gpu module refactoring: moved per-element operations into separated file
This commit is contained in:
		@@ -362,46 +362,10 @@ namespace cv
 | 
			
		||||
 | 
			
		||||
        ////////////////////////////// Arithmetics ///////////////////////////////////
 | 
			
		||||
 | 
			
		||||
        //! adds one matrix to another (c = a + b)
 | 
			
		||||
        //! supports CV_8UC1, CV_8UC4, CV_32SC1, CV_32FC1 types
 | 
			
		||||
        CV_EXPORTS void add(const GpuMat& a, const GpuMat& b, GpuMat& c);
 | 
			
		||||
        //! adds scalar to a matrix (c = a + s)
 | 
			
		||||
        //! supports CV_32FC1 and CV_32FC2 type
 | 
			
		||||
        CV_EXPORTS void add(const GpuMat& a, const Scalar& sc, GpuMat& c);
 | 
			
		||||
        //! subtracts one matrix from another (c = a - b)
 | 
			
		||||
        //! supports CV_8UC1, CV_8UC4, CV_32SC1, CV_32FC1 types
 | 
			
		||||
        CV_EXPORTS void subtract(const GpuMat& a, const GpuMat& b, GpuMat& c);
 | 
			
		||||
        //! subtracts scalar from a matrix (c = a - s)
 | 
			
		||||
        //! supports CV_32FC1 and CV_32FC2 type
 | 
			
		||||
        CV_EXPORTS void subtract(const GpuMat& a, const Scalar& sc, GpuMat& c);
 | 
			
		||||
        //! computes element-wise product of the two arrays (c = a * b)
 | 
			
		||||
        //! supports CV_8UC1, CV_8UC4, CV_32SC1, CV_32FC1 types
 | 
			
		||||
        CV_EXPORTS void multiply(const GpuMat& a, const GpuMat& b, GpuMat& c);
 | 
			
		||||
        //! multiplies matrix to a scalar (c = a * s)
 | 
			
		||||
        //! supports CV_32FC1 and CV_32FC2 type
 | 
			
		||||
        CV_EXPORTS void multiply(const GpuMat& a, const Scalar& sc, GpuMat& c);
 | 
			
		||||
        //! computes element-wise quotient of the two arrays (c = a / b)
 | 
			
		||||
        //! supports CV_8UC1, CV_8UC4, CV_32SC1, CV_32FC1 types
 | 
			
		||||
        CV_EXPORTS void divide(const GpuMat& a, const GpuMat& b, GpuMat& c);
 | 
			
		||||
        //! computes element-wise quotient of matrix and scalar (c = a / s)
 | 
			
		||||
        //! supports CV_32FC1 and CV_32FC2 type
 | 
			
		||||
        CV_EXPORTS void divide(const GpuMat& a, const Scalar& sc, GpuMat& c);
 | 
			
		||||
 | 
			
		||||
        //! transposes the matrix
 | 
			
		||||
        //! supports CV_8UC1, CV_8SC1, CV_8UC4, CV_8SC4, CV_16UC2, CV_16SC2, CV_32SC1, CV_32FC1 type
 | 
			
		||||
        CV_EXPORTS void transpose(const GpuMat& src1, GpuMat& dst);
 | 
			
		||||
 | 
			
		||||
        //! computes element-wise absolute difference of two arrays (c = abs(a - b))
 | 
			
		||||
        //! supports CV_8UC1, CV_8UC4, CV_32SC1, CV_32FC1 types
 | 
			
		||||
        CV_EXPORTS void absdiff(const GpuMat& a, const GpuMat& b, GpuMat& c);
 | 
			
		||||
        //! computes element-wise absolute difference of array and scalar (c = abs(a - s))
 | 
			
		||||
        //! supports only CV_32FC1 type
 | 
			
		||||
        CV_EXPORTS void absdiff(const GpuMat& a, const Scalar& s, GpuMat& c);
 | 
			
		||||
 | 
			
		||||
        //! compares elements of two arrays (c = a <cmpop> b)
 | 
			
		||||
        //! supports CV_8UC4, CV_32FC1 types
 | 
			
		||||
        CV_EXPORTS void compare(const GpuMat& a, const GpuMat& b, GpuMat& c, int cmpop);
 | 
			
		||||
 | 
			
		||||
        //! computes mean value and standard deviation of all or selected array elements
 | 
			
		||||
        //! supports only CV_8UC1 type
 | 
			
		||||
        CV_EXPORTS void meanStdDev(const GpuMat& mtx, Scalar& mean, Scalar& stddev);
 | 
			
		||||
@@ -485,14 +449,6 @@ namespace cv
 | 
			
		||||
        //! copies each plane of a multi-channel array to a dedicated array (async version)
 | 
			
