngine_GPU(const Ptr<BaseRowFilter_GPU>& rowFilter_, const Ptr<BaseColumnFilter_GPU>& columnFilter_,
SeparableFilterEngine_GPU(const Ptr<BaseRowFilter_GPU>& rowFilter_, const Ptr<BaseColumnFilter_GPU>& columnFilter_,
int srcType_, int bufType_, int dstType_,
GpuMat& buf_) :
rowFilter(rowFilter_), columnFilter(columnFilter_),
rowFilter(rowFilter_), columnFilter(columnFilter_),
srcType(srcType_), bufType(bufType_), dstType(dstType_)
{
ksize = Size(rowFilter->ksize, columnFilter->ksize);
@ -235,7 +235,7 @@ namespace
GpuMat srcROI = src(roi);
GpuMat dstROI = dst(roi);
GpuMat bufROI = (*pbuf)(roi);
(*rowFilter)(srcROI, bufROI, stream);
(*columnFilter)(bufROI, dstROI, stream);
}
@ -253,13 +253,13 @@ namespace
};
}
Ptr<FilterEngine_GPU> cv::gpu::createSeparableFilter_GPU(const Ptr<BaseRowFilter_GPU>& rowFilter,
Ptr<FilterEngine_GPU> cv::gpu::createSeparableFilter_GPU(const Ptr<BaseRowFilter_GPU>& rowFilter,
const Ptr<BaseColumnFilter_GPU>& columnFilter, int srcType, int bufType, int dstType)
{
return Ptr<FilterEngine_GPU>(new SeparableFilterEngine_GPU(rowFilter, columnFilter, srcType, bufType, dstType));
}
Ptr<FilterEngine_GPU> cv::gpu::createSeparableFilter_GPU(const Ptr<BaseRowFilter_GPU>& rowFilter,
Ptr<FilterEngine_GPU> cv::gpu::createSeparableFilter_GPU(const Ptr<BaseRowFilter_GPU>& rowFilter,
const Ptr<BaseColumnFilter_GPU>& columnFilter, int srcType, int bufType, int dstType, GpuMat& buf)
{
return Ptr<FilterEngine_GPU>(new SeparableFilterEngine_GPU(rowFilter, columnFilter, srcType, bufType, dstType, buf));
@ -284,7 +284,7 @@ namespace
NppStreamHandler h(stream);
nppSafeCall( nppiSumWindowRow_8u32f_C1R(src.ptr<Npp8u>(), static_cast<int>(src.step),
nppSafeCall( nppiSumWindowRow_8u32f_C1R(src.ptr<Npp8u>(), static_cast<int>(src.step),
dst.ptr<Npp32f>(), static_cast<int>(dst.step), sz, ksize, anchor) );
if (stream == 0)
@ -318,7 +318,7 @@ namespace
NppStreamHandler h(stream);
nppSafeCall( nppiSumWindowColumn_8u32f_C1R(src.ptr<Npp8u>(), static_cast<int>(src.step),
nppSafeCall( nppiSumWindowColumn_8u32f_C1R(src.ptr<Npp8u>(), static_cast<int>(src.step),
dst.ptr<Npp32f>(), static_cast<int>(dst.step), sz, ksize, anchor) );
if (stream == 0)
@ -341,7 +341,7 @@ Ptr<BaseColumnFilter_GPU> cv::gpu::getColumnSumFilter_GPU(int sumType, int dstTy
namespace
{
typedef NppStatus (*nppFilterBox_t)(const Npp8u * pSrc, Npp32s nSrcStep, Npp8u * pDst, Npp32s nDstStep, NppiSize oSizeROI,
typedef NppStatus (*nppFilterBox_t)(const Npp8u * pSrc, Npp32s nSrcStep, Npp8u * pDst, Npp32s nDstStep, NppiSize oSizeROI,
NppiSize oMaskSize, NppiPoint oAnchor);
struct NPPBoxFilter : public BaseFilter_GPU
@ -363,8 +363,8 @@ namespace
cudaStream_t stream = StreamAccessor::getStream(s);
NppStreamHandler h(stream);
nppSafeCall( func(src.ptr<Npp8u>(), static_cast<int>(src.step),
nppSafeCall( func(src.ptr<Npp8u>(), static_cast<int>(src.step),
dst.ptr<Npp8u>(), static_cast<int>(dst.step), sz, oKernelSize, oAnchor) );
if (stream == 0)
@ -379,7 +379,7 @@ Ptr<BaseFilter_GPU> cv::gpu::getBoxFilter_GPU(int srcType, int dstType, const Si
{
static const nppFilterBox_t nppFilterBox_callers[] = {0, nppiFilterBox_8u_C1R, 0, 0, nppiFilterBox_8u_C4R};
CV_Assert((srcType == CV_8UC1 || srcType == CV_8UC4) && dstType == srcType);
CV_Assert((srcType == CV_8UC1 || srcType == CV_8UC4) && dstType == srcType);
normalizeAnchor(anchor, ksize);
@ -413,7 +413,7 @@ namespace
struct NPPMorphFilter : public BaseFilter_GPU
{
NPPMorphFilter(const Size& ksize_, const Point& anchor_, const GpuMat& kernel_, nppMorfFilter_t func_) :
NPPMorphFilter(const Size& ksize_, const Point& anchor_, const GpuMat& kernel_, nppMorfFilter_t func_) :
BaseFilter_GPU(ksize_, anchor_), kernel(kernel_), func(func_) {}
virtual void operator()(const GpuMat& src, GpuMat& dst, Stream& s = Stream::Null())
@ -432,7 +432,7 @@ namespace
NppStreamHandler h(stream);
nppSafeCall( func(src.ptr<Npp8u>(), static_cast<int>(src.step),
nppSafeCall( func(src.ptr<Npp8u>(), static_cast<int>(src.step),
dst.ptr<Npp8u>(), static_cast<int>(dst.step), sz, kernel.ptr<Npp8u>(), oKernelSize, oAnchor) );
if (stream == 0)
@ -446,19 +446,19 @@ namespace
Ptr<BaseFilter_GPU> cv::gpu::getMorphologyFilter_GPU(int op, int type, const Mat& kernel, const Size& ksize, Point anchor)
{
static const nppMorfFilter_t nppMorfFilter_callers[2][5] =
static const nppMorfFilter_t nppMorfFilter_callers[2][5] =
{
{0, nppiErode_8u_C1R, 0, 0, nppiErode_8u_C4R },
{0, nppiDilate_8u_C1R, 0, 0, nppiDilate_8u_C4R }
};
CV_Assert(op == MORPH_ERODE || op == MORPH_DILATE);
CV_Assert(type == CV_8UC1 || type == CV_8UC4);
CV_Assert(op == MORPH_ERODE || op == MORPH_DILATE);
CV_Assert(type == CV_8UC1 || type == CV_8UC4);
GpuMat gpu_krnl;
normalizeKernel(kernel, gpu_krnl);
normalizeAnchor(anchor, ksize);
return Ptr<BaseFilter_GPU>(new NPPMorphFilter(ksize, anchor, gpu_krnl, nppMorfFilter_callers[op][CV_MAT_CN(type)]));
}
@ -466,13 +466,13 @@ namespace
{
struct MorphologyFilterEngine_GPU : public FilterEngine_GPU
{
MorphologyFilterEngine_GPU(const Ptr<BaseFilter_GPU>& filter2D_, int type_, int iters_) :
MorphologyFilterEngine_GPU(const Ptr<BaseFilter_GPU>& filter2D_, int type_, int iters_) :
filter2D(filter2D_), type(type_), iters(iters_)
{
pbuf = &buf;
}
MorphologyFilterEngine_GPU(const Ptr<BaseFilter_GPU>& filter2D_, int type_, int iters_, GpuMat& buf_) :
MorphologyFilterEngine_GPU(const Ptr<BaseFilter_GPU>& filter2D_, int type_, int iters_, GpuMat& buf_) :
filter2D(filter2D_), type(type_), iters(iters_)
{
pbuf = &buf_;
@ -576,7 +576,7 @@ namespace
else if (iterations > 1 && countNonZero(_kernel) == _kernel.rows * _kernel.cols)
{
anchor = Point(anchor.x * iterations, anchor.y * iterations);
kernel = getStructuringElement(MORPH_RECT, Size(ksize.width + iterations * (ksize.width - 1),
kernel = getStructuringElement(MORPH_RECT, Size(ksize.width + iterations * (ksize.width - 1),
ksize.height + iterations * (ksize.height - 1)), anchor);
iterations = 1;
}
@ -659,7 +659,7 @@ void cv::gpu::morphologyEx(const GpuMat& src, GpuMat& dst, int op, const Mat& ke
////////////////////////////////////////////////////////////////////////////////////////////////////
// Linear Filter
namespace cv { namespace gpu { namespace device
namespace cv { namespace gpu { namespace device
{
namespace imgproc
{
@ -669,12 +669,12 @@ namespace cv { namespace gpu { namespace device
namespace
{
typedef NppStatus (*nppFilter2D_t)(const Npp8u * pSrc, Npp32s nSrcStep, Npp8u * pDst, Npp32s nDstStep, NppiSize oSizeROI,
typedef NppStatus (*nppFilter2D_t)(const Npp8u * pSrc, Npp32s nSrcStep, Npp8u * pDst, Npp32s nDstStep, NppiSize oSizeROI,
const Npp32s * pKernel, NppiSize oKernelSize, NppiPoint oAnchor, Npp32s nDivisor);
struct NPPLinearFilter : public BaseFilter_GPU
{
NPPLinearFilter(const Size& ksize_, const Point& anchor_, const GpuMat& kernel_, Npp32s nDivisor_, nppFilter2D_t func_) :
NPPLinearFilter(const Size& ksize_, const Point& anchor_, const GpuMat& kernel_, Npp32s nDivisor_, nppFilter2D_t func_) :
BaseFilter_GPU(ksize_, anchor_), kernel(kernel_), nDivisor(nDivisor_), func(func_) {}
virtual void operator()(const GpuMat& src, GpuMat& dst, Stream& s = Stream::Null())
@ -692,8 +692,8 @@ namespace
cudaStream_t stream = StreamAccessor::getStream(s);
NppStreamHandler h(stream);
nppSafeCall( func(src.ptr<Npp8u>(), static_cast<int>(src.step), dst.ptr<Npp8u>(), static_cast<int>(dst.step), sz,
nppSafeCall( func(src.ptr<Npp8u>(), static_cast<int>(src.step), dst.ptr<Npp8u>(), static_cast<int>(dst.step), sz,
kernel.ptr<Npp32s>(), oKernelSize, oAnchor, nDivisor) );
if (stream == 0)
@ -707,9 +707,9 @@ namespace
struct GpuLinearFilter : public BaseFilter_GPU
{
GpuLinearFilter(Size ksize_, Point anchor_, const GpuMat& kernel_) :
GpuLinearFilter(Size ksize_, Point anchor_, const GpuMat& kernel_) :
BaseFilter_GPU(ksize_, anchor_), kernel(kernel_) {}
virtual void operator()(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null())
{
using namespace cv::gpu::device::imgproc;
@ -745,7 +745,7 @@ Ptr<BaseFilter_GPU> cv::gpu::getLinearFilter_GPU(int srcType, int dstType, const
else
{
static const nppFilter2D_t cppFilter2D_callers[] = {0, nppiFilter_8u_C1R, 0, 0, nppiFilter_8u_C4R};
GpuMat gpu_krnl;
int nDivisor;
normalizeKernel(kernel, gpu_krnl, CV_32S, &nDivisor, true);
@ -753,8 +753,8 @@ Ptr<BaseFilter_GPU> cv::gpu::getLinearFilter_GPU(int srcType, int dstType, const
normalizeAnchor(anchor, ksize);
return Ptr<BaseFilter_GPU>(new NPPLinearFilter(ksize, anchor, gpu_krnl, nDivisor, cppFilter2D_callers[CV_MAT_CN(srcType)]));
}
}
}
}
Ptr<FilterEngine_GPU> cv::gpu::createLinearFilter_GPU(int srcType, int dstType, const Mat& kernel, const Point& anchor)
{
@ -780,7 +780,7 @@ void cv::gpu::filter2D(const GpuMat& src, GpuMat& dst, int ddepth, const Mat& ke
////////////////////////////////////////////////////////////////////////////////////////////////////
// Separable Linear Filter
namespace cv { namespace gpu { namespace device
namespace cv { namespace gpu { namespace device
{
namespace row_filter
{
@ -797,14 +797,14 @@ namespace cv { namespace gpu { namespace device
namespace
{
typedef NppStatus (*nppFilter1D_t)(const Npp8u * pSrc, Npp32s nSrcStep, Npp8u * pDst, Npp32s nDstStep, NppiSize oROI,
typedef NppStatus (*nppFilter1D_t)(const Npp8u * pSrc, Npp32s nSrcStep, Npp8u * pDst, Npp32s nDstStep, NppiSize oROI,
const Npp32s * pKernel, Npp32s nMaskSize, Npp32s nAnchor, Npp32s nDivisor);
typedef void (*gpuFilter1D_t)(DevMem2Db src, DevMem2Db dst, const float kernel[], int ksize, int anchor, int brd_type, int cc, cudaStream_t stream);
struct NppLinearRowFilter : public BaseRowFilter_GPU
{
NppLinearRowFilter(int ksize_, int anchor_, const GpuMat& kernel_, Npp32s nDivisor_, nppFilter1D_t func_) :
NppLinearRowFilter(int ksize_, int anchor_, const GpuMat& kernel_, Npp32s nDivisor_, nppFilter1D_t func_) :
BaseRowFilter_GPU(ksize_, anchor_), kernel(kernel_), nDivisor(nDivisor_), func(func_) {}
virtual void operator()(const GpuMat& src, GpuMat& dst, Stream& s = Stream::Null())
@ -817,7 +817,7 @@ namespace
NppStreamHandler h(stream);
nppSafeCall( func(src.ptr<Npp8u>(), static_cast<int>(src.step), dst.ptr<Npp8u>(), static_cast<int>(dst.step), sz,
nppSafeCall( func(src.ptr<Npp8u>(), static_cast<int>(src.step), dst.ptr<Npp8u>(), static_cast<int>(dst.step), sz,
kernel.ptr<Npp32s>(), ksize, anchor, nDivisor) );
if (stream == 0)
@ -831,7 +831,7 @@ namespace
struct GpuLinearRowFilter : public BaseRowFilter_GPU
{
GpuLinearRowFilter(int ksize_, int anchor_, const Mat& kernel_, gpuFilter1D_t func_, int brd_type_) :
GpuLinearRowFilter(int ksize_, int anchor_, const Mat& kernel_, gpuFilter1D_t func_, int brd_type_) :
BaseRowFilter_GPU(ksize_, anchor_), kernel(kernel_), func(func_), brd_type(brd_type_) {}
virtual void operator()(const GpuMat& src, GpuMat& dst, Stream& s = Stream::Null())
@ -852,7 +852,7 @@ Ptr<BaseRowFilter_GPU> cv::gpu::getLinearRowFilter_GPU(int srcType, int bufType,
using namespace ::cv::gpu::device::row_filter;
static const nppFilter1D_t nppFilter1D_callers[] = {0, nppiFilterRow_8u_C1R, 0, 0, nppiFilterRow_8u_C4R};
if ((bufType == srcType) && (srcType == CV_8UC1 || srcType == CV_8UC4))
{
CV_Assert(borderType == BORDER_CONSTANT);
@ -867,7 +867,7 @@ Ptr<BaseRowFilter_GPU> cv::gpu::getLinearRowFilter_GPU(int srcType, int bufType,
return Ptr<BaseRowFilter_GPU>(new NppLinearRowFilter(ksize, anchor, gpu_row_krnl, nDivisor,
nppFilter1D_callers[CV_MAT_CN(srcType)]));
}
CV_Assert(borderType == BORDER_REFLECT101 || borderType == BORDER_REPLICATE || borderType == BORDER_CONSTANT || borderType == BORDER_REFLECT || borderType == BORDER_WRAP);
int gpuBorderType;
CV_Assert(tryConvertToGpuBorderType(borderType, gpuBorderType));
@ -914,7 +914,7 @@ namespace
{
struct NppLinearColumnFilter : public BaseColumnFilter_GPU
{
NppLinearColumnFilter(int ksize_, int anchor_, const GpuMat& kernel_, Npp32s nDivisor_, nppFilter1D_t func_) :
NppLinearColumnFilter(int ksize_, int anchor_, const GpuMat& kernel_, Npp32s nDivisor_, nppFilter1D_t func_) :
BaseColumnFilter_GPU(ksize_, anchor_), kernel(kernel_), nDivisor(nDivisor_), func(func_) {}
virtual void operator()(const GpuMat& src, GpuMat& dst, Stream& s = Stream::Null())
@ -927,7 +927,7 @@ namespace
NppStreamHandler h(stream);
nppSafeCall( func(src.ptr<Npp8u>(), static_cast<int>(src.step), dst.ptr<Npp8u>(), static_cast<int>(dst.step), sz,
nppSafeCall( func(src.ptr<Npp8u>(), static_cast<int>(src.step), dst.ptr<Npp8u>(), static_cast<int>(dst.step), sz,
kernel.ptr<Npp32s>(), ksize, anchor, nDivisor) );
if (stream == 0)
@ -941,7 +941,7 @@ namespace
struct GpuLinearColumnFilter : public BaseColumnFilter_GPU
{
GpuLinearColumnFilter(int ksize_, int anchor_, const Mat& kernel_, gpuFilter1D_t func_, int brd_type_) :
GpuLinearColumnFilter(int ksize_, int anchor_, const Mat& kernel_, gpuFilter1D_t func_, int brd_type_) :
BaseColumnFilter_GPU(ksize_, anchor_), kernel(kernel_), func(func_), brd_type(brd_type_) {}
virtual void operator()(const GpuMat& src, GpuMat& dst, Stream& s = Stream::Null())
@ -963,7 +963,7 @@ Ptr<BaseColumnFilter_GPU> cv::gpu::getLinearColumnFilter_GPU(int bufType, int ds
using namespace ::cv::gpu::device::column_filter;
static const nppFilter1D_t nppFilter1D_callers[] = {0, nppiFilterColumn_8u_C1R, 0, 0, nppiFilterColumn_8u_C4R};
if ((bufType == dstType) && (bufType == CV_8UC1 || bufType == CV_8UC4))
{
CV_Assert(borderType == BORDER_CONSTANT);
@ -975,14 +975,14 @@ Ptr<BaseColumnFilter_GPU> cv::gpu::getLinearColumnFilter_GPU(int bufType, int ds
int ksize = gpu_col_krnl.cols;
normalizeAnchor(anchor, ksize);
return Ptr<BaseColumnFilter_GPU>(new NppLinearColumnFilter(ksize, anchor, gpu_col_krnl, nDivisor,
return Ptr<BaseColumnFilter_GPU>(new NppLinearColumnFilter(ksize, anchor, gpu_col_krnl, nDivisor,
nppFilter1D_callers[CV_MAT_CN(bufType)]));
}
CV_Assert(borderType == BORDER_REFLECT101 || borderType == BORDER_REPLICATE || borderType == BORDER_CONSTANT || borderType == BORDER_REFLECT || borderType == BORDER_WRAP);
int gpuBorderType;
CV_Assert(tryConvertToGpuBorderType(borderType, gpuBorderType));
CV_Assert(dstType == CV_8UC1 || dstType == CV_8UC4 || dstType == CV_16SC3 || dstType == CV_32SC1 || dstType == CV_32FC1);
CV_Assert(CV_MAT_DEPTH(bufType) == CV_32F && CV_MAT_CN(dstType) == CV_MAT_CN(bufType));
@ -1021,7 +1021,7 @@ Ptr<BaseColumnFilter_GPU> cv::gpu::getLinearColumnFilter_GPU(int bufType, int ds
return Ptr<BaseColumnFilter_GPU>(new GpuLinearColumnFilter(ksize, anchor, cont_krnl, func, gpuBorderType));
}
Ptr<FilterEngine_GPU> cv::gpu::createSeparableLinearFilter_GPU(int srcType, int dstType, const Mat& rowKernel, const Mat& columnKernel,
Ptr<FilterEngine_GPU> cv::gpu::createSeparableLinearFilter_GPU(int srcType, int dstType, const Mat& rowKernel, const Mat& columnKernel,
const Point& anchor, int rowBorderType, int columnBorderType)
{
if (columnBorderType < 0)
@ -1037,7 +1037,7 @@ Ptr<FilterEngine_GPU> cv::gpu::createSeparableLinearFilter_GPU(int srcType, int
return createSeparableFilter_GPU(rowFilter, columnFilter, srcType, bufType, dstType);
}
Ptr<FilterEngine_GPU> cv::gpu::createSeparableLinearFilter_GPU(int srcType, int dstType, const Mat& rowKernel, const Mat& columnKernel, GpuMat& buf,
Ptr<FilterEngine_GPU> cv::gpu::createSeparableLinearFilter_GPU(int srcType, int dstType, const Mat& rowKernel, const Mat& columnKernel, GpuMat& buf,
const Point& anchor, int rowBorderType, int columnBorderType)
{
if (columnBorderType < 0)
@ -1053,7 +1053,7 @@ Ptr<FilterEngine_GPU> cv::gpu::createSeparableLinearFilter_GPU(int srcType, int
return createSeparableFilter_GPU(rowFilter, columnFilter, srcType, bufType, dstType, buf);
}
void cv::gpu::sepFilter2D(const GpuMat& src, GpuMat& dst, int ddepth, const Mat& kernelX, const Mat& kernelY,
void cv::gpu::sepFilter2D(const GpuMat& src, GpuMat& dst, int ddepth, const Mat& kernelX, const Mat& kernelY,
Point anchor, int rowBorderType, int columnBorderType)
{
if( ddepth < 0 )
@ -1065,7 +1065,7 @@ void cv::gpu::sepFilter2D(const GpuMat& src, GpuMat& dst, int ddepth, const Mat&
f->apply(src, dst, Rect(0, 0, src.cols, src.rows));
}
void cv::gpu::sepFilter2D(const GpuMat& src, GpuMat& dst, int ddepth, const Mat& kernelX, const Mat& kernelY, GpuMat& buf,
void cv::gpu::sepFilter2D(const GpuMat& src, GpuMat& dst, int ddepth, const Mat& kernelX, const Mat& kernelY, GpuMat& buf,
Point anchor, int rowBorderType, int columnBorderType,
Stream& stream)
{
@ -1115,7 +1115,7 @@ void cv::gpu::Sobel(const GpuMat& src, GpuMat& dst, int ddepth, int dx, int dy,
else
ky *= scale;
}
sepFilter2D(src, dst, ddepth, kx, ky, buf, Point(-1,-1), rowBorderType, columnBorderType, stream);
}
@ -1155,7 +1155,7 @@ void cv::gpu::Laplacian(const GpuMat& src, GpuMat& dst, int ddepth, int ksize, d
Mat kernel(3, 3, CV_32S, (void*)K[ksize == 3]);
if (scale != 1)
kernel *= scale;
filter2D(src, dst, ddepth, kernel, Point(-1,-1), stream);
}
@ -1163,7 +1163,7 @@ void cv::gpu::Laplacian(const GpuMat& src, GpuMat& dst, int ddepth, int ksize, d
// Gaussian Filter
Ptr<FilterEngine_GPU> cv::gpu::createGaussianFilter_GPU(int type, Size ksize, double sigma1, double sigma2, int rowBorderType, int columnBorderType)
{
{
int depth = CV_MAT_DEPTH(type);
if (sigma2 <= 0)
@ -1191,7 +1191,7 @@ Ptr<FilterEngine_GPU> cv::gpu::createGaussianFilter_GPU(int type, Size ksize, do
}
Ptr<FilterEngine_GPU> cv::gpu::createGaussianFilter_GPU(int type, Size ksize, GpuMat& buf, double sigma1, double sigma2, int rowBorderType, int columnBorderType)
{
{
int depth = CV_MAT_DEPTH(type);
if (sigma2 <= 0)
@ -1227,7 +1227,7 @@ void cv::gpu::GaussianBlur(const GpuMat& src, GpuMat& dst, Size ksize, double si
}
dst.create(src.size(), src.type());
Ptr<FilterEngine_GPU> f = createGaussianFilter_GPU(src.type(), ksize, sigma1, sigma2, rowBorderType, columnBorderType);
f->apply(src, dst, Rect(0, 0, src.cols, src.rows));
}
@ -1241,7 +1241,7 @@ void cv::gpu::GaussianBlur(const GpuMat& src, GpuMat& dst, Size ksize, GpuMat& b
}
dst.create(src.size(), src.type());
Ptr<FilterEngine_GPU> f = createGaussianFilter_GPU(src.type(), ksize, buf, sigma1, sigma2, rowBorderType, columnBorderType);
f->apply(src, dst, Rect(0, 0, src.cols, src.rows), stream);
}
@ -1251,7 +1251,7 @@ void cv::gpu::GaussianBlur(const GpuMat& src, GpuMat& dst, Size ksize, GpuMat& b
namespace
{
typedef NppStatus (*nppFilterRank_t)(const Npp8u * pSrc, Npp32s nSrcStep, Npp8u * pDst, Npp32s nDstStep, NppiSize oSizeROI,
typedef NppStatus (*nppFilterRank_t)(const Npp8u * pSrc, Npp32s nSrcStep, Npp8u * pDst, Npp32s nDstStep, NppiSize oSizeROI,
NppiSize oMaskSize, NppiPoint oAnchor);
struct NPPRankFilter : public BaseFilter_GPU
@ -1273,7 +1273,7 @@ namespace
cudaStream_t stream = StreamAccessor::getStream(s);
NppStreamHandler h(stream);
nppSafeCall( func(src.ptr<Npp8u>(), static_cast<int>(src.step), dst.ptr<Npp8u>(), static_cast<int>(dst.step), sz, oKernelSize, oAnchor) );
if (stream == 0)
@ -1288,7 +1288,7 @@ Ptr<BaseFilter_GPU> cv::gpu::getMaxFilter_GPU(int srcType, int dstType, const Si
{
static const nppFilterRank_t nppFilterRank_callers[] = {0, nppiFilterMax_8u_C1R, 0, 0, nppiFilterMax_8u_C4R};
CV_Assert((srcType == CV_8UC1 || srcType == CV_8UC4) && dstType == srcType);
CV_Assert((srcType == CV_8UC1 || srcType == CV_8UC4) && dstType == srcType);
normalizeAnchor(anchor, ksize);
@ -1299,7 +1299,7 @@ Ptr<BaseFilter_GPU> cv::gpu::getMinFilter_GPU(int srcType, int dstType, const Si
{
static const nppFilterRank_t nppFilterRank_callers[] = {0, nppiFilterMin_8u_C1R, 0, 0, nppiFilterMin_8u_C4R};
CV_Assert((srcType == CV_8UC1 || srcType == CV_8UC4) && dstType == srcType);
CV_Assert((srcType == CV_8UC1 || srcType == CV_8UC4) && dstType == srcType);
normalizeAnchor(anchor, ksize);

View File

@ -63,7 +63,7 @@ void cv::gpu::SURF_GPU::releaseMemory() { throw_nogpu(); }
#else /* !defined (HAVE_CUDA) */
namespace cv { namespace gpu { namespace device
namespace cv { namespace gpu { namespace device
{
namespace surf
{
@ -79,13 +79,13 @@ namespace cv { namespace gpu { namespace device
void icvFindMaximaInLayer_gpu(const PtrStepf& det, const PtrStepf& trace, int4* maxPosBuffer, unsigned int* maxCounter,
int img_rows, int img_cols, int octave, bool use_mask, int nLayers);
void icvInterpolateKeypoint_gpu(const PtrStepf& det, const int4* maxPosBuffer, unsigned int maxCounter,
float* featureX, float* featureY, int* featureLaplacian, float* featureSize, float* featureHessian,
void icvInterpolateKeypoint_gpu(const PtrStepf& det, const int4* maxPosBuffer, unsigned int maxCounter,
float* featureX, float* featureY, int* featureLaplacian, float* featureSize, float* featureHessian,
unsigned int* featureCounter);
void icvCalcOrientation_gpu(const float* featureX, const float* featureY, const float* featureSize, float* featureDir, int nFeatures);
void compute_descriptors_gpu(const DevMem2Df& descriptors,
void compute_descriptors_gpu(const DevMem2Df& descriptors,
const float* featureX, const float* featureY, const float* featureSize, const float* featureDir, int nFeatures);
}
}}}
@ -108,7 +108,7 @@ namespace
return (HAAR_SIZE0 + HAAR_SIZE_INC * layer) << octave;
}
class SURF_GPU_Invoker
{
public:
@ -121,11 +121,11 @@ namespace
CV_Assert(mask.empty() || (mask.size() == img.size() && mask.type() == CV_8UC1));
CV_Assert(surf_.nOctaves > 0 && surf_.nOctaveLayers > 0);
CV_Assert(TargetArchs::builtWith(GLOBAL_ATOMICS) && DeviceInfo().supports(GLOBAL_ATOMICS));
const int min_size = calcSize(surf_.nOctaves - 1, 0);
CV_Assert(img_rows - min_size >= 0);
CV_Assert(img_cols - min_size >= 0);
const int layer_rows = img_rows >> (surf_.nOctaves - 1);
const int layer_cols = img_cols >> (surf_.nOctaves - 1);
const int min_margin = ((calcSize((surf_.nOctaves - 1), 2) >> 1) >> (surf_.nOctaves - 1)) + 1;
@ -159,7 +159,7 @@ namespace
{
ensureSizeIsEnough(img_rows * (surf_.nOctaveLayers + 2), img_cols, CV_32FC1, surf_.det);
ensureSizeIsEnough(img_rows * (surf_.nOctaveLayers + 2), img_cols, CV_32FC1, surf_.trace);
ensureSizeIsEnough(1, maxCandidates, CV_32SC4, surf_.maxPosBuffer);
ensureSizeIsEnough(SURF_GPU::SF_FEATURE_STRIDE, maxFeatures, CV_32FC1, keypoints);
keypoints.setTo(Scalar::all(0));
@ -182,7 +182,7 @@ namespace
if (maxCounter > 0)
{
icvInterpolateKeypoint_gpu(surf_.det, surf_.maxPosBuffer.ptr<int4>(), maxCounter,
icvInterpolateKeypoint_gpu(surf_.det, surf_.maxPosBuffer.ptr<int4>(), maxCounter,
keypoints.ptr<float>(SURF_GPU::SF_X), keypoints.ptr<float>(SURF_GPU::SF_Y),
keypoints.ptr<int>(SURF_GPU::SF_LAPLACIAN), keypoints.ptr<float>(SURF_GPU::SF_SIZE),
keypoints.ptr<float>(SURF_GPU::SF_HESSIAN), counters.ptr<unsigned int>());
@ -238,7 +238,7 @@ namespace
cv::gpu::SURF_GPU::SURF_GPU()
{
hessianThreshold = 100;
extended = 1;
extended = true;
nOctaves = 4;
nOctaveLayers = 2;
keypointsRatio = 0.01f;
@ -323,9 +323,9 @@ void cv::gpu::SURF_GPU::downloadKeypoints(const GpuMat& keypointsGPU, vector<Key
else
{
CV_Assert(keypointsGPU.type() == CV_32FC1 && keypointsGPU.rows == SF_FEATURE_STRIDE);
Mat keypointsCPU(keypointsGPU);
keypoints.resize(nFeatures);
float* kp_x = keypointsCPU.ptr<float>(SF_X);
@ -373,13 +373,13 @@ void cv::gpu::SURF_GPU::operator()(const GpuMat& img, const GpuMat& mask, GpuMat
}
}
void cv::gpu::SURF_GPU::operator()(const GpuMat& img, const GpuMat& mask, GpuMat& keypoints, GpuMat& descriptors,
void cv::gpu::SURF_GPU::operator()(const GpuMat& img, const GpuMat& mask, GpuMat& keypoints, GpuMat& descriptors,
bool useProvidedKeypoints)
{
if (!img.empty())
{
SURF_GPU_Invoker surf(*this, img, mask);
if (!useProvidedKeypoints)
surf.detectKeypoints(keypoints);
else if (!upright)
@ -400,20 +400,20 @@ void cv::gpu::SURF_GPU::operator()(const GpuMat& img, const GpuMat& mask, vector
downloadKeypoints(keypointsGPU, keypoints);
}
void cv::gpu::SURF_GPU::operator()(const GpuMat& img, const GpuMat& mask, vector<KeyPoint>& keypoints,
void cv::gpu::SURF_GPU::operator()(const GpuMat& img, const GpuMat& mask, vector<KeyPoint>& keypoints,
GpuMat& descriptors, bool useProvidedKeypoints)
{
GpuMat keypointsGPU;
if (useProvidedKeypoints)
uploadKeypoints(keypoints, keypointsGPU);
uploadKeypoints(keypoints, keypointsGPU);
(*this)(img, mask, keypointsGPU, descriptors, useProvidedKeypoints);
downloadKeypoints(keypointsGPU, keypoints);
}
void cv::gpu::SURF_GPU::operator()(const GpuMat& img, const GpuMat& mask, vector<KeyPoint>& keypoints,
void cv::gpu::SURF_GPU::operator()(const GpuMat& img, const GpuMat& mask, vector<KeyPoint>& keypoints,
vector<float>& descriptors, bool useProvidedKeypoints)
{
GpuMat descriptorsGPU;
@ -423,9 +423,9 @@ void cv::gpu::SURF_GPU::operator()(const GpuMat& img, const GpuMat& mask, vector
downloadDescriptors(descriptorsGPU, descriptors);
}
void cv::gpu::SURF_GPU::releaseMemory()
void cv::gpu::SURF_GPU::releaseMemory()
{
sum.release();
sum.release();
mask1.release();
maskSum.release();
intBuffer.release();