		||||
        CV_EXPORTS void split(const GpuMat& src, vector<GpuMat>& dst, const Stream& stream);
 | 
			
		||||
 | 
			
		||||
        //! computes exponent of each matrix element (b = e**a)
 | 
			
		||||
        //! supports only CV_32FC1 type
 | 
			
		||||
        CV_EXPORTS void exp(const GpuMat& a, GpuMat& b);
 | 
			
		||||
 | 
			
		||||
        //! computes natural logarithm of absolute value of each matrix element: b = log(abs(a))
 | 
			
		||||
        //! supports only CV_32FC1 type
 | 
			
		||||
        CV_EXPORTS void log(const GpuMat& a, GpuMat& b);
 | 
			
		||||
 | 
			
		||||
        //! computes magnitude of complex (x(i).re, x(i).im) vector
 | 
			
		||||
        //! supports only CV_32FC2 type
 | 
			
		||||
        CV_EXPORTS void magnitude(const GpuMat& x, GpuMat& magnitude);
 | 
			
		||||
@@ -531,33 +487,6 @@ namespace cv
 | 
			
		||||
        //! async version
 | 
			
		||||
        CV_EXPORTS void polarToCart(const GpuMat& magnitude, const GpuMat& angle, GpuMat& x, GpuMat& y, bool angleInDegrees, const Stream& stream);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
        //! perfroms per-elements bit-wise inversion
 | 
			
		||||
        CV_EXPORTS void bitwise_not(const GpuMat& src, GpuMat& dst, const GpuMat& mask=GpuMat());
 | 
			
		||||
        //! async version
 | 
			
		||||
        CV_EXPORTS void bitwise_not(const GpuMat& src, GpuMat& dst, const GpuMat& mask, const Stream& stream);
 | 
			
		||||
 | 
			
		||||
        //! calculates per-element bit-wise disjunction of two arrays
 | 
			
		||||
        CV_EXPORTS void bitwise_or(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask=GpuMat());
 | 
			
		||||
        //! async version
 | 
			
		||||
        CV_EXPORTS void bitwise_or(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, const Stream& stream);
 | 
			
		||||
 | 
			
		||||
        //! calculates per-element bit-wise conjunction of two arrays
 | 
			
		||||
        CV_EXPORTS void bitwise_and(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask=GpuMat());
 | 
			
		||||
        //! async version
 | 
			
		||||
        CV_EXPORTS void bitwise_and(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, const Stream& stream);
 | 
			
		||||
 | 
			
		||||
        //! calculates per-element bit-wise "exclusive or" operation
 | 
			
		||||
        CV_EXPORTS void bitwise_xor(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask=GpuMat());
 | 
			
		||||
        //! async version
 | 
			
		||||
        CV_EXPORTS void bitwise_xor(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, const Stream& stream);
 | 
			
		||||
 | 
			
		||||
        //! Logical operators
 | 
			
		||||
        CV_EXPORTS GpuMat operator ~ (const GpuMat& src);
 | 
			
		||||
        CV_EXPORTS GpuMat operator | (const GpuMat& src1, const GpuMat& src2);
 | 
			
		||||
        CV_EXPORTS GpuMat operator & (const GpuMat& src1, const GpuMat& src2);
 | 
			
		||||
        CV_EXPORTS GpuMat operator ^ (const GpuMat& src1, const GpuMat& src2);
 | 
			
		||||
 | 
			
		||||
        //! computes per-element minimum of two arrays (dst = min(src1, src2))
 | 
			
		||||
        CV_EXPORTS void min(const GpuMat& src1, const GpuMat& src2, GpuMat& dst);
 | 
			
		||||
        //! Async version
 | 
			
		||||
@@ -578,6 +507,83 @@ namespace cv
 | 
			
		||||
        //! Async version
 | 
			
		||||
        CV_EXPORTS void max(const GpuMat& src1, double src2, GpuMat& dst, const Stream& stream);
 | 
			
		||||
 | 
			
		||||
        //////////////////////////// Per-element operations ////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
        //! adds one matrix to another (c = a + b)
 | 
			
		||||
        //! supports CV_8UC1, CV_8UC4, CV_32SC1, CV_32FC1 types
 | 
			
		||||
        CV_EXPORTS void add(const GpuMat& a, const GpuMat& b, GpuMat& c);
 | 
			
		||||
        //! adds scalar to a matrix (c = a + s)
 | 
			
		||||
        //! supports CV_32FC1 and CV_32FC2 type
 | 
			
		||||
        CV_EXPORTS void add(const GpuMat& a, const Scalar& sc, GpuMat& c);
 | 
			