View File

@ -41,20 +41,13 @@
#include "precomp.hpp"
#ifdef HAVE_CUDA
using namespace cvtest;
using namespace testing;
namespace {
//////////////////////////////////////////////////////////////////////////
// BlockMatching
// StereoBM
struct StereoBlockMatching : TestWithParam<cv::gpu::DeviceInfo>
struct StereoBM : testing::TestWithParam<cv::gpu::DeviceInfo>
{
cv::Mat img_l;
cv::Mat img_r;
cv::Mat img_template;
cv::gpu::DeviceInfo devInfo;
virtual void SetUp()
@ -62,44 +55,34 @@ struct StereoBlockMatching : TestWithParam<cv::gpu::DeviceInfo>
devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
img_l = readImage("stereobm/aloe-L.png", CV_LOAD_IMAGE_GRAYSCALE);
img_r = readImage("stereobm/aloe-R.png", CV_LOAD_IMAGE_GRAYSCALE);
img_template = readImage("stereobm/aloe-disp.png", CV_LOAD_IMAGE_GRAYSCALE);
ASSERT_FALSE(img_l.empty());
ASSERT_FALSE(img_r.empty());
ASSERT_FALSE(img_template.empty());
}
};
TEST_P(StereoBlockMatching, Regression)
TEST_P(StereoBM, Regression)
{
cv::Mat disp;
cv::Mat left_image = readImage("stereobm/aloe-L.png", cv::IMREAD_GRAYSCALE);
cv::Mat right_image = readImage("stereobm/aloe-R.png", cv::IMREAD_GRAYSCALE);
cv::Mat disp_gold = readImage("stereobm/aloe-disp.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(left_image.empty());
ASSERT_FALSE(right_image.empty());
ASSERT_FALSE(disp_gold.empty());
cv::gpu::GpuMat dev_disp;
cv::gpu::StereoBM_GPU bm(0, 128, 19);
cv::gpu::GpuMat disp;
bm(cv::gpu::GpuMat(img_l), cv::gpu::GpuMat(img_r), dev_disp);
bm(loadMat(left_image), loadMat(right_image), disp);
dev_disp.download(disp);
disp.convertTo(disp, img_template.type());
EXPECT_MAT_NEAR(img_template, disp, 0.0);
EXPECT_MAT_NEAR(disp_gold, disp, 0.0);
}
INSTANTIATE_TEST_CASE_P(Calib3D, StereoBlockMatching, ALL_DEVICES);
INSTANTIATE_TEST_CASE_P(GPU_Calib3D, StereoBM, ALL_DEVICES);
//////////////////////////////////////////////////////////////////////////
// BeliefPropagation
// StereoBeliefPropagation
struct StereoBeliefPropagation : TestWithParam<cv::gpu::DeviceInfo>
struct StereoBeliefPropagation : testing::TestWithParam<cv::gpu::DeviceInfo>
{
cv::Mat img_l;
cv::Mat img_r;
cv::Mat img_template;
cv::gpu::DeviceInfo devInfo;
virtual void SetUp()
@ -107,44 +90,37 @@ struct StereoBeliefPropagation : TestWithParam<cv::gpu::DeviceInfo>
devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
img_l = readImage("stereobp/aloe-L.png");
img_r = readImage("stereobp/aloe-R.png");
img_template = readImage("stereobp/aloe-disp.png", CV_LOAD_IMAGE_GRAYSCALE);
ASSERT_FALSE(img_l.empty());
ASSERT_FALSE(img_r.empty());
ASSERT_FALSE(img_template.empty());
}
};
TEST_P(StereoBeliefPropagation, Regression)
{
cv::Mat disp;
cv::Mat left_image = readImage("stereobp/aloe-L.png");
cv::Mat right_image = readImage("stereobp/aloe-R.png");
cv::Mat disp_gold = readImage("stereobp/aloe-disp.png", cv::IMREAD_GRAYSCALE);
cv::gpu::GpuMat dev_disp;
cv::gpu::StereoBeliefPropagation bpm(64, 8, 2, 25, 0.1f, 15, 1, CV_16S);
ASSERT_FALSE(left_image.empty());
ASSERT_FALSE(right_image.empty());
ASSERT_FALSE(disp_gold.empty());
bpm(cv::gpu::GpuMat(img_l), cv::gpu::GpuMat(img_r), dev_disp);
cv::gpu::StereoBeliefPropagation bp(64, 8, 2, 25, 0.1f, 15, 1, CV_16S);
cv::gpu::GpuMat disp;
dev_disp.download(disp);
bp(loadMat(left_image), loadMat(right_image), disp);
disp.convertTo(disp, img_template.type());
cv::Mat h_disp(disp);
h_disp.convertTo(h_disp, disp_gold.depth());
EXPECT_MAT_NEAR(img_template, disp, 0.0);
EXPECT_MAT_NEAR(disp_gold, h_disp, 0.0);
}
INSTANTIATE_TEST_CASE_P(Calib3D, StereoBeliefPropagation, ALL_DEVICES);
INSTANTIATE_TEST_CASE_P(GPU_Calib3D, StereoBeliefPropagation, ALL_DEVICES);
//////////////////////////////////////////////////////////////////////////
// ConstantSpaceBP
// StereoConstantSpaceBP
struct StereoConstantSpaceBP : TestWithParam<cv::gpu::DeviceInfo>
struct StereoConstantSpaceBP : testing::TestWithParam<cv::gpu::DeviceInfo>
{
cv::Mat img_l;
cv::Mat img_r;
cv::Mat img_template;
cv::gpu::DeviceInfo devInfo;
virtual void SetUp()
@ -152,207 +128,177 @@ struct StereoConstantSpaceBP : TestWithParam<cv::gpu::DeviceInfo>
devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
img_l = readImage("csstereobp/aloe-L.png");
img_r = readImage("csstereobp/aloe-R.png");
if (supportFeature(devInfo, cv::gpu::FEATURE_SET_COMPUTE_20))
img_template = readImage("csstereobp/aloe-disp.png", CV_LOAD_IMAGE_GRAYSCALE);
else
img_template = readImage("csstereobp/aloe-disp_CC1X.png", CV_LOAD_IMAGE_GRAYSCALE);
ASSERT_FALSE(img_l.empty());
ASSERT_FALSE(img_r.empty());
ASSERT_FALSE(img_template.empty());
}
};
TEST_P(StereoConstantSpaceBP, Regression)
{
cv::Mat disp;
cv::Mat left_image = readImage("csstereobp/aloe-L.png");
cv::Mat right_image = readImage("csstereobp/aloe-R.png");
cv::gpu::GpuMat dev_disp;
cv::gpu::StereoConstantSpaceBP bpm(128, 16, 4, 4);
cv::Mat disp_gold;
bpm(cv::gpu::GpuMat(img_l), cv::gpu::GpuMat(img_r), dev_disp);
if (supportFeature(devInfo, cv::gpu::FEATURE_SET_COMPUTE_20))
disp_gold = readImage("csstereobp/aloe-disp.png", cv::IMREAD_GRAYSCALE);
else
disp_gold = readImage("csstereobp/aloe-disp_CC1X.png", cv::IMREAD_GRAYSCALE);
dev_disp.download(disp);
ASSERT_FALSE(left_image.empty());
ASSERT_FALSE(right_image.empty());
ASSERT_FALSE(disp_gold.empty());
disp.convertTo(disp, img_template.type());
cv::gpu::StereoConstantSpaceBP csbp(128, 16, 4, 4);
cv::gpu::GpuMat disp;
EXPECT_MAT_NEAR(img_template, disp, 1.0);
csbp(loadMat(left_image), loadMat(right_image), disp);
cv::Mat h_disp(disp);
h_disp.convertTo(h_disp, disp_gold.depth());
EXPECT_MAT_NEAR(disp_gold, h_disp, 1.0);
}
INSTANTIATE_TEST_CASE_P(Calib3D, StereoConstantSpaceBP, ALL_DEVICES);
///////////////////////////////////////////////////////////////////////////////////////////////////////
// projectPoints
struct ProjectPoints : TestWithParam<cv::gpu::DeviceInfo>
{
cv::gpu::DeviceInfo devInfo;
cv::Mat src;
cv::Mat rvec;
cv::Mat tvec;
cv::Mat camera_mat;
std::vector<cv::Point2f> dst_gold;
virtual void SetUp()
{
devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = cvtest::TS::ptr()->get_rng();
src = cvtest::randomMat(rng, cv::Size(1000, 1), CV_32FC3, 0, 10, false);
rvec = cvtest::randomMat(rng, cv::Size(3, 1), CV_32F, 0, 1, false);
tvec = cvtest::randomMat(rng, cv::Size(3, 1), CV_32F, 0, 1, false);
camera_mat = cvtest::randomMat(rng, cv::Size(3, 3), CV_32F, 0, 1, false);
camera_mat.at<float>(0, 1) = 0.f;
camera_mat.at<float>(1, 0) = 0.f;
camera_mat.at<float>(2, 0) = 0.f;
camera_mat.at<float>(2, 1) = 0.f;
cv::projectPoints(src, rvec, tvec, camera_mat, cv::Mat(1, 8, CV_32F, cv::Scalar::all(0)), dst_gold);
}
};
TEST_P(ProjectPoints, Accuracy)
{
cv::Mat dst;
cv::gpu::GpuMat d_dst;
cv::gpu::projectPoints(cv::gpu::GpuMat(src), rvec, tvec, camera_mat, cv::Mat(), d_dst);
d_dst.download(dst);
ASSERT_EQ(dst_gold.size(), static_cast<size_t>(dst.cols));
ASSERT_EQ(1, dst.rows);
ASSERT_EQ(CV_32FC2, dst.type());
for (size_t i = 0; i < dst_gold.size(); ++i)
{
cv::Point2f res_gold = dst_gold[i];
cv::Point2f res_actual = dst.at<cv::Point2f>(0, i);
cv::Point2f err = res_actual - res_gold;
ASSERT_LE(err.dot(err) / res_gold.dot(res_gold), 1e-3f);
}
}
INSTANTIATE_TEST_CASE_P(Calib3D, ProjectPoints, ALL_DEVICES);
INSTANTIATE_TEST_CASE_P(GPU_Calib3D, StereoConstantSpaceBP, ALL_DEVICES);
///////////////////////////////////////////////////////////////////////////////////////////////////////
// transformPoints
struct TransformPoints : TestWithParam<cv::gpu::DeviceInfo>
struct TransformPoints : testing::TestWithParam<cv::gpu::DeviceInfo>
{
cv::gpu::DeviceInfo devInfo;
cv::Mat src;
cv::Mat rvec;
cv::Mat tvec;
cv::Mat rot;
virtual void SetUp()
{
devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = cvtest::TS::ptr()->get_rng();
src = cvtest::randomMat(rng, cv::Size(1000, 1), CV_32FC3, 0, 10, false);
rvec = cvtest::randomMat(rng, cv::Size(3, 1), CV_32F, 0, 1, false);
tvec = cvtest::randomMat(rng, cv::Size(3, 1), CV_32F, 0, 1, false);
cv::Rodrigues(rvec, rot);
}
};
TEST_P(TransformPoints, Accuracy)
{
cv::Mat dst;
cv::Mat src = randomMat(cv::Size(1000, 1), CV_32FC3, 0, 10);
cv::Mat rvec = randomMat(cv::Size(3, 1), CV_32F, 0, 1);
cv::Mat tvec = randomMat(cv::Size(3, 1), CV_32F, 0, 1);
cv::gpu::GpuMat d_dst;
cv::gpu::transformPoints(cv::gpu::GpuMat(src), rvec, tvec, d_dst);
d_dst.download(dst);
cv::gpu::GpuMat dst;
cv::gpu::transformPoints(loadMat(src), rvec, tvec, dst);
ASSERT_EQ(src.size(), dst.size());
ASSERT_EQ(src.type(), dst.type());
for (int i = 0; i < dst.cols; ++i)
cv::Mat h_dst(dst);
cv::Mat rot;
cv::Rodrigues(rvec, rot);
for (int i = 0; i < h_dst.cols; ++i)
{
cv::Point3f res = h_dst.at<cv::Point3f>(0, i);
cv::Point3f p = src.at<cv::Point3f>(0, i);
cv::Point3f res_gold(
rot.at<float>(0, 0) * p.x + rot.at<float>(0, 1) * p.y + rot.at<float>(0, 2) * p.z + tvec.at<float>(0, 0),
rot.at<float>(1, 0) * p.x + rot.at<float>(1, 1) * p.y + rot.at<float>(1, 2) * p.z + tvec.at<float>(0, 1),
rot.at<float>(2, 0) * p.x + rot.at<float>(2, 1) * p.y + rot.at<float>(2, 2) * p.z + tvec.at<float>(0, 2));
cv::Point3f res_actual = dst.at<cv::Point3f>(0, i);
cv::Point3f err = res_actual - res_gold;
ASSERT_LE(err.dot(err) / res_gold.dot(res_gold), 1e-3f);
ASSERT_POINT3_NEAR(res_gold, res, 1e-5);
}
}
INSTANTIATE_TEST_CASE_P(Calib3D, TransformPoints, ALL_DEVICES);
INSTANTIATE_TEST_CASE_P(GPU_Calib3D, TransformPoints, ALL_DEVICES);
///////////////////////////////////////////////////////////////////////////////////////////////////////
// solvePnPRansac
// ProjectPoints
struct SolvePnPRansac : TestWithParam<cv::gpu::DeviceInfo>
struct ProjectPoints : testing::TestWithParam<cv::gpu::DeviceInfo>
{
static const int num_points = 5000;
cv::gpu::DeviceInfo devInfo;
cv::Mat object;
cv::Mat camera_mat;
std::vector<cv::Point2f> image_vec;
cv::Mat rvec_gold;
cv::Mat tvec_gold;
virtual void SetUp()
{
devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
}
};
cv::RNG& rng = cvtest::TS::ptr()->get_rng();
TEST_P(ProjectPoints, Accuracy)
{
cv::Mat src = randomMat(cv::Size(1000, 1), CV_32FC3, 0, 10);
cv::Mat rvec = randomMat(cv::Size(3, 1), CV_32F, 0, 1);
cv::Mat tvec = randomMat(cv::Size(3, 1), CV_32F, 0, 1);
cv::Mat camera_mat = randomMat(cv::Size(3, 3), CV_32F, 0.5, 1);
camera_mat.at<float>(0, 1) = 0.f;
camera_mat.at<float>(1, 0) = 0.f;
camera_mat.at<float>(2, 0) = 0.f;
camera_mat.at<float>(2, 1) = 0.f;
object = cvtest::randomMat(rng, cv::Size(num_points, 1), CV_32FC3, 0, 100, false);
camera_mat = cvtest::randomMat(rng, cv::Size(3, 3), CV_32F, 0.5, 1, false);
camera_mat.at<float>(0, 1) = 0.f;
camera_mat.at<float>(1, 0) = 0.f;
camera_mat.at<float>(2, 0) = 0.f;
camera_mat.at<float>(2, 1) = 0.f;
cv::gpu::GpuMat dst;
cv::gpu::projectPoints(loadMat(src), rvec, tvec, camera_mat, cv::Mat(), dst);
rvec_gold = cvtest::randomMat(rng, cv::Size(3, 1), CV_32F, 0, 1, false);
tvec_gold = cvtest::randomMat(rng, cv::Size(3, 1), CV_32F, 0, 1, false);
ASSERT_EQ(1, dst.rows);
ASSERT_EQ(MatType(CV_32FC2), MatType(dst.type()));
cv::projectPoints(object, rvec_gold, tvec_gold, camera_mat, cv::Mat(1, 8, CV_32F, cv::Scalar::all(0)), image_vec);
std::vector<cv::Point2f> dst_gold;
cv::projectPoints(src, rvec, tvec, camera_mat, cv::Mat(1, 8, CV_32F, cv::Scalar::all(0)), dst_gold);
ASSERT_EQ(dst_gold.size(), static_cast<size_t>(dst.cols));
cv::Mat h_dst(dst);
for (size_t i = 0; i < dst_gold.size(); ++i)
{
cv::Point2f res = h_dst.at<cv::Point2f>(0, i);
cv::Point2f res_gold = dst_gold[i];
ASSERT_LE(cv::norm(res_gold - res) / cv::norm(res_gold), 1e-3f);
}
}
INSTANTIATE_TEST_CASE_P(GPU_Calib3D, ProjectPoints, ALL_DEVICES);
///////////////////////////////////////////////////////////////////////////////////////////////////////
// SolvePnPRansac
struct SolvePnPRansac : testing::TestWithParam<cv::gpu::DeviceInfo>
{
cv::gpu::DeviceInfo devInfo;
virtual void SetUp()
{
devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
}
};
TEST_P(SolvePnPRansac, Accuracy)
{
cv::Mat object = randomMat(cv::Size(5000, 1), CV_32FC3, 0, 100);
cv::Mat camera_mat = randomMat(cv::Size(3, 3), CV_32F, 0.5, 1);
camera_mat.at<float>(0, 1) = 0.f;
camera_mat.at<float>(1, 0) = 0.f;
camera_mat.at<float>(2, 0) = 0.f;
camera_mat.at<float>(2, 1) = 0.f;
std::vector<cv::Point2f> image_vec;
cv::Mat rvec_gold;
cv::Mat tvec_gold;
rvec_gold = randomMat(cv::Size(3, 1), CV_32F, 0, 1);
tvec_gold = randomMat(cv::Size(3, 1), CV_32F, 0, 1);
cv::projectPoints(object, rvec_gold, tvec_gold, camera_mat, cv::Mat(1, 8, CV_32F, cv::Scalar::all(0)), image_vec);
cv::Mat rvec, tvec;
std::vector<int> inliers;
cv::gpu::solvePnPRansac(object, cv::Mat(1, image_vec.size(), CV_32FC2, &image_vec[0]),
camera_mat, cv::Mat(1, 8, CV_32F, cv::Scalar::all(0)),
rvec, tvec, false, 200, 2.f, 100, &inliers);
cv::gpu::solvePnPRansac(object, cv::Mat(1, image_vec.size(), CV_32FC2, &image_vec[0]), camera_mat,
cv::Mat(1, 8, CV_32F, cv::Scalar::all(0)), rvec, tvec, false, 200, 2.f, 100, &inliers);
ASSERT_LE(cv::norm(rvec - rvec_gold), 1e-3f);
ASSERT_LE(cv::norm(tvec - tvec_gold), 1e-3f);
ASSERT_LE(cv::norm(rvec - rvec_gold), 1e-3);
ASSERT_LE(cv::norm(tvec - tvec_gold), 1e-3);
}
INSTANTIATE_TEST_CASE_P(Calib3D, SolvePnPRansac, ALL_DEVICES);
INSTANTIATE_TEST_CASE_P(GPU_Calib3D, SolvePnPRansac, ALL_DEVICES);
#endif // HAVE_CUDA
} // namespace

View File

@ -41,9 +41,11 @@
#include "precomp.hpp"
#ifdef HAVE_CUDA
namespace {
PARAM_TEST_CASE(CopyMakeBorder, cv::gpu::DeviceInfo, cv::Size, MatType, int, Border, UseRoi)
IMPLEMENT_PARAM_CLASS(Border, int)
PARAM_TEST_CASE(CopyMakeBorder, cv::gpu::DeviceInfo, cv::Size, MatType, Border, BorderType, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
cv::Size size;
@ -80,11 +82,19 @@ TEST_P(CopyMakeBorder, Accuracy)
}
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, CopyMakeBorder, testing::Combine(
ALL_DEVICES,
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4), MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)),
testing::Values(1, 10, 50),
testing::Values(Border(cv::BORDER_REFLECT101), Border(cv::BORDER_REPLICATE), Border(cv::BORDER_CONSTANT), Border(cv::BORDER_REFLECT), Border(cv::BORDER_WRAP)),
testing::Values(MatType(CV_8UC1),
MatType(CV_8UC3),
MatType(CV_8UC4),
MatType(CV_16UC1),
MatType(CV_16UC3),
MatType(CV_16UC4),
MatType(CV_32FC1),
MatType(CV_32FC3),
MatType(CV_32FC4)),
testing::Values(Border(1), Border(10), Border(50)),
ALL_BORDER_TYPES,
WHOLE_SUBMAT));
#endif // HAVE_CUDA
} // namespace

View File

@ -41,10 +41,12 @@
#include "precomp.hpp"
namespace {
////////////////////////////////////////////////////////////////////////////////
// Add_Array
PARAM_TEST_CASE(Add_Array, cv::gpu::DeviceInfo, cv::Size, std::pair<MatDepth, MatDepth>, int, UseRoi)
PARAM_TEST_CASE(Add_Array, cv::gpu::DeviceInfo, cv::Size, std::pair<MatDepth, MatDepth>, Channels, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
cv::Size size;
@ -90,7 +92,7 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, Add_Array, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
DEPTH_PAIRS,
testing::Values(1, 2, 3, 4),
ALL_CHANNELS,
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
@ -139,7 +141,7 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, Add_Scalar, testing::Combine(
////////////////////////////////////////////////////////////////////////////////
// Subtract_Array
PARAM_TEST_CASE(Subtract_Array, cv::gpu::DeviceInfo, cv::Size, std::pair<MatDepth, MatDepth>, int, UseRoi)
PARAM_TEST_CASE(Subtract_Array, cv::gpu::DeviceInfo, cv::Size, std::pair<MatDepth, MatDepth>, Channels, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
cv::Size size;
@ -185,7 +187,7 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, Subtract_Array, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
DEPTH_PAIRS,
testing::Values(1, 2, 3, 4),
ALL_CHANNELS,
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
@ -234,7 +236,7 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, Subtract_Scalar, testing::Combine(
////////////////////////////////////////////////////////////////////////////////
// Multiply_Array
PARAM_TEST_CASE(Multiply_Array, cv::gpu::DeviceInfo, cv::Size, std::pair<MatDepth, MatDepth>, int, UseRoi)
PARAM_TEST_CASE(Multiply_Array, cv::gpu::DeviceInfo, cv::Size, std::pair<MatDepth, MatDepth>, Channels, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
cv::Size size;
@ -279,7 +281,7 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, Multiply_Array, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
DEPTH_PAIRS,
testing::Values(1, 2, 3, 4),
ALL_CHANNELS,
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
@ -425,7 +427,7 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, Multiply_Scalar, testing::Combine(
////////////////////////////////////////////////////////////////////////////////
// Divide_Array
PARAM_TEST_CASE(Divide_Array, cv::gpu::DeviceInfo, cv::Size, std::pair<MatDepth, MatDepth>, int, UseRoi)
PARAM_TEST_CASE(Divide_Array, cv::gpu::DeviceInfo, cv::Size, std::pair<MatDepth, MatDepth>, Channels, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
cv::Size size;
@ -470,7 +472,7 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, Divide_Array, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
DEPTH_PAIRS,
testing::Values(1, 2, 3, 4),
ALL_CHANNELS,
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
@ -794,31 +796,28 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, Sqr, testing::Combine(
////////////////////////////////////////////////////////////////////////////////
// Sqrt
namespace
template <typename T> void sqrtImpl(const cv::Mat& src, cv::Mat& dst)
{
template <typename T> void sqrtImpl(const cv::Mat& src, cv::Mat& dst)
dst.create(src.size(), src.type());
for (int y = 0; y < src.rows; ++y)
{
dst.create(src.size(), src.type());
for (int y = 0; y < src.rows; ++y)
{
for (int x = 0; x < src.cols; ++x)
dst.at<T>(y, x) = static_cast<T>(std::sqrt(static_cast<float>(src.at<T>(y, x))));
}
for (int x = 0; x < src.cols; ++x)
dst.at<T>(y, x) = static_cast<T>(std::sqrt(static_cast<float>(src.at<T>(y, x))));
}
}
void sqrtGold(const cv::Mat& src, cv::Mat& dst)
void sqrtGold(const cv::Mat& src, cv::Mat& dst)
{
typedef void (*func_t)(const cv::Mat& src, cv::Mat& dst);
const func_t funcs[] =
{
typedef void (*func_t)(const cv::Mat& src, cv::Mat& dst);
sqrtImpl<uchar>, sqrtImpl<schar>, sqrtImpl<ushort>, sqrtImpl<short>,
sqrtImpl<int>, sqrtImpl<float>
};
const func_t funcs[] =
{
sqrtImpl<uchar>, sqrtImpl<schar>, sqrtImpl<ushort>, sqrtImpl<short>,
sqrtImpl<int>, sqrtImpl<float>
};
funcs[src.depth()](src, dst);
}
funcs[src.depth()](src, dst);
}
PARAM_TEST_CASE(Sqrt, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi)
@ -864,31 +863,28 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, Sqrt, testing::Combine(
////////////////////////////////////////////////////////////////////////////////
// Log
namespace
template <typename T> void logImpl(const cv::Mat& src, cv::Mat& dst)
{
template <typename T> void logImpl(const cv::Mat& src, cv::Mat& dst)
dst.create(src.size(), src.type());
for (int y = 0; y < src.rows; ++y)
{
dst.create(src.size(), src.type());
for (int y = 0; y < src.rows; ++y)
{
for (int x = 0; x < src.cols; ++x)
dst.at<T>(y, x) = static_cast<T>(std::log(static_cast<float>(src.at<T>(y, x))));
}
for (int x = 0; x < src.cols; ++x)
dst.at<T>(y, x) = static_cast<T>(std::log(static_cast<float>(src.at<T>(y, x))));
}
}
void logGold(const cv::Mat& src, cv::Mat& dst)
void logGold(const cv::Mat& src, cv::Mat& dst)
{
typedef void (*func_t)(const cv::Mat& src, cv::Mat& dst);
const func_t funcs[] =
{
typedef void (*func_t)(const cv::Mat& src, cv::Mat& dst);
logImpl<uchar>, logImpl<schar>, logImpl<ushort>, logImpl<short>,
logImpl<int>, logImpl<float>
};
const func_t funcs[] =
{
logImpl<uchar>, logImpl<schar>, logImpl<ushort>, logImpl<short>,
logImpl<int>, logImpl<float>
};
funcs[src.depth()](src, dst);
}
funcs[src.depth()](src, dst);
}
PARAM_TEST_CASE(Log, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi)
@ -974,6 +970,9 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, Exp, testing::Combine(
////////////////////////////////////////////////////////////////////////////////
// compare
CV_ENUM(CmpCode, cv::CMP_EQ, cv::CMP_GT, cv::CMP_GE, cv::CMP_LT, cv::CMP_LE, cv::CMP_NE)
#define ALL_CMP_CODES testing::Values(CmpCode(cv::CMP_EQ), CmpCode(cv::CMP_NE), CmpCode(cv::CMP_GT), CmpCode(cv::CMP_GE), CmpCode(cv::CMP_LT), CmpCode(cv::CMP_LE))
PARAM_TEST_CASE(Compare, cv::gpu::DeviceInfo, cv::Size, MatDepth, CmpCode, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
@ -1088,7 +1087,7 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, Bitwise_Array, testing::Combine(
//////////////////////////////////////////////////////////////////////////////
// Bitwise_Scalar
PARAM_TEST_CASE(Bitwise_Scalar, cv::gpu::DeviceInfo, cv::Size, MatDepth, int)
PARAM_TEST_CASE(Bitwise_Scalar, cv::gpu::DeviceInfo, cv::Size, MatDepth, Channels)
{
cv::gpu::DeviceInfo devInfo;
cv::Size size;
@ -1150,43 +1149,40 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, Bitwise_Scalar, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Values(MatDepth(CV_8U), MatDepth(CV_16U), MatDepth(CV_32S)),
testing::Values(1, 3, 4)));
IMAGE_CHANNELS));
//////////////////////////////////////////////////////////////////////////////
// RShift
namespace
template <typename T> void rhiftImpl(const cv::Mat& src, cv::Scalar_<int> val, cv::Mat& dst)
{
template <typename T> void rhiftImpl(const cv::Mat& src, cv::Scalar_<int> val, cv::Mat& dst)
const int cn = src.channels();
dst.create(src.size(), src.type());
for (int y = 0; y < src.rows; ++y)
{
const int cn = src.channels();
dst.create(src.size(), src.type());
for (int y = 0; y < src.rows; ++y)
for (int x = 0; x < src.cols; ++x)
{
for (int x = 0; x < src.cols; ++x)
{
for (int c = 0; c < cn; ++c)
dst.at<T>(y, x * cn + c) = src.at<T>(y, x * cn + c) >> val.val[c];
}
for (int c = 0; c < cn; ++c)
dst.at<T>(y, x * cn + c) = src.at<T>(y, x * cn + c) >> val.val[c];
}
}
void rhiftGold(const cv::Mat& src, cv::Scalar_<int> val, cv::Mat& dst)
{
typedef void (*func_t)(const cv::Mat& src, cv::Scalar_<int> val, cv::Mat& dst);
const func_t funcs[] =
{
rhiftImpl<uchar>, rhiftImpl<schar>, rhiftImpl<ushort>, rhiftImpl<short>, rhiftImpl<int>
};
funcs[src.depth()](src, val, dst);
}
}
PARAM_TEST_CASE(RShift, cv::gpu::DeviceInfo, cv::Size, MatDepth, int, UseRoi)
void rhiftGold(const cv::Mat& src, cv::Scalar_<int> val, cv::Mat& dst)
{
typedef void (*func_t)(const cv::Mat& src, cv::Scalar_<int> val, cv::Mat& dst);
const func_t funcs[] =
{
rhiftImpl<uchar>, rhiftImpl<schar>, rhiftImpl<ushort>, rhiftImpl<short>, rhiftImpl<int>
};
funcs[src.depth()](src, val, dst);
}
PARAM_TEST_CASE(RShift, cv::gpu::DeviceInfo, cv::Size, MatDepth, Channels, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
cv::Size size;
@ -1229,44 +1225,41 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, RShift, testing::Combine(
MatDepth(CV_16U),
MatDepth(CV_16S),
MatDepth(CV_32S)),
testing::Values(1, 3, 4),
IMAGE_CHANNELS,
WHOLE_SUBMAT));
//////////////////////////////////////////////////////////////////////////////
// LShift
namespace
template <typename T> void lhiftImpl(const cv::Mat& src, cv::Scalar_<int> val, cv::Mat& dst)
{
template <typename T> void lhiftImpl(const cv::Mat& src, cv::Scalar_<int> val, cv::Mat& dst)
const int cn = src.channels();
dst.create(src.size(), src.type());
for (int y = 0; y < src.rows; ++y)
{
const int cn = src.channels();
dst.create(src.size(), src.type());
for (int y = 0; y < src.rows; ++y)
for (int x = 0; x < src.cols; ++x)
{
for (int x = 0; x < src.cols; ++x)
{
for (int c = 0; c < cn; ++c)
dst.at<T>(y, x * cn + c) = src.at<T>(y, x * cn + c) << val.val[c];
}
for (int c = 0; c < cn; ++c)
dst.at<T>(y, x * cn + c) = src.at<T>(y, x * cn + c) << val.val[c];
}
}
void lhiftGold(const cv::Mat& src, cv::Scalar_<int> val, cv::Mat& dst)
{
typedef void (*func_t)(const cv::Mat& src, cv::Scalar_<int> val, cv::Mat& dst);
const func_t funcs[] =
{
lhiftImpl<uchar>, lhiftImpl<schar>, lhiftImpl<ushort>, lhiftImpl<short>, lhiftImpl<int>
};
funcs[src.depth()](src, val, dst);
}
}
PARAM_TEST_CASE(LShift, cv::gpu::DeviceInfo, cv::Size, MatDepth, int, UseRoi)
void lhiftGold(const cv::Mat& src, cv::Scalar_<int> val, cv::Mat& dst)
{
typedef void (*func_t)(const cv::Mat& src, cv::Scalar_<int> val, cv::Mat& dst);
const func_t funcs[] =
{
lhiftImpl<uchar>, lhiftImpl<schar>, lhiftImpl<ushort>, lhiftImpl<short>, lhiftImpl<int>
};
funcs[src.depth()](src, val, dst);
}
PARAM_TEST_CASE(LShift, cv::gpu::DeviceInfo, cv::Size, MatDepth, Channels, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
cv::Size size;
@ -1305,7 +1298,7 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, LShift, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Values(MatDepth(CV_8U), MatDepth(CV_16U), MatDepth(CV_32S)),
testing::Values(1, 3, 4),
IMAGE_CHANNELS,
WHOLE_SUBMAT));
//////////////////////////////////////////////////////////////////////////////
@ -1411,7 +1404,7 @@ PARAM_TEST_CASE(Pow, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi)
TEST_P(Pow, Accuracy)
{
cv::Mat src = randomMat(size, depth, 0.0, 100.0);
cv::Mat src = randomMat(size, depth, 0.0, 10.0);
double power = randomDouble(2.0, 4.0);
if (src.depth() < CV_32F)
@ -1423,7 +1416,7 @@ TEST_P(Pow, Accuracy)
cv::Mat dst_gold;
cv::pow(src, power, dst_gold);
EXPECT_MAT_NEAR(dst_gold, dst, depth < CV_32F ? 0.0 : 1e-6);
EXPECT_MAT_NEAR(dst_gold, dst, depth < CV_32F ? 0.0 : 1e-1);
}
INSTANTIATE_TEST_CASE_P(GPU_Core, Pow, testing::Combine(
@ -1486,6 +1479,9 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, AddWeighted, testing::Combine(
//////////////////////////////////////////////////////////////////////////////
// GEMM
CV_FLAGS(GemmFlags, 0, cv::GEMM_1_T, cv::GEMM_2_T, cv::GEMM_3_T);
#define ALL_GEMM_FLAGS testing::Values(GemmFlags(0), GemmFlags(cv::GEMM_1_T), GemmFlags(cv::GEMM_2_T), GemmFlags(cv::GEMM_3_T), GemmFlags(cv::GEMM_1_T | cv::GEMM_2_T), GemmFlags(cv::GEMM_1_T | cv::GEMM_3_T), GemmFlags(cv::GEMM_1_T | cv::GEMM_2_T | cv::GEMM_3_T))
PARAM_TEST_CASE(GEMM, cv::gpu::DeviceInfo, cv::Size, MatType, GemmFlags, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
@ -1579,6 +1575,10 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, Transpose, testing::Combine(
////////////////////////////////////////////////////////////////////////////////
// Flip
enum {FLIP_BOTH = 0, FLIP_X = 1, FLIP_Y = -1};
CV_ENUM(FlipCode, FLIP_BOTH, FLIP_X, FLIP_Y)
#define ALL_FLIP_CODES testing::Values(FlipCode(FLIP_BOTH), FlipCode(FLIP_X), FlipCode(FLIP_Y))
PARAM_TEST_CASE(Flip, cv::gpu::DeviceInfo, cv::Size, MatType, FlipCode, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
@ -1772,7 +1772,9 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, Magnitude, testing::Combine(
////////////////////////////////////////////////////////////////////////////////
// Phase
PARAM_TEST_CASE(Phase, cv::gpu::DeviceInfo, cv::Size, bool, UseRoi)
IMPLEMENT_PARAM_CLASS(AngleInDegrees, bool)
PARAM_TEST_CASE(Phase, cv::gpu::DeviceInfo, cv::Size, AngleInDegrees, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
cv::Size size;
@ -1807,13 +1809,13 @@ TEST_P(Phase, Accuracy)
INSTANTIATE_TEST_CASE_P(GPU_Core, Phase, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Bool(),
testing::Values(AngleInDegrees(false), AngleInDegrees(true)),
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
// CartToPolar
PARAM_TEST_CASE(CartToPolar, cv::gpu::DeviceInfo, cv::Size, bool, UseRoi)
PARAM_TEST_CASE(CartToPolar, cv::gpu::DeviceInfo, cv::Size, AngleInDegrees, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
cv::Size size;
@ -1851,13 +1853,13 @@ TEST_P(CartToPolar, Accuracy)
INSTANTIATE_TEST_CASE_P(GPU_Core, CartToPolar, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Bool(),
testing::Values(AngleInDegrees(false), AngleInDegrees(true)),
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
// polarToCart
PARAM_TEST_CASE(PolarToCart, cv::gpu::DeviceInfo, cv::Size, bool, UseRoi)
PARAM_TEST_CASE(PolarToCart, cv::gpu::DeviceInfo, cv::Size, AngleInDegrees, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
cv::Size size;
@ -1895,7 +1897,7 @@ TEST_P(PolarToCart, Accuracy)
INSTANTIATE_TEST_CASE_P(GPU_Core, PolarToCart, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Bool(),
testing::Values(AngleInDegrees(false), AngleInDegrees(true)),
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
@ -2026,84 +2028,81 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, NormDiff, testing::Combine(
//////////////////////////////////////////////////////////////////////////////
// Sum
namespace
template <typename T>
cv::Scalar absSumImpl(const cv::Mat& src)
{
template <typename T>
cv::Scalar absSumImpl(const cv::Mat& src)
const int cn = src.channels();
cv::Scalar sum = cv::Scalar::all(0);
for (int y = 0; y < src.rows; ++y)
{
const int cn = src.channels();
cv::Scalar sum = cv::Scalar::all(0);
for (int y = 0; y < src.rows; ++y)
for (int x = 0; x < src.cols; ++x)
{
for (int x = 0; x < src.cols; ++x)
for (int c = 0; c < cn; ++c)
sum[c] += std::abs(src.at<T>(y, x * cn + c));
}
}
return sum;
}
cv::Scalar absSumGold(const cv::Mat& src)
{
typedef cv::Scalar (*func_t)(const cv::Mat& src);
static const func_t funcs[] =
{
absSumImpl<uchar>,
absSumImpl<schar>,
absSumImpl<ushort>,
absSumImpl<short>,
absSumImpl<int>,
absSumImpl<float>,
absSumImpl<double>
};
return funcs[src.depth()](src);
}
template <typename T>
cv::Scalar sqrSumImpl(const cv::Mat& src)
{
const int cn = src.channels();
cv::Scalar sum = cv::Scalar::all(0);
for (int y = 0; y < src.rows; ++y)
{
for (int x = 0; x < src.cols; ++x)
{
for (int c = 0; c < cn; ++c)
{
for (int c = 0; c < cn; ++c)
sum[c] += std::abs(src.at<T>(y, x * cn + c));
const T val = src.at<T>(y, x * cn + c);
sum[c] += val * val;
}
}
return sum;
}
cv::Scalar absSumGold(const cv::Mat& src)
return sum;
}
cv::Scalar sqrSumGold(const cv::Mat& src)
{
typedef cv::Scalar (*func_t)(const cv::Mat& src);
static const func_t funcs[] =
{
typedef cv::Scalar (*func_t)(const cv::Mat& src);
sqrSumImpl<uchar>,
sqrSumImpl<schar>,
sqrSumImpl<ushort>,
sqrSumImpl<short>,
sqrSumImpl<int>,
sqrSumImpl<float>,
sqrSumImpl<double>
};
static const func_t funcs[] =
{
absSumImpl<uchar>,
absSumImpl<schar>,
absSumImpl<ushort>,
absSumImpl<short>,
absSumImpl<int>,
absSumImpl<float>,
absSumImpl<double>
};
return funcs[src.depth()](src);
}
template <typename T>
cv::Scalar sqrSumImpl(const cv::Mat& src)
{
const int cn = src.channels();
cv::Scalar sum = cv::Scalar::all(0);
for (int y = 0; y < src.rows; ++y)
{
for (int x = 0; x < src.cols; ++x)
{
for (int c = 0; c < cn; ++c)
{
const T val = src.at<T>(y, x * cn + c);
sum[c] += val * val;
}
}
}
return sum;
}
cv::Scalar sqrSumGold(const cv::Mat& src)
{
typedef cv::Scalar (*func_t)(const cv::Mat& src);
static const func_t funcs[] =
{
sqrSumImpl<uchar>,
sqrSumImpl<schar>,
sqrSumImpl<ushort>,
sqrSumImpl<short>,
sqrSumImpl<int>,
sqrSumImpl<float>,
sqrSumImpl<double>
};
return funcs[src.depth()](src);
}
return funcs[src.depth()](src);
}
PARAM_TEST_CASE(Sum, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi)
@ -2164,57 +2163,6 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, Sum, testing::Combine(
////////////////////////////////////////////////////////////////////////////////
// MinMax
namespace
{
void minMaxLocGold(const cv::Mat& src, double* minVal_, double* maxVal_ = 0, cv::Point* minLoc_ = 0, cv::Point* maxLoc_ = 0, const cv::Mat& mask = cv::Mat())
{
if (src.depth() != CV_8S)
{
cv::minMaxLoc(src, minVal_, maxVal_, minLoc_, maxLoc_, mask);
return;
}
// OpenCV's minMaxLoc doesn't support CV_8S type
double minVal = std::numeric_limits<double>::max();
cv::Point minLoc(-1, -1);
double maxVal = -std::numeric_limits<double>::max();
cv::Point maxLoc(-1, -1);
for (int y = 0; y < src.rows; ++y)
{
const schar* src_row = src.ptr<signed char>(y);
const uchar* mask_row = mask.empty() ? 0 : mask.ptr<unsigned char>(y);
for (int x = 0; x < src.cols; ++x)
{
if (!mask_row || mask_row[x])
{
schar val = src_row[x];
if (val < minVal)
{
minVal = val;
minLoc = cv::Point(x, y);
}
if (val > maxVal)
{
maxVal = val;
maxLoc = cv::Point(x, y);
}
}
}
}
if (minVal_) *minVal_ = minVal;
if (maxVal_) *maxVal_ = maxVal;
if (minLoc_) *minLoc_ = minLoc;
if (maxLoc_) *maxLoc_ = maxLoc;
}
}
PARAM_TEST_CASE(MinMax, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
@ -2278,31 +2226,28 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, MinMax, testing::Combine(
////////////////////////////////////////////////////////////////////////////////
// MinMaxLoc
namespace
template <typename T>
void expectEqualImpl(const cv::Mat& src, cv::Point loc_gold, cv::Point loc)
{
template <typename T>
void expectEqualImpl(const cv::Mat& src, cv::Point loc_gold, cv::Point loc)
EXPECT_EQ(src.at<T>(loc_gold.y, loc_gold.x), src.at<T>(loc.y, loc.x));
}
void expectEqual(const cv::Mat& src, cv::Point loc_gold, cv::Point loc)
{
typedef void (*func_t)(const cv::Mat& src, cv::Point loc_gold, cv::Point loc);
static const func_t funcs[] =
{
EXPECT_EQ(src.at<T>(loc_gold.y, loc_gold.x), src.at<T>(loc.y, loc.x));
}
expectEqualImpl<uchar>,
expectEqualImpl<schar>,
expectEqualImpl<ushort>,
expectEqualImpl<short>,
expectEqualImpl<int>,
expectEqualImpl<float>,
expectEqualImpl<double>
};
void expectEqual(const cv::Mat& src, cv::Point loc_gold, cv::Point loc)
{
typedef void (*func_t)(const cv::Mat& src, cv::Point loc_gold, cv::Point loc);
static const func_t funcs[] =
{
expectEqualImpl<uchar>,
expectEqualImpl<schar>,
expectEqualImpl<ushort>,
expectEqualImpl<short>,
expectEqualImpl<int>,
expectEqualImpl<float>,
expectEqualImpl<double>
};
funcs[src.depth()](src, loc_gold, loc);
}
funcs[src.depth()](src, loc_gold, loc);
}
PARAM_TEST_CASE(MinMaxLoc, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi)
@ -2420,7 +2365,10 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, CountNonZero, testing::Combine(
//////////////////////////////////////////////////////////////////////////////
// Reduce
PARAM_TEST_CASE(Reduce, cv::gpu::DeviceInfo, cv::Size, MatDepth, int, ReduceCode, UseRoi)
CV_ENUM(ReduceCode, CV_REDUCE_SUM, CV_REDUCE_AVG, CV_REDUCE_MAX, CV_REDUCE_MIN)
#define ALL_REDUCE_CODES testing::Values(ReduceCode(CV_REDUCE_SUM), ReduceCode(CV_REDUCE_AVG), ReduceCode(CV_REDUCE_MAX), ReduceCode(CV_REDUCE_MIN))
PARAM_TEST_CASE(Reduce, cv::gpu::DeviceInfo, cv::Size, MatDepth, Channels, ReduceCode, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
cv::Size size;
@ -2448,6 +2396,7 @@ PARAM_TEST_CASE(Reduce, cv::gpu::DeviceInfo, cv::Size, MatDepth, int, ReduceCode
dst_depth = (reduceOp == CV_REDUCE_MAX || reduceOp == CV_REDUCE_MIN) ? depth : CV_32F;
dst_type = CV_MAKE_TYPE(dst_depth, channels);
}
};
TEST_P(Reduce, Rows)
@ -2486,6 +2435,8 @@ INSTANTIATE_TEST_CASE_P(GPU_Core, Reduce, testing::Combine(
MatDepth(CV_16U),
MatDepth(CV_16S),
MatDepth(CV_32F)),
testing::Values(1, 2, 3, 4),
ALL_CHANNELS,
ALL_REDUCE_CODES,
WHOLE_SUBMAT));
} // namespace