		||||
 | 
			
		||||
        //! subtracts one matrix from another (c = a - b)
 | 
			
		||||
        //! supports CV_8UC1, CV_8UC4, CV_32SC1, CV_32FC1 types
 | 
			
		||||
        CV_EXPORTS void subtract(const GpuMat& a, const GpuMat& b, GpuMat& c);
 | 
			
		||||
        //! subtracts scalar from a matrix (c = a - s)
 | 
			
		||||
        //! supports CV_32FC1 and CV_32FC2 type
 | 
			
		||||
        CV_EXPORTS void subtract(const GpuMat& a, const Scalar& sc, GpuMat& c);
 | 
			
		||||
 | 
			
		||||
        //! computes element-wise product of the two arrays (c = a * b)
 | 
			
		||||
        //! supports CV_8UC1, CV_8UC4, CV_32SC1, CV_32FC1 types
 | 
			
		||||
        CV_EXPORTS void multiply(const GpuMat& a, const GpuMat& b, GpuMat& c);
 | 
			
		||||
        //! multiplies matrix to a scalar (c = a * s)
 | 
			
		||||
        //! supports CV_32FC1 and CV_32FC2 type
 | 
			
		||||
        CV_EXPORTS void multiply(const GpuMat& a, const Scalar& sc, GpuMat& c);
 | 
			
		||||
 | 
			
		||||
        //! computes element-wise quotient of the two arrays (c = a / b)
 | 
			
		||||
        //! supports CV_8UC1, CV_8UC4, CV_32SC1, CV_32FC1 types
 | 
			
		||||
        CV_EXPORTS void divide(const GpuMat& a, const GpuMat& b, GpuMat& c);
 | 
			
		||||
        //! computes element-wise quotient of matrix and scalar (c = a / s)
 | 
			
		||||
        //! supports CV_32FC1 and CV_32FC2 type
 | 
			
		||||
        CV_EXPORTS void divide(const GpuMat& a, const Scalar& sc, GpuMat& c);
 | 
			
		||||
 | 
			
		||||
        //! computes exponent of each matrix element (b = e**a)
 | 
			
		||||
        //! supports only CV_32FC1 type
 | 
			
		||||
        CV_EXPORTS void exp(const GpuMat& a, GpuMat& b);
 | 
			
		||||
 | 
			
		||||
        //! computes natural logarithm of absolute value of each matrix element: b = log(abs(a))
 | 
			
		||||
        //! supports only CV_32FC1 type
 | 
			
		||||
        CV_EXPORTS void log(const GpuMat& a, GpuMat& b);
 | 
			
		||||
 | 
			
		||||
        //! computes element-wise absolute difference of two arrays (c = abs(a - b))
 | 
			
		||||
        //! supports CV_8UC1, CV_8UC4, CV_32SC1, CV_32FC1 types
 | 
			
		||||
        CV_EXPORTS void absdiff(const GpuMat& a, const GpuMat& b, GpuMat& c);
 | 
			
		||||
        //! computes element-wise absolute difference of array and scalar (c = abs(a - s))
 | 
			
		||||
        //! supports only CV_32FC1 type
 | 
			
		||||
        CV_EXPORTS void absdiff(const GpuMat& a, const Scalar& s, GpuMat& c);
 | 
			
		||||
 | 
			
		||||
        //! compares elements of two arrays (c = a <cmpop> b)
 | 
			
		||||
        //! supports CV_8UC4, CV_32FC1 types
 | 
			
		||||
        CV_EXPORTS void compare(const GpuMat& a, const GpuMat& b, GpuMat& c, int cmpop);
 | 
			
		||||
 | 
			
		||||
        //! performs per-elements bit-wise inversion
 | 
			
		||||
        CV_EXPORTS void bitwise_not(const GpuMat& src, GpuMat& dst, const GpuMat& mask=GpuMat());
 | 
			
		||||
        //! version without mask
 | 
			
		||||
        CV_EXPORTS GpuMat operator ~ (const GpuMat& src);
 | 
			
		||||
        //! async version
 | 
			
		||||
        CV_EXPORTS void bitwise_not(const GpuMat& src, GpuMat& dst, const GpuMat& mask, const Stream& stream);
 | 
			
		||||
 | 
			
		||||
        //! calculates per-element bit-wise disjunction of two arrays
 | 
			
		||||
        CV_EXPORTS void bitwise_or(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask=GpuMat());
 | 
			
		||||
        //! version without mask
 | 
			
		||||
        CV_EXPORTS GpuMat operator | (const GpuMat& src1, const GpuMat& src2);
 | 
			
		||||
        //! async version
 | 
			
		||||
        CV_EXPORTS void bitwise_or(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, const Stream& stream);
 | 
			