View File

@ -41,12 +41,74 @@
#include "precomp.hpp"
#ifdef HAVE_CUDA
namespace {
using namespace cvtest;
using namespace testing;
bool keyPointsEquals(const cv::KeyPoint& p1, const cv::KeyPoint& p2)
{
const double maxPtDif = 1.0;
const double maxSizeDif = 1.0;
const double maxAngleDif = 2.0;
const double maxResponseDif = 0.1;
int getValidMatchesCount(const std::vector<cv::KeyPoint>& keypoints1, const std::vector<cv::KeyPoint>& keypoints2, const std::vector<cv::DMatch>& matches)
double dist = cv::norm(p1.pt - p2.pt);
if (dist < maxPtDif &&
fabs(p1.size - p2.size) < maxSizeDif &&
abs(p1.angle - p2.angle) < maxAngleDif &&
abs(p1.response - p2.response) < maxResponseDif &&
p1.octave == p2.octave &&
p1.class_id == p2.class_id)
{
return true;
}
return false;
}
struct KeyPointLess : std::binary_function<cv::KeyPoint, cv::KeyPoint, bool>
{
bool operator()(const cv::KeyPoint& kp1, const cv::KeyPoint& kp2) const
{
return kp1.pt.y < kp2.pt.y || (kp1.pt.y == kp2.pt.y && kp1.pt.x < kp2.pt.x);
}
};
testing::AssertionResult assertKeyPointsEquals(const char* gold_expr, const char* actual_expr, std::vector<cv::KeyPoint>& gold, std::vector<cv::KeyPoint>& actual)
{
if (gold.size() != actual.size())
{
return testing::AssertionFailure() << "KeyPoints size mistmach\n"
<< "\"" << gold_expr << "\" : " << gold.size() << "\n"
<< "\"" << actual_expr << "\" : " << actual.size();
}
std::sort(actual.begin(), actual.end(), KeyPointLess());
std::sort(gold.begin(), gold.end(), KeyPointLess());
for (size_t i; i < gold.size(); ++i)
{
const cv::KeyPoint& p1 = gold[i];
const cv::KeyPoint& p2 = actual[i];
if (!keyPointsEquals(p1, p2))
{
return testing::AssertionFailure() << "KeyPoints differ at " << i << "\n"
<< "\"" << gold_expr << "\" vs \"" << actual_expr << "\" : \n"
<< "pt : " << testing::PrintToString(p1.pt) << " vs " << testing::PrintToString(p2.pt) << "\n"
<< "size : " << p1.size << " vs " << p2.size << "\n"
<< "angle : " << p1.angle << " vs " << p2.angle << "\n"
<< "response : " << p1.response << " vs " << p2.response << "\n"
<< "octave : " << p1.octave << " vs " << p2.octave << "\n"
<< "class_id : " << p1.class_id << " vs " << p2.class_id;
}
}
return ::testing::AssertionSuccess();
}
#define ASSERT_KEYPOINTS_EQ(gold, actual) EXPECT_PRED_FORMAT2(assertKeyPointsEquals, gold, actual);
int getMatchedPointsCount(const std::vector<cv::KeyPoint>& keypoints1, const std::vector<cv::KeyPoint>& keypoints2, const std::vector<cv::DMatch>& matches)
{
int validCount = 0;
@ -57,22 +119,8 @@ int getValidMatchesCount(const std::vector<cv::KeyPoint>& keypoints1, const std:
const cv::KeyPoint& p1 = keypoints1[m.queryIdx];
const cv::KeyPoint& p2 = keypoints2[m.trainIdx];
const float maxPtDif = 1.f;
const float maxSizeDif = 1.f;
const float maxAngleDif = 2.f;
const float maxResponseDif = 0.1f;
float dist = (float) cv::norm(p1.pt - p2.pt);
if (dist < maxPtDif &&
fabs(p1.size - p2.size) < maxSizeDif &&
abs(p1.angle - p2.angle) < maxAngleDif &&
abs(p1.response - p2.response) < maxResponseDif &&
p1.octave == p2.octave &&
p1.class_id == p2.class_id)
{
if (keyPointsEquals(p1, p2))
++validCount;
}
}
return validCount;
@ -81,78 +129,280 @@ int getValidMatchesCount(const std::vector<cv::KeyPoint>& keypoints1, const std:
/////////////////////////////////////////////////////////////////////////////////////////////////
// SURF
struct SURF : TestWithParam<cv::gpu::DeviceInfo>
IMPLEMENT_PARAM_CLASS(SURF_HessianThreshold, double)
IMPLEMENT_PARAM_CLASS(SURF_Octaves, int)
IMPLEMENT_PARAM_CLASS(SURF_OctaveLayers, int)
IMPLEMENT_PARAM_CLASS(SURF_Extended, bool)
IMPLEMENT_PARAM_CLASS(SURF_Upright, bool)
PARAM_TEST_CASE(SURF, cv::gpu::DeviceInfo, SURF_HessianThreshold, SURF_Octaves, SURF_OctaveLayers, SURF_Extended, SURF_Upright)
{
cv::gpu::DeviceInfo devInfo;
cv::Mat image;
cv::Mat mask;
std::vector<cv::KeyPoint> keypoints_gold;
std::vector<float> descriptors_gold;
double hessianThreshold;
int nOctaves;
int nOctaveLayers;
bool extended;
bool upright;
virtual void SetUp()
{
devInfo = GetParam();
devInfo = GET_PARAM(0);
hessianThreshold = GET_PARAM(1);
nOctaves = GET_PARAM(2);
nOctaveLayers = GET_PARAM(3);
extended = GET_PARAM(4);
upright = GET_PARAM(5);
cv::gpu::setDevice(devInfo.deviceID());
image = readImage("features2d/aloe.png", CV_LOAD_IMAGE_GRAYSCALE);
ASSERT_FALSE(image.empty());
mask = cv::Mat(image.size(), CV_8UC1, cv::Scalar::all(1));
mask(cv::Range(0, image.rows / 2), cv::Range(0, image.cols / 2)).setTo(cv::Scalar::all(0));
cv::SURF fdetector_gold;
fdetector_gold.extended = false;
fdetector_gold(image, mask, keypoints_gold, descriptors_gold);
}
};
TEST_P(SURF, EmptyDataTest)
TEST_P(SURF, Detector)
{
cv::gpu::SURF_GPU fdetector;
cv::Mat image = readImage("features2d/aloe.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(image.empty());
cv::gpu::SURF_GPU surf;
surf.hessianThreshold = hessianThreshold;
surf.nOctaves = nOctaves;
surf.nOctaveLayers = nOctaveLayers;
surf.extended = extended;
surf.upright = upright;
surf.keypointsRatio = 0.05f;
cv::gpu::GpuMat image;
std::vector<cv::KeyPoint> keypoints;
std::vector<float> descriptors;
surf(loadMat(image), cv::gpu::GpuMat(), keypoints);
fdetector(image, cv::gpu::GpuMat(), keypoints, descriptors);
cv::SURF surf_gold;
surf_gold.hessianThreshold = hessianThreshold;
surf_gold.nOctaves = nOctaves;
surf_gold.nOctaveLayers = nOctaveLayers;
surf_gold.extended = extended;
surf_gold.upright = upright;
EXPECT_TRUE(keypoints.empty());
EXPECT_TRUE(descriptors.empty());
std::vector<cv::KeyPoint> keypoints_gold;
surf_gold(image, cv::noArray(), keypoints_gold);
ASSERT_KEYPOINTS_EQ(keypoints_gold, keypoints);
}
TEST_P(SURF, Accuracy)
TEST_P(SURF, Detector_Masked)
{
cv::Mat image = readImage("features2d/aloe.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(image.empty());
cv::Mat mask(image.size(), CV_8UC1, cv::Scalar::all(1));
mask(cv::Range(0, image.rows / 2), cv::Range(0, image.cols / 2)).setTo(cv::Scalar::all(0));
cv::gpu::SURF_GPU surf;
surf.hessianThreshold = hessianThreshold;
surf.nOctaves = nOctaves;
surf.nOctaveLayers = nOctaveLayers;
surf.extended = extended;
surf.upright = upright;
surf.keypointsRatio = 0.05f;
std::vector<cv::KeyPoint> keypoints;
cv::Mat descriptors;
surf(loadMat(image), loadMat(mask), keypoints);
cv::gpu::GpuMat dev_descriptors;
cv::gpu::SURF_GPU fdetector; fdetector.extended = false;
cv::SURF surf_gold;
surf_gold.hessianThreshold = hessianThreshold;
surf_gold.nOctaves = nOctaves;
surf_gold.nOctaveLayers = nOctaveLayers;
surf_gold.extended = extended;
surf_gold.upright = upright;
fdetector(loadMat(image), loadMat(mask), keypoints, dev_descriptors);
std::vector<cv::KeyPoint> keypoints_gold;
surf_gold(image, mask, keypoints_gold);
dev_descriptors.download(descriptors);
ASSERT_KEYPOINTS_EQ(keypoints_gold, keypoints);
}
TEST_P(SURF, Descriptor)
{
cv::Mat image = readImage("features2d/aloe.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(image.empty());
cv::gpu::SURF_GPU surf;
surf.hessianThreshold = hessianThreshold;
surf.nOctaves = nOctaves;
surf.nOctaveLayers = nOctaveLayers;
surf.extended = extended;
surf.upright = upright;
surf.keypointsRatio = 0.05f;
cv::SURF surf_gold;
surf_gold.hessianThreshold = hessianThreshold;
surf_gold.nOctaves = nOctaves;
surf_gold.nOctaveLayers = nOctaveLayers;
surf_gold.extended = extended;
surf_gold.upright = upright;
std::vector<cv::KeyPoint> keypoints;
surf_gold(image, cv::noArray(), keypoints);
cv::gpu::GpuMat descriptors;
surf(loadMat(image), cv::gpu::GpuMat(), keypoints, descriptors, true);
cv::Mat descriptors_gold;
surf_gold(image, cv::noArray(), keypoints, descriptors_gold, true);
cv::BFMatcher matcher(cv::NORM_L2);
std::vector<cv::DMatch> matches;
matcher.match(descriptors_gold, cv::Mat(descriptors), matches);
matcher.match(cv::Mat(static_cast<int>(keypoints_gold.size()), 64, CV_32FC1, &descriptors_gold[0]), descriptors, matches);
int matchedCount = getMatchedPointsCount(keypoints, keypoints, matches);
double matchedRatio = static_cast<double>(matchedCount) / keypoints.size();
int validCount = getValidMatchesCount(keypoints_gold, keypoints, matches);
double validRatio = (double) validCount / matches.size();
EXPECT_GT(validRatio, 0.5);
EXPECT_GT(matchedRatio, 0.35);
}
INSTANTIATE_TEST_CASE_P(Features2D, SURF, DEVICES(cv::gpu::GLOBAL_ATOMICS));
INSTANTIATE_TEST_CASE_P(GPU_Features2D, SURF, testing::Combine(
ALL_DEVICES,
testing::Values(SURF_HessianThreshold(100.0), SURF_HessianThreshold(500.0), SURF_HessianThreshold(1000.0)),
testing::Values(SURF_Octaves(3), SURF_Octaves(4)),
testing::Values(SURF_OctaveLayers(2), SURF_OctaveLayers(3)),
testing::Values(SURF_Extended(false), SURF_Extended(true)),
testing::Values(SURF_Upright(false), SURF_Upright(true))));
/////////////////////////////////////////////////////////////////////////////////////////////////
// FAST
IMPLEMENT_PARAM_CLASS(FAST_Threshold, int)
IMPLEMENT_PARAM_CLASS(FAST_NonmaxSupression, bool)
PARAM_TEST_CASE(FAST, cv::gpu::DeviceInfo, FAST_Threshold, FAST_NonmaxSupression)
{
cv::gpu::DeviceInfo devInfo;
int threshold;
bool nonmaxSupression;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
threshold = GET_PARAM(1);
nonmaxSupression = GET_PARAM(2);
cv::gpu::setDevice(devInfo.deviceID());
}
};
TEST_P(FAST, Accuracy)
{
cv::Mat image = readImage("features2d/aloe.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(image.empty());
cv::gpu::FAST_GPU fast(threshold);
fast.nonmaxSupression = nonmaxSupression;
std::vector<cv::KeyPoint> keypoints;
fast(loadMat(image), cv::gpu::GpuMat(), keypoints);
std::vector<cv::KeyPoint> keypoints_gold;
cv::FAST(image, keypoints_gold, threshold, nonmaxSupression);
ASSERT_KEYPOINTS_EQ(keypoints_gold, keypoints);
}
INSTANTIATE_TEST_CASE_P(GPU_Features2D, FAST, testing::Combine(
ALL_DEVICES,
testing::Values(FAST_Threshold(25), FAST_Threshold(50)),
testing::Values(FAST_NonmaxSupression(false), FAST_NonmaxSupression(true))));
/////////////////////////////////////////////////////////////////////////////////////////////////
// ORB
IMPLEMENT_PARAM_CLASS(ORB_FeaturesCount, int)
IMPLEMENT_PARAM_CLASS(ORB_ScaleFactor, float)
IMPLEMENT_PARAM_CLASS(ORB_LevelsCount, int)
IMPLEMENT_PARAM_CLASS(ORB_EdgeThreshold, int)
IMPLEMENT_PARAM_CLASS(ORB_firstLevel, int)
IMPLEMENT_PARAM_CLASS(ORB_WTA_K, int)
IMPLEMENT_PARAM_CLASS(ORB_PatchSize, int)
IMPLEMENT_PARAM_CLASS(ORB_BlurForDescriptor, bool)
CV_ENUM(ORB_ScoreType, cv::ORB::HARRIS_SCORE, cv::ORB::FAST_SCORE)
PARAM_TEST_CASE(ORB, cv::gpu::DeviceInfo, ORB_FeaturesCount, ORB_ScaleFactor, ORB_LevelsCount, ORB_EdgeThreshold, ORB_firstLevel, ORB_WTA_K, ORB_ScoreType, ORB_PatchSize, ORB_BlurForDescriptor)
{
cv::gpu::DeviceInfo devInfo;
int nFeatures;
float scaleFactor;
int nLevels;
int edgeThreshold;
int firstLevel;
int WTA_K;
int scoreType;
int patchSize;
bool blurForDescriptor;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
nFeatures = GET_PARAM(1);
scaleFactor = GET_PARAM(2);
nLevels = GET_PARAM(3);
edgeThreshold = GET_PARAM(4);
firstLevel = GET_PARAM(5);
WTA_K = GET_PARAM(6);
scoreType = GET_PARAM(7);
patchSize = GET_PARAM(8);
blurForDescriptor = GET_PARAM(9);
cv::gpu::setDevice(devInfo.deviceID());
}
};
TEST_P(ORB, Accuracy)
{
cv::Mat image = readImage("features2d/aloe.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(image.empty());
cv::Mat mask(image.size(), CV_8UC1, cv::Scalar::all(1));
mask(cv::Range(0, image.rows / 2), cv::Range(0, image.cols / 2)).setTo(cv::Scalar::all(0));
cv::gpu::ORB_GPU orb(nFeatures, scaleFactor, nLevels, edgeThreshold, firstLevel, WTA_K, scoreType, patchSize);
orb.blurForDescriptor = blurForDescriptor;
std::vector<cv::KeyPoint> keypoints;
cv::gpu::GpuMat descriptors;
orb(loadMat(image), loadMat(mask), keypoints, descriptors);
cv::ORB orb_gold(nFeatures, scaleFactor, nLevels, edgeThreshold, firstLevel, WTA_K, scoreType, patchSize);
std::vector<cv::KeyPoint> keypoints_gold;
cv::Mat descriptors_gold;
orb_gold(image, mask, keypoints_gold, descriptors_gold);
cv::BFMatcher matcher(cv::NORM_HAMMING);
std::vector<cv::DMatch> matches;
matcher.match(descriptors_gold, cv::Mat(descriptors), matches);
int matchedCount = getMatchedPointsCount(keypoints_gold, keypoints, matches);
double matchedRatio = static_cast<double>(matchedCount) / keypoints.size();
EXPECT_GT(matchedRatio, 0.35);
}
INSTANTIATE_TEST_CASE_P(GPU_Features2D, ORB, testing::Combine(
ALL_DEVICES,
testing::Values(ORB_FeaturesCount(1000)),
testing::Values(ORB_ScaleFactor(1.2f)),
testing::Values(ORB_LevelsCount(4), ORB_LevelsCount(8)),
testing::Values(ORB_EdgeThreshold(31)),
testing::Values(ORB_firstLevel(0), ORB_firstLevel(2)),
testing::Values(ORB_WTA_K(2), ORB_WTA_K(3), ORB_WTA_K(4)),
testing::Values(ORB_ScoreType(cv::ORB::HARRIS_SCORE)),
testing::Values(ORB_PatchSize(31), ORB_PatchSize(29)),
testing::Values(ORB_BlurForDescriptor(false), ORB_BlurForDescriptor(true))));
/////////////////////////////////////////////////////////////////////////////////////////////////
// BruteForceMatcher
PARAM_TEST_CASE(BruteForceMatcher, cv::gpu::DeviceInfo, DistType, int)
CV_ENUM(DistType, cv::gpu::BruteForceMatcher_GPU_base::L1Dist, cv::gpu::BruteForceMatcher_GPU_base::L2Dist, cv::gpu::BruteForceMatcher_GPU_base::HammingDist)
IMPLEMENT_PARAM_CLASS(DescriptorSize, int)
PARAM_TEST_CASE(BruteForceMatcher, cv::gpu::DeviceInfo, DistType, DescriptorSize)
{
cv::gpu::DeviceInfo devInfo;
cv::gpu::BruteForceMatcher_GPU_base::DistType distType;
@ -212,10 +462,9 @@ PARAM_TEST_CASE(BruteForceMatcher, cv::gpu::DeviceInfo, DistType, int)
TEST_P(BruteForceMatcher, Match)
{
std::vector<cv::DMatch> matches;
cv::gpu::BruteForceMatcher_GPU_base matcher(distType);
std::vector<cv::DMatch> matches;
matcher.match(loadMat(query), loadMat(train), matches);
ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
@ -234,17 +483,13 @@ TEST_P(BruteForceMatcher, Match)
TEST_P(BruteForceMatcher, MatchAdd)
{
std::vector<cv::DMatch> matches;
bool isMaskSupported;
cv::gpu::BruteForceMatcher_GPU_base matcher(distType);
cv::gpu::GpuMat d_train(train);
// make add() twice to test such case
matcher.add(std::vector<cv::gpu::GpuMat>(1, d_train.rowRange(0, train.rows/2)));
matcher.add(std::vector<cv::gpu::GpuMat>(1, d_train.rowRange(train.rows/2, train.rows)));
matcher.add(std::vector<cv::gpu::GpuMat>(1, d_train.rowRange(0, train.rows / 2)));
matcher.add(std::vector<cv::gpu::GpuMat>(1, d_train.rowRange(train.rows / 2, train.rows)));
// prepare masks (make first nearest match illegal)
std::vector<cv::gpu::GpuMat> masks(2);
@ -255,28 +500,26 @@ TEST_P(BruteForceMatcher, MatchAdd)
masks[mi].col(di * countFactor).setTo(cv::Scalar::all(0));
}
std::vector<cv::DMatch> matches;
matcher.match(cv::gpu::GpuMat(query), matches, masks);
isMaskSupported = matcher.isMaskSupported();
ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
int badCount = 0;
int shift = matcher.isMaskSupported() ? 1 : 0;
for (size_t i = 0; i < matches.size(); i++)
{
cv::DMatch match = matches[i];
int shift = isMaskSupported ? 1 : 0;
if ((int)i < queryDescCount / 2)
{
if ((int)i < queryDescCount / 2)
{
if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + shift) || (match.imgIdx != 0))
badCount++;
}
else
{
if ((match.queryIdx != (int)i) || (match.trainIdx != ((int)i - queryDescCount / 2) * countFactor + shift) || (match.imgIdx != 1))
badCount++;
}
if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + shift) || (match.imgIdx != 0))
badCount++;
}
else
{
if ((match.queryIdx != (int)i) || (match.trainIdx != ((int)i - queryDescCount / 2) * countFactor + shift) || (match.imgIdx != 1))
badCount++;
}
}
@ -287,9 +530,9 @@ TEST_P(BruteForceMatcher, KnnMatch2)
{
const int knn = 2;
std::vector< std::vector<cv::DMatch> > matches;
cv::gpu::BruteForceMatcher_GPU_base matcher(distType);
std::vector< std::vector<cv::DMatch> > matches;
matcher.knnMatch(loadMat(query), loadMat(train), matches, knn);
ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
@ -317,11 +560,11 @@ TEST_P(BruteForceMatcher, KnnMatch2)
TEST_P(BruteForceMatcher, KnnMatch3)
{
cv::gpu::BruteForceMatcher_GPU_base matcher(distType);
const int knn = 3;
std::vector< std::vector<cv::DMatch> > matches;
cv::gpu::BruteForceMatcher_GPU_base matcher(distType);
matcher.knnMatch(loadMat(query), loadMat(train), matches, knn);
ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
@ -350,9 +593,6 @@ TEST_P(BruteForceMatcher, KnnMatch3)
TEST_P(BruteForceMatcher, KnnMatchAdd2)
{
const int knn = 2;
std::vector< std::vector<cv::DMatch> > matches;
bool isMaskSupported;
cv::gpu::BruteForceMatcher_GPU_base matcher(distType);
@ -371,14 +611,14 @@ TEST_P(BruteForceMatcher, KnnMatchAdd2)
masks[mi].col(di * countFactor).setTo(cv::Scalar::all(0));
}
matcher.knnMatch(cv::gpu::GpuMat(query), matches, knn, masks);
std::vector< std::vector<cv::DMatch> > matches;
isMaskSupported = matcher.isMaskSupported();
matcher.knnMatch(cv::gpu::GpuMat(query), matches, knn, masks);
ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
int badCount = 0;
int shift = isMaskSupported ? 1 : 0;
int shift = matcher.isMaskSupported() ? 1 : 0;
for (size_t i = 0; i < matches.size(); i++)
{
if ((int)matches[i].size() != knn)
@ -412,9 +652,6 @@ TEST_P(BruteForceMatcher, KnnMatchAdd2)
TEST_P(BruteForceMatcher, KnnMatchAdd3)
{
const int knn = 3;
std::vector< std::vector<cv::DMatch> > matches;
bool isMaskSupported;
cv::gpu::BruteForceMatcher_GPU_base matcher(distType);
@ -433,14 +670,13 @@ TEST_P(BruteForceMatcher, KnnMatchAdd3)
masks[mi].col(di * countFactor).setTo(cv::Scalar::all(0));
}
std::vector< std::vector<cv::DMatch> > matches;
matcher.knnMatch(cv::gpu::GpuMat(query), matches, knn, masks);
isMaskSupported = matcher.isMaskSupported();
ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
int badCount = 0;
int shift = isMaskSupported ? 1 : 0;
int shift = matcher.isMaskSupported() ? 1 : 0;
for (size_t i = 0; i < matches.size(); i++)
{
if ((int)matches[i].size() != knn)
@ -473,16 +709,11 @@ TEST_P(BruteForceMatcher, KnnMatchAdd3)
TEST_P(BruteForceMatcher, RadiusMatch)
{
if (!supportFeature(devInfo, cv::gpu::SHARED_ATOMICS))
return;
const float radius = 1.f / countFactor;
std::vector< std::vector<cv::DMatch> > matches;
cv::gpu::BruteForceMatcher_GPU_base matcher(distType);
std::vector< std::vector<cv::DMatch> > matches;
matcher.radiusMatch(loadMat(query), loadMat(train), matches, radius);
ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
@ -505,16 +736,9 @@ TEST_P(BruteForceMatcher, RadiusMatch)
TEST_P(BruteForceMatcher, RadiusMatchAdd)
{
if (!supportFeature(devInfo, cv::gpu::SHARED_ATOMICS))
return;
int n = 3;
const int n = 3;
const float radius = 1.f / countFactor * n;
std::vector< std::vector<cv::DMatch> > matches;
bool isMaskSupported;
cv::gpu::BruteForceMatcher_GPU_base matcher(distType);
cv::gpu::GpuMat d_train(train);
@ -532,15 +756,14 @@ TEST_P(BruteForceMatcher, RadiusMatchAdd)
masks[mi].col(di * countFactor).setTo(cv::Scalar::all(0));
}
std::vector< std::vector<cv::DMatch> > matches;
matcher.radiusMatch(cv::gpu::GpuMat(query), matches, radius, masks);
isMaskSupported = matcher.isMaskSupported();
ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
int badCount = 0;
int shift = isMaskSupported ? 1 : 0;
int needMatchCount = isMaskSupported ? n-1 : n;
int shift = matcher.isMaskSupported() ? 1 : 0;
int needMatchCount = matcher.isMaskSupported() ? n-1 : n;
for (size_t i = 0; i < matches.size(); i++)
{
if ((int)matches[i].size() != needMatchCount)
@ -571,141 +794,9 @@ TEST_P(BruteForceMatcher, RadiusMatchAdd)
ASSERT_EQ(0, badCount);
}
INSTANTIATE_TEST_CASE_P(Features2D, BruteForceMatcher, Combine(
ALL_DEVICES,
Values(cv::gpu::BruteForceMatcher_GPU_base::L1Dist, cv::gpu::BruteForceMatcher_GPU_base::L2Dist),
Values(57, 64, 83, 128, 179, 256, 304)));
INSTANTIATE_TEST_CASE_P(GPU_Features2D, BruteForceMatcher, testing::Combine(
ALL_DEVICES,
testing::Values(DistType(cv::gpu::BruteForceMatcher_GPU_base::L1Dist), DistType(cv::gpu::BruteForceMatcher_GPU_base::L2Dist)),
testing::Values(DescriptorSize(57), DescriptorSize(64), DescriptorSize(83), DescriptorSize(128), DescriptorSize(179), DescriptorSize(256), DescriptorSize(304))));
/////////////////////////////////////////////////////////////////////////////////////////////////
// FAST
struct FAST : TestWithParam<cv::gpu::DeviceInfo>
{
cv::gpu::DeviceInfo devInfo;
cv::Mat image;
int threshold;
std::vector<cv::KeyPoint> keypoints_gold;
virtual void SetUp()
{
devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
image = readImage("features2d/aloe.png", CV_LOAD_IMAGE_GRAYSCALE);
ASSERT_FALSE(image.empty());
threshold = 30;
cv::FAST(image, keypoints_gold, threshold);
}
};
struct HashEq
{
size_t hash;
inline HashEq(size_t hash_) : hash(hash_) {}
inline bool operator ()(const cv::KeyPoint& kp) const
{
return kp.hash() == hash;
}
};
struct KeyPointCompare
{
inline bool operator ()(const cv::KeyPoint& kp1, const cv::KeyPoint& kp2) const
{
return kp1.pt.y < kp2.pt.y || (kp1.pt.y == kp2.pt.y && kp1.pt.x < kp2.pt.x);
}
};
TEST_P(FAST, Accuracy)
{
std::vector<cv::KeyPoint> keypoints;
cv::gpu::FAST_GPU fastGPU(threshold);
fastGPU(cv::gpu::GpuMat(image), cv::gpu::GpuMat(), keypoints);
ASSERT_EQ(keypoints.size(), keypoints_gold.size());
std::sort(keypoints.begin(), keypoints.end(), KeyPointCompare());
for (size_t i = 0; i < keypoints_gold.size(); ++i)
{
const cv::KeyPoint& kp1 = keypoints[i];
const cv::KeyPoint& kp2 = keypoints_gold[i];
size_t h1 = kp1.hash();
size_t h2 = kp2.hash();
ASSERT_EQ(h1, h2);
}
}
INSTANTIATE_TEST_CASE_P(Features2D, FAST, DEVICES(cv::gpu::GLOBAL_ATOMICS));
/////////////////////////////////////////////////////////////////////////////////////////////////
// ORB
struct ORB : TestWithParam<cv::gpu::DeviceInfo>
{
cv::gpu::DeviceInfo devInfo;
cv::Mat image;
cv::Mat mask;
int npoints;
std::vector<cv::KeyPoint> keypoints_gold;
cv::Mat descriptors_gold;
virtual void SetUp()
{
devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
image = readImage("features2d/aloe.png", CV_LOAD_IMAGE_GRAYSCALE);
ASSERT_FALSE(image.empty());
mask = cv::Mat(image.size(), CV_8UC1, cv::Scalar::all(1));
mask(cv::Range(0, image.rows / 2), cv::Range(0, image.cols / 2)).setTo(cv::Scalar::all(0));
npoints = 1000;
cv::ORB orbCPU(npoints);
orbCPU(image, mask, keypoints_gold, descriptors_gold);
}
};
TEST_P(ORB, Accuracy)
{
std::vector<cv::KeyPoint> keypoints;
cv::Mat descriptors;
cv::gpu::ORB_GPU orbGPU(npoints);
cv::gpu::GpuMat d_descriptors;
orbGPU(cv::gpu::GpuMat(image), cv::gpu::GpuMat(mask), keypoints, d_descriptors);
d_descriptors.download(descriptors);
cv::BFMatcher matcher(cv::NORM_HAMMING);
std::vector<cv::DMatch> matches;
matcher.match(descriptors_gold, descriptors, matches);
int count = getValidMatchesCount(keypoints_gold, keypoints, matches);
double ratio = (double) count / matches.size();
ASSERT_GE(ratio, 0.65);
}
INSTANTIATE_TEST_CASE_P(Features2D, ORB, DEVICES(cv::gpu::GLOBAL_ATOMICS));
#endif // HAVE_CUDA
} // namespace