		||||
 | 
			
		||||
        //! calculates per-element bit-wise conjunction of two arrays
 | 
			
		||||
        CV_EXPORTS void bitwise_and(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask=GpuMat());
 | 
			
		||||
        //! version without mask
 | 
			
		||||
        CV_EXPORTS GpuMat operator & (const GpuMat& src1, const GpuMat& src2);
 | 
			
		||||
        //! async version
 | 
			
		||||
        CV_EXPORTS void bitwise_and(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, const Stream& stream);
 | 
			
		||||
 | 
			
		||||
        //! calculates per-element bit-wise "exclusive or" operation
 | 
			
		||||
        CV_EXPORTS void bitwise_xor(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask=GpuMat());
 | 
			
		||||
        //! version without mask
 | 
			
		||||
        CV_EXPORTS GpuMat operator ^ (const GpuMat& src1, const GpuMat& src2);
 | 
			
		||||
        //! async version
 | 
			
		||||
        CV_EXPORTS void bitwise_xor(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, const Stream& stream);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
        ////////////////////////////// Image processing //////////////////////////////
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -48,18 +48,7 @@ using namespace std;
 | 
			
		||||
 | 
			
		||||
#if !defined (HAVE_CUDA)
 | 
			
		||||
 | 
			
		||||
void cv::gpu::add(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
 | 
			
		||||
void cv::gpu::add(const GpuMat&, const Scalar&, GpuMat&) { throw_nogpu(); }
 | 
			
		||||
void cv::gpu::subtract(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
 | 
			
		||||
void cv::gpu::subtract(const GpuMat&, const Scalar&, GpuMat&) { throw_nogpu(); }
 | 
			
		||||
void cv::gpu::multiply(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
 | 
			
		||||
void cv::gpu::multiply(const GpuMat&, const Scalar&, GpuMat&) { throw_nogpu(); }
 | 
			
		||||
void cv::gpu::divide(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
 | 
			
		||||
void cv::gpu::divide(const GpuMat&, const Scalar&, GpuMat&) { throw_nogpu(); }
 | 
			
		||||
void cv::gpu::transpose(const GpuMat&, GpuMat&) { throw_nogpu(); }
 | 
			
		||||
void cv::gpu::absdiff(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
 | 
			
		||||
void cv::gpu::absdiff(const GpuMat&, const Scalar&, GpuMat&) { throw_nogpu(); }
 | 
			
		||||
void cv::gpu::compare(const GpuMat&, const GpuMat&, GpuMat&, int) { throw_nogpu(); }
 | 
			
		||||
void cv::gpu::meanStdDev(const GpuMat&, Scalar&, Scalar&) { throw_nogpu(); }
 | 
			
		||||
double cv::gpu::norm(const GpuMat&, int) { throw_nogpu(); return 0.0; }
 | 
			
		||||
double cv::gpu::norm(const GpuMat&, const GpuMat&, int) { throw_nogpu(); return 0.0; }
 | 
			
		||||
@@ -89,18 +78,6 @@ void cv::gpu::cartToPolar(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, bool)
 | 
			
		||||
void cv::gpu::cartToPolar(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, bool, const Stream&) { throw_nogpu(); }
 | 
			
		||||
void cv::gpu::polarToCart(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, bool) { throw_nogpu(); }
 | 
			
		||||
void cv::gpu::polarToCart(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, bool, const Stream&) { throw_nogpu(); }
 | 
			
		||||
void cv::gpu::bitwise_not(const GpuMat&, GpuMat&, const GpuMat&) { throw_nogpu(); }
 | 
			
		||||
void cv::gpu::bitwise_not(const GpuMat&, GpuMat&, const GpuMat&, const Stream&) { throw_nogpu(); }
 | 
			
		||||
void cv::gpu::bitwise_or(const GpuMat&, const GpuMat&, GpuMat&, const GpuMat&) { throw_nogpu(); }
 | 
			
		||||
void cv::gpu::bitwise_or(const GpuMat&, const GpuMat&, GpuMat&, const GpuMat&, const Stream&) { throw_nogpu(); }
 | 
			
		||||
void cv::gpu::bitwise_and(const GpuMat&, const GpuMat&, GpuMat&, const GpuMat&) { throw_nogpu(); }
 | 
			
		||||
void cv::gpu::bitwise_and(const GpuMat&, const GpuMat&, GpuMat&, const GpuMat&, const Stream&) { throw_nogpu(); }
 | 
			
		||||
void cv::gpu::bitwise_xor(const GpuMat&, const GpuMat&, GpuMat&, const GpuMat&) { throw_nogpu(); }
 | 
			
		||||
void cv::gpu::bitwise_xor(const GpuMat&, const GpuMat&, GpuMat&, const GpuMat&, const Stream&) { throw_nogpu(); }