File diff suppressed because it is too large Load Diff

View File

@ -2198,7 +2198,7 @@ INSTANTIATE_TEST_CASE_P(ImgProc, EqualizeHist, ALL_DEVICES);
///////////////////////////////////////////////////////////////////////////////////////////////////////
// cornerHarris
PARAM_TEST_CASE(CornerHarris, cv::gpu::DeviceInfo, MatType, Border, int, int)
PARAM_TEST_CASE(CornerHarris, cv::gpu::DeviceInfo, MatType, BorderType, int, int)
{
cv::gpu::DeviceInfo devInfo;
int type;
@ -2257,7 +2257,7 @@ INSTANTIATE_TEST_CASE_P(ImgProc, CornerHarris, Combine(
///////////////////////////////////////////////////////////////////////////////////////////////////////
// cornerMinEigen
PARAM_TEST_CASE(CornerMinEigen, cv::gpu::DeviceInfo, MatType, Border, int, int)
PARAM_TEST_CASE(CornerMinEigen, cv::gpu::DeviceInfo, MatType, BorderType, int, int)
{
cv::gpu::DeviceInfo devInfo;
int type;
@ -2572,6 +2572,8 @@ INSTANTIATE_TEST_CASE_P(ImgProc, MeanShiftSegmentation, Combine(
////////////////////////////////////////////////////////////////////////////////
// matchTemplate
CV_ENUM(TemplateMethod, cv::TM_SQDIFF, cv::TM_SQDIFF_NORMED, cv::TM_CCORR, cv::TM_CCORR_NORMED, cv::TM_CCOEFF, cv::TM_CCOEFF_NORMED)
PARAM_TEST_CASE(MatchTemplate8U, cv::gpu::DeviceInfo, int, TemplateMethod)
{
cv::gpu::DeviceInfo devInfo;
@ -2776,6 +2778,8 @@ INSTANTIATE_TEST_CASE_P(ImgProc, MatchTemplate_CCOEF_NORMED, Combine(
////////////////////////////////////////////////////////////////////////////
// MulSpectrums
CV_FLAGS(DftFlags, cv::DFT_INVERSE, cv::DFT_SCALE, cv::DFT_ROWS, cv::DFT_COMPLEX_OUTPUT, cv::DFT_REAL_OUTPUT)
PARAM_TEST_CASE(MulSpectrums, cv::gpu::DeviceInfo, DftFlags)
{
cv::gpu::DeviceInfo devInfo;

View File

@ -70,7 +70,7 @@ namespace
{
typedef void (*func_t)(const cv::Mat& src, const cv::Mat& xmap, const cv::Mat& ymap, cv::Mat& dst, int borderType, cv::Scalar borderVal);
static const func_t nearest_funcs[] =
static const func_t nearest_funcs[] =
{
remapImpl<unsigned char, NearestInterpolator>,
remapImpl<signed char, NearestInterpolator>,
@ -80,7 +80,7 @@ namespace
remapImpl<float, NearestInterpolator>
};
static const func_t linear_funcs[] =
static const func_t linear_funcs[] =
{
remapImpl<unsigned char, LinearInterpolator>,
remapImpl<signed char, LinearInterpolator>,
@ -90,7 +90,7 @@ namespace
remapImpl<float, LinearInterpolator>
};
static const func_t cubic_funcs[] =
static const func_t cubic_funcs[] =
{
remapImpl<unsigned char, CubicInterpolator>,
remapImpl<signed char, CubicInterpolator>,
@ -109,7 +109,7 @@ namespace
///////////////////////////////////////////////////////////////////
// Test
PARAM_TEST_CASE(Remap, cv::gpu::DeviceInfo, cv::Size, MatType, Interpolation, Border, UseRoi)
PARAM_TEST_CASE(Remap, cv::gpu::DeviceInfo, cv::Size, MatType, Interpolation, BorderType, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
cv::Size size;
@ -171,7 +171,7 @@ INSTANTIATE_TEST_CASE_P(GPU_ImgProc, Remap, testing::Combine(
DIFFERENT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)),
testing::Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC)),
testing::Values(Border(cv::BORDER_REFLECT101), Border(cv::BORDER_REPLICATE), Border(cv::BORDER_CONSTANT), Border(cv::BORDER_REFLECT), Border(cv::BORDER_WRAP)),
testing::Values(BorderType(cv::BORDER_REFLECT101), BorderType(cv::BORDER_REPLICATE), BorderType(cv::BORDER_CONSTANT), BorderType(cv::BORDER_REFLECT), BorderType(cv::BORDER_WRAP)),
WHOLE_SUBMAT));
#endif // HAVE_CUDA

View File

@ -43,6 +43,9 @@
#ifdef HAVE_CUDA
CV_ENUM(ThreshOp, cv::THRESH_BINARY, cv::THRESH_BINARY_INV, cv::THRESH_TRUNC, cv::THRESH_TOZERO, cv::THRESH_TOZERO_INV)
#define ALL_THRESH_OPS testing::Values(ThreshOp(cv::THRESH_BINARY), ThreshOp(cv::THRESH_BINARY_INV), ThreshOp(cv::THRESH_TRUNC), ThreshOp(cv::THRESH_TOZERO), ThreshOp(cv::THRESH_TOZERO_INV))
PARAM_TEST_CASE(Threshold, cv::gpu::DeviceInfo, cv::Size, MatType, ThreshOp, UseRoi)
{
cv::gpu::DeviceInfo devInfo;

View File

@ -175,7 +175,7 @@ namespace
///////////////////////////////////////////////////////////////////
// Test
PARAM_TEST_CASE(WarpAffine, cv::gpu::DeviceInfo, cv::Size, MatType, Inverse, Interpolation, Border, UseRoi)
PARAM_TEST_CASE(WarpAffine, cv::gpu::DeviceInfo, cv::Size, MatType, Inverse, Interpolation, BorderType, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
cv::Size size;
@ -225,7 +225,7 @@ INSTANTIATE_TEST_CASE_P(GPU_ImgProc, WarpAffine, testing::Combine(
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4), MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)),
DIRECT_INVERSE,
testing::Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC)),
testing::Values(Border(cv::BORDER_REFLECT101), Border(cv::BORDER_REPLICATE), Border(cv::BORDER_REFLECT), Border(cv::BORDER_WRAP)),
testing::Values(BorderType(cv::BORDER_REFLECT101), BorderType(cv::BORDER_REPLICATE), BorderType(cv::BORDER_REFLECT), BorderType(cv::BORDER_WRAP)),
WHOLE_SUBMAT));
///////////////////////////////////////////////////////////////////

View File

@ -175,7 +175,7 @@ namespace
///////////////////////////////////////////////////////////////////
// Test
PARAM_TEST_CASE(WarpPerspective, cv::gpu::DeviceInfo, cv::Size, MatType, Inverse, Interpolation, Border, UseRoi)
PARAM_TEST_CASE(WarpPerspective, cv::gpu::DeviceInfo, cv::Size, MatType, Inverse, Interpolation, BorderType, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
cv::Size size;
@ -225,7 +225,7 @@ INSTANTIATE_TEST_CASE_P(GPU_ImgProc, WarpPerspective, testing::Combine(
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4), MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)),
DIRECT_INVERSE,
testing::Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC)),
testing::Values(Border(cv::BORDER_REFLECT101), Border(cv::BORDER_REPLICATE), Border(cv::BORDER_REFLECT), Border(cv::BORDER_WRAP)),
testing::Values(BorderType(cv::BORDER_REFLECT101), BorderType(cv::BORDER_REPLICATE), BorderType(cv::BORDER_REFLECT), BorderType(cv::BORDER_WRAP)),
WHOLE_SUBMAT));
///////////////////////////////////////////////////////////////////

View File

@ -47,6 +47,9 @@ using namespace cv::gpu;
using namespace cvtest;
using namespace testing;
//////////////////////////////////////////////////////////////////////
// random generators
int randomInt(int minVal, int maxVal)
{
RNG& rng = TS::ptr()->get_rng();
@ -74,6 +77,9 @@ Mat randomMat(Size size, int type, double minVal, double maxVal)
return randomMat(TS::ptr()->get_rng(), size, type, minVal, maxVal, false);
}
//////////////////////////////////////////////////////////////////////
// GpuMat create
cv::gpu::GpuMat createMat(cv::Size size, int type, bool useRoi)
{
Size size0 = size;
@ -99,6 +105,30 @@ GpuMat loadMat(const Mat& m, bool useRoi)
return d_m;
}
//////////////////////////////////////////////////////////////////////
// Image load
Mat readImage(const string& fileName, int flags)
{
return imread(string(cvtest::TS::ptr()->get_data_path()) + fileName, flags);
}
Mat readImageType(const string& fname, int type)
{
Mat src = readImage(fname, CV_MAT_CN(type) == 1 ? IMREAD_GRAYSCALE : IMREAD_COLOR);
if (CV_MAT_CN(type) == 4)
{
Mat temp;
cvtColor(src, temp, cv::COLOR_BGR2BGRA);
swap(src, temp);
}
src.convertTo(src, CV_MAT_DEPTH(type));
return src;
}
//////////////////////////////////////////////////////////////////////
// Gpu devices
bool supportFeature(const DeviceInfo& info, FeatureSet feature)
{
return TargetArchs::builtWith(feature) && info.supports(feature);
@ -150,6 +180,170 @@ vector<DeviceInfo> devices(FeatureSet feature)
return devs_filtered;
}
//////////////////////////////////////////////////////////////////////
// Additional assertion
Mat getMat(InputArray arr)
{
if (arr.kind() == _InputArray::GPU_MAT)
{
Mat m;
arr.getGpuMat().download(m);
return m;
}
return arr.getMat();
}
double checkNorm(InputArray m1, const InputArray m2)
{
return norm(getMat(m1), getMat(m2), NORM_INF);
}
void minMaxLocGold(const Mat& src, double* minVal_, double* maxVal_, Point* minLoc_, Point* maxLoc_, const Mat& mask)
{
if (src.depth() != CV_8S)
{
minMaxLoc(src, minVal_, maxVal_, minLoc_, maxLoc_, mask);
return;
}
// OpenCV's minMaxLoc doesn't support CV_8S type
double minVal = numeric_limits<double>::max();
Point minLoc(-1, -1);
double maxVal = -numeric_limits<double>::max();
Point maxLoc(-1, -1);
for (int y = 0; y < src.rows; ++y)
{
const schar* src_row = src.ptr<signed char>(y);
const uchar* mask_row = mask.empty() ? 0 : mask.ptr<unsigned char>(y);
for (int x = 0; x < src.cols; ++x)
{
if (!mask_row || mask_row[x])
{
schar val = src_row[x];
if (val < minVal)
{
minVal = val;
minLoc = cv::Point(x, y);
}
if (val > maxVal)
{
maxVal = val;
maxLoc = cv::Point(x, y);
}
}
}
}
if (minVal_) *minVal_ = minVal;
if (maxVal_) *maxVal_ = maxVal;
if (minLoc_) *minLoc_ = minLoc;
if (maxLoc_) *maxLoc_ = maxLoc;
}
namespace
{
template <typename T, typename OutT> string printMatValImpl(const Mat& m, Point p)
{
const int cn = m.channels();
ostringstream ostr;
ostr << "(";
p.x /= cn;
ostr << static_cast<OutT>(m.at<T>(p.y, p.x * cn));
for (int c = 1; c < m.channels(); ++c)
{
ostr << ", " << static_cast<OutT>(m.at<T>(p.y, p.x * cn + c));
}
ostr << ")";
return ostr.str();
}
string printMatVal(const Mat& m, Point p)
{
typedef string (*func_t)(const Mat& m, Point p);
static const func_t funcs[] =
{
printMatValImpl<uchar, int>, printMatValImpl<schar, int>, printMatValImpl<ushort, int>, printMatValImpl<short, int>,
printMatValImpl<int, int>, printMatValImpl<float, float>, printMatValImpl<double, double>
};
return funcs[m.depth()](m, p);
}
}
testing::AssertionResult assertMatNear(const char* expr1, const char* expr2, const char* eps_expr, cv::InputArray m1_, cv::InputArray m2_, double eps)
{
Mat m1 = getMat(m1_);
Mat m2 = getMat(m2_);
if (m1.size() != m2.size())
{
return AssertionFailure() << "Matrices \"" << expr1 << "\" and \"" << expr2 << "\" have different sizes : \""
<< expr1 << "\" [" << PrintToString(m1.size()) << "] vs \""
<< expr2 << "\" [" << PrintToString(m2.size()) << "]";
}
if (m1.type() != m2.type())
{
return AssertionFailure() << "Matrices \"" << expr1 << "\" and \"" << expr2 << "\" have different types : \""
<< expr1 << "\" [" << PrintToString(MatType(m1.type())) << "] vs \""
<< expr2 << "\" [" << PrintToString(MatType(m2.type())) << "]";
}
Mat diff;
absdiff(m1.reshape(1), m2.reshape(1), diff);
double maxVal = 0.0;
Point maxLoc;
minMaxLocGold(diff, 0, &maxVal, 0, &maxLoc);
if (maxVal > eps)
{
return AssertionFailure() << "The max difference between matrices \"" << expr1 << "\" and \"" << expr2
<< "\" is " << maxVal << " at (" << maxLoc.y << ", " << maxLoc.x / m1.channels() << ")"
<< ", which exceeds \"" << eps_expr << "\", where \""
<< expr1 << "\" at (" << maxLoc.y << ", " << maxLoc.x / m1.channels() << ") evaluates to " << printMatVal(m1, maxLoc) << ", \""
<< expr2 << "\" at (" << maxLoc.y << ", " << maxLoc.x / m1.channels() << ") evaluates to " << printMatVal(m2, maxLoc) << ", \""
<< eps_expr << "\" evaluates to " << eps;
}
return AssertionSuccess();
}
double checkSimilarity(InputArray m1, InputArray m2)
{
Mat diff;
matchTemplate(getMat(m1), getMat(m2), diff, CV_TM_CCORR_NORMED);
return std::abs(diff.at<float>(0, 0) - 1.f);
}
//////////////////////////////////////////////////////////////////////
// Helper structs for value-parameterized tests
vector<MatDepth> depths(int depth_start, int depth_end)
{
vector<MatDepth> v;
v.reserve((depth_end - depth_start + 1));
for (int depth = depth_start; depth <= depth_end; ++depth)
v.push_back(depth);
return v;
}
vector<MatType> types(int depth_start, int depth_end, int cn_start, int cn_end)
{
vector<MatType> v;
@ -174,37 +368,25 @@ const vector<MatType>& all_types()
return v;
}
Mat readImage(const string& fileName, int flags)
void cv::gpu::PrintTo(const DeviceInfo& info, ostream* os)
{
return imread(string(cvtest::TS::ptr()->get_data_path()) + fileName, flags);
(*os) << info.name();
}
Mat readImageType(const string& fname, int type)
void PrintTo(const UseRoi& useRoi, std::ostream* os)
{
Mat src = readImage(fname, CV_MAT_CN(type) == 1 ? IMREAD_GRAYSCALE : IMREAD_COLOR);
if (CV_MAT_CN(type) == 4)
{
Mat temp;
cvtColor(src, temp, cv::COLOR_BGR2BGRA);
swap(src, temp);
}
src.convertTo(src, CV_MAT_DEPTH(type));
return src;
if (useRoi)
(*os) << "sub matrix";
else
(*os) << "whole matrix";
}
namespace
void PrintTo(const Inverse& inverse, std::ostream* os)
{
Mat getMat(InputArray arr)
{
if (arr.kind() == _InputArray::GPU_MAT)
{
Mat m;
arr.getGpuMat().download(m);
return m;
}
return arr.getMat();
}
if (inverse)
(*os) << "inverse";
else
(*os) << "direct";
}
void showDiff(InputArray gold_, InputArray actual_, double eps)
@ -226,36 +408,3 @@ void showDiff(InputArray gold_, InputArray actual_, double eps)
waitKey();
}
double checkNorm(InputArray m1, const InputArray m2)
{
return norm(getMat(m1), getMat(m2), NORM_INF);
}
double checkSimilarity(InputArray m1, InputArray m2)
{
Mat diff;
matchTemplate(getMat(m1), getMat(m2), diff, CV_TM_CCORR_NORMED);
return std::abs(diff.at<float>(0, 0) - 1.f);
}
void cv::gpu::PrintTo(const DeviceInfo& info, ostream* os)
{
(*os) << info.name();
}
void PrintTo(const UseRoi& useRoi, std::ostream* os)
{
if (useRoi)
(*os) << "sub matrix";
else
(*os) << "whole matrix";
}
void PrintTo(const Inverse& inverse, std::ostream* os)
{
if (inverse)
(*os) << "inverse";
else
(*os) << "direct";
}

View File

@ -42,37 +42,66 @@
#ifndef __OPENCV_TEST_UTILITY_HPP__
#define __OPENCV_TEST_UTILITY_HPP__
#include <vector>
#include <string>
#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/gpu/gpu.hpp"
#include "opencv2/ts/ts.hpp"
#include "opencv2/ts/ts_perf.hpp"
//////////////////////////////////////////////////////////////////////
// random generators
int randomInt(int minVal, int maxVal);
double randomDouble(double minVal, double maxVal);
cv::Size randomSize(int minVal, int maxVal);
cv::Scalar randomScalar(double minVal, double maxVal);
cv::Mat randomMat(cv::Size size, int type, double minVal = 0.0, double maxVal = 255.0);
//////////////////////////////////////////////////////////////////////
// GpuMat create
cv::gpu::GpuMat createMat(cv::Size size, int type, bool useRoi = false);
cv::gpu::GpuMat loadMat(const cv::Mat& m, bool useRoi = false);
void showDiff(cv::InputArray gold, cv::InputArray actual, double eps);
//////////////////////////////////////////////////////////////////////
// Image load
//! read image from testdata folder
cv::Mat readImage(const std::string& fileName, int flags = cv::IMREAD_COLOR);
//! read image from testdata folder and convert it to specified type
cv::Mat readImageType(const std::string& fname, int type);
//////////////////////////////////////////////////////////////////////
// Gpu devices
//! return true if device supports specified feature and gpu module was built with support the feature.
bool supportFeature(const cv::gpu::DeviceInfo& info, cv::gpu::FeatureSet feature);
//! return all devices compatible with current gpu module build.
const std::vector<cv::gpu::DeviceInfo>& devices();
//! return all devices compatible with current gpu module build which support specified feature.
std::vector<cv::gpu::DeviceInfo> devices(cv::gpu::FeatureSet feature);
//! read image from testdata folder.
cv::Mat readImage(const std::string& fileName, int flags = cv::IMREAD_COLOR);
cv::Mat readImageType(const std::string& fname, int type);
#define ALL_DEVICES testing::ValuesIn(devices())
#define DEVICES(feature) testing::ValuesIn(devices(feature))
//////////////////////////////////////////////////////////////////////
// Additional assertion
cv::Mat getMat(cv::InputArray arr);
double checkNorm(cv::InputArray m1, cv::InputArray m2);
#define EXPECT_MAT_NEAR(mat1, mat2, eps) \
{ \
ASSERT_EQ(mat1.type(), mat2.type()); \
ASSERT_EQ(mat1.size(), mat2.size()); \
EXPECT_LE(checkNorm(mat1, mat2), eps); \
}
void minMaxLocGold(const cv::Mat& src, double* minVal_, double* maxVal_ = 0, cv::Point* minLoc_ = 0, cv::Point* maxLoc_ = 0, const cv::Mat& mask = cv::Mat());
testing::AssertionResult assertMatNear(const char* expr1, const char* expr2, const char* eps_expr, cv::InputArray m1, cv::InputArray m2, double eps);
#define EXPECT_MAT_NEAR(m1, m2, eps) EXPECT_PRED_FORMAT3(assertMatNear, m1, m2, eps)
#define ASSERT_MAT_NEAR(m1, m2, eps) ASSERT_PRED_FORMAT3(assertMatNear, m1, m2, eps)
#define EXPECT_SCALAR_NEAR(s1, s2, eps) \
{ \
@ -81,6 +110,37 @@ double checkNorm(cv::InputArray m1, cv::InputArray m2);
EXPECT_NEAR(s1[2], s2[2], eps); \
EXPECT_NEAR(s1[3], s2[3], eps); \
}
#define ASSERT_SCALAR_NEAR(s1, s2, eps) \
{ \
ASSERT_NEAR(s1[0], s2[0], eps); \
ASSERT_NEAR(s1[1], s2[1], eps); \
ASSERT_NEAR(s1[2], s2[2], eps); \
ASSERT_NEAR(s1[3], s2[3], eps); \
}
#define EXPECT_POINT2_NEAR(p1, p2, eps) \
{ \
EXPECT_NEAR(p1.x, p2.x, eps); \
EXPECT_NEAR(p1.y, p2.y, eps); \
}
#define ASSERT_POINT2_NEAR(p1, p2, eps) \
{ \
ASSERT_NEAR(p1.x, p2.x, eps); \
ASSERT_NEAR(p1.y, p2.y, eps); \
}
#define EXPECT_POINT3_NEAR(p1, p2, eps) \
{ \
EXPECT_NEAR(p1.x, p2.x, eps); \
EXPECT_NEAR(p1.y, p2.y, eps); \
EXPECT_NEAR(p1.z, p2.z, eps); \
}
#define ASSERT_POINT3_NEAR(p1, p2, eps) \
{ \
ASSERT_NEAR(p1.x, p2.x, eps); \
ASSERT_NEAR(p1.y, p2.y, eps); \
ASSERT_NEAR(p1.z, p2.z, eps); \
}
double checkSimilarity(cv::InputArray m1, cv::InputArray m2);
@ -90,94 +150,35 @@ double checkSimilarity(cv::InputArray m1, cv::InputArray m2);
ASSERT_EQ(mat1.size(), mat2.size()); \
EXPECT_LE(checkSimilarity(mat1, mat2), eps); \
}
#define ASSERT_MAT_SIMILAR(mat1, mat2, eps) \
{ \
ASSERT_EQ(mat1.type(), mat2.type()); \
ASSERT_EQ(mat1.size(), mat2.size()); \
ASSERT_LE(checkSimilarity(mat1, mat2), eps); \
}
//////////////////////////////////////////////////////////////////////
// Helper structs for value-parameterized tests
#define PARAM_TEST_CASE(name, ...) struct name : testing::TestWithParam< std::tr1::tuple< __VA_ARGS__ > >
#define GET_PARAM(k) std::tr1::get< k >(GetParam())
namespace cv { namespace gpu
{
void PrintTo(const DeviceInfo& info, std::ostream* os);
}}
using perf::MatDepth;
using perf::MatType;
//! return vector with types from specified range.
std::vector<MatType> types(int depth_start, int depth_end, int cn_start, int cn_end);
//! return vector with all types (depth: CV_8U-CV_64F, channels: 1-4).
const std::vector<MatType>& all_types();
class UseRoi
{
public:
inline UseRoi(bool val = false) : val_(val) {}
inline operator bool() const { return val_; }
private:
bool val_;
};
void PrintTo(const UseRoi& useRoi, std::ostream* os);
#define WHOLE testing::Values(UseRoi(false))
#define SUBMAT testing::Values(UseRoi(true))
#define WHOLE_SUBMAT testing::Values(UseRoi(false), UseRoi(true))
class Inverse
{
public:
inline Inverse(bool val = false) : val_(val) {}
inline operator bool() const { return val_; }
private:
bool val_;
};
void PrintTo(const Inverse& useRoi, std::ostream* os);
#define DIRECT_INVERSE testing::Values(Inverse(false), Inverse(true))
CV_ENUM(CmpCode, cv::CMP_EQ, cv::CMP_GT, cv::CMP_GE, cv::CMP_LT, cv::CMP_LE, cv::CMP_NE)
#define ALL_CMP_CODES testing::Values(CmpCode(cv::CMP_EQ), CmpCode(cv::CMP_NE), CmpCode(cv::CMP_GT), CmpCode(cv::CMP_GE), CmpCode(cv::CMP_LT), CmpCode(cv::CMP_LE))
CV_ENUM(NormCode, cv::NORM_INF, cv::NORM_L1, cv::NORM_L2, cv::NORM_TYPE_MASK, cv::NORM_RELATIVE, cv::NORM_MINMAX)
enum {FLIP_BOTH = 0, FLIP_X = 1, FLIP_Y = -1};
CV_ENUM(FlipCode, FLIP_BOTH, FLIP_X, FLIP_Y)
#define ALL_FLIP_CODES testing::Values(FlipCode(FLIP_BOTH), FlipCode(FLIP_X), FlipCode(FLIP_Y))
CV_ENUM(ReduceCode, CV_REDUCE_SUM, CV_REDUCE_AVG, CV_REDUCE_MAX, CV_REDUCE_MIN)
#define ALL_REDUCE_CODES testing::Values(ReduceCode(CV_REDUCE_SUM), ReduceCode(CV_REDUCE_AVG), ReduceCode(CV_REDUCE_MAX), ReduceCode(CV_REDUCE_MIN))
CV_FLAGS(GemmFlags, 0, cv::GEMM_1_T, cv::GEMM_2_T, cv::GEMM_3_T);
#define ALL_GEMM_FLAGS testing::Values(GemmFlags(0), GemmFlags(cv::GEMM_1_T), GemmFlags(cv::GEMM_2_T), GemmFlags(cv::GEMM_3_T), GemmFlags(cv::GEMM_1_T | cv::GEMM_2_T), GemmFlags(cv::GEMM_1_T | cv::GEMM_3_T), GemmFlags(cv::GEMM_1_T | cv::GEMM_2_T | cv::GEMM_3_T))
CV_ENUM(DistType, cv::gpu::BruteForceMatcher_GPU_base::L1Dist, cv::gpu::BruteForceMatcher_GPU_base::L2Dist)
CV_ENUM(MorphOp, cv::MORPH_OPEN, cv::MORPH_CLOSE, cv::MORPH_GRADIENT, cv::MORPH_TOPHAT, cv::MORPH_BLACKHAT)
CV_ENUM(ThreshOp, cv::THRESH_BINARY, cv::THRESH_BINARY_INV, cv::THRESH_TRUNC, cv::THRESH_TOZERO, cv::THRESH_TOZERO_INV)
#define ALL_THRESH_OPS testing::Values(ThreshOp(cv::THRESH_BINARY), ThreshOp(cv::THRESH_BINARY_INV), ThreshOp(cv::THRESH_TRUNC), ThreshOp(cv::THRESH_TOZERO), ThreshOp(cv::THRESH_TOZERO_INV))
CV_ENUM(Interpolation, cv::INTER_NEAREST, cv::INTER_LINEAR, cv::INTER_CUBIC)
CV_ENUM(Border, cv::BORDER_REFLECT101, cv::BORDER_REPLICATE, cv::BORDER_CONSTANT, cv::BORDER_REFLECT, cv::BORDER_WRAP)
CV_FLAGS(WarpFlags, cv::INTER_NEAREST, cv::INTER_LINEAR, cv::INTER_CUBIC, cv::WARP_INVERSE_MAP)
CV_ENUM(TemplateMethod, cv::TM_SQDIFF, cv::TM_SQDIFF_NORMED, cv::TM_CCORR, cv::TM_CCORR_NORMED, cv::TM_CCOEFF, cv::TM_CCOEFF_NORMED)
CV_FLAGS(DftFlags, cv::DFT_INVERSE, cv::DFT_SCALE, cv::DFT_ROWS, cv::DFT_COMPLEX_OUTPUT, cv::DFT_REAL_OUTPUT)
#define PARAM_TEST_CASE(name, ...) struct name : testing::TestWithParam< std::tr1::tuple< __VA_ARGS__ > >
#define GET_PARAM(k) std::tr1::get< k >(GetParam())
#define ALL_DEVICES testing::ValuesIn(devices())
#define DEVICES(feature) testing::ValuesIn(devices(feature))
#define DIFFERENT_SIZES testing::Values(cv::Size(128, 128), cv::Size(113, 113))
#define ALL_DEPTH testing::Values(MatDepth(CV_8U), MatDepth(CV_8S), MatDepth(CV_16U), MatDepth(CV_16S), MatDepth(CV_32S), MatDepth(CV_32F), MatDepth(CV_64F))
#define ALL_TYPES testing::ValuesIn(all_types())
#define TYPES(depth_start, depth_end, cn_start, cn_end) testing::ValuesIn(types(depth_start, depth_end, cn_start, cn_end))
// Depth
using perf::MatDepth;
//! return vector with depths from specified range.
std::vector<MatDepth> depths(int depth_start, int depth_end);
#define ALL_DEPTH testing::Values(MatDepth(CV_8U), MatDepth(CV_8S), MatDepth(CV_16U), MatDepth(CV_16S), MatDepth(CV_32S), MatDepth(CV_32F), MatDepth(CV_64F))
#define DEPTHS(depth_start, depth_end) testing::ValuesIn(depths(depth_start, depth_end))
#define DEPTH_PAIRS testing::Values(std::make_pair(MatDepth(CV_8U), MatDepth(CV_8U)), \
std::make_pair(MatDepth(CV_8U), MatDepth(CV_16U)), \
std::make_pair(MatDepth(CV_8U), MatDepth(CV_16S)), \
@ -204,4 +205,88 @@ CV_FLAGS(DftFlags, cv::DFT_INVERSE, cv::DFT_SCALE, cv::DFT_ROWS, cv::DFT_COMPLEX
\
std::make_pair(MatDepth(CV_64F), MatDepth(CV_64F)))
// Type
using perf::MatType;
//! return vector with types from specified range.
std::vector<MatType> types(int depth_start, int depth_end, int cn_start, int cn_end);
//! return vector with all types (depth: CV_8U-CV_64F, channels: 1-4).
const std::vector<MatType>& all_types();
#define ALL_TYPES testing::ValuesIn(all_types())
#define TYPES(depth_start, depth_end, cn_start, cn_end) testing::ValuesIn(types(depth_start, depth_end, cn_start, cn_end))
// ROI
class UseRoi
{
public:
inline UseRoi(bool val = false) : val_(val) {}
inline operator bool() const { return val_; }
private:
bool val_;
};
void PrintTo(const UseRoi& useRoi, std::ostream* os);
#define WHOLE testing::Values(UseRoi(false))
#define SUBMAT testing::Values(UseRoi(true))
#define WHOLE_SUBMAT testing::Values(UseRoi(false), UseRoi(true))
// Direct/Inverse
class Inverse
{
public:
inline Inverse(bool val = false) : val_(val) {}
inline operator bool() const { return val_; }
private:
bool val_;
};
void PrintTo(const Inverse& useRoi, std::ostream* os);
#define DIRECT_INVERSE testing::Values(Inverse(false), Inverse(true))
// Param class
#define IMPLEMENT_PARAM_CLASS(name, type) \
class name \
{ \
public: \
name ( type arg = type ()) : val_(arg) {} \
operator type () const {return val_;} \
private: \
type val_; \
}; \
inline void PrintTo( name param, std::ostream* os) \
{ \
*os << #name << "(" << static_cast< type >(param) << ")"; \
}
IMPLEMENT_PARAM_CLASS(Channels, int)
#define ALL_CHANNELS testing::Values(Channels(1), Channels(2), Channels(3), Channels(4))
#define IMAGE_CHANNELS testing::Values(Channels(1), Channels(3), Channels(4))
// Flags and enums
CV_ENUM(NormCode, cv::NORM_INF, cv::NORM_L1, cv::NORM_L2, cv::NORM_TYPE_MASK, cv::NORM_RELATIVE, cv::NORM_MINMAX)
CV_ENUM(Interpolation, cv::INTER_NEAREST, cv::INTER_LINEAR, cv::INTER_CUBIC)
CV_ENUM(BorderType, cv::BORDER_REFLECT101, cv::BORDER_REPLICATE, cv::BORDER_CONSTANT, cv::BORDER_REFLECT, cv::BORDER_WRAP)
#define ALL_BORDER_TYPES testing::Values(BorderType(cv::BORDER_REFLECT101), BorderType(cv::BORDER_REPLICATE), BorderType(cv::BORDER_CONSTANT), BorderType(cv::BORDER_REFLECT), BorderType(cv::BORDER_WRAP))
CV_FLAGS(WarpFlags, cv::INTER_NEAREST, cv::INTER_LINEAR, cv::INTER_CUBIC, cv::WARP_INVERSE_MAP)
//////////////////////////////////////////////////////////////////////
// Other
void showDiff(cv::InputArray gold, cv::InputArray actual, double eps);
#endif // __OPENCV_TEST_UTILITY_HPP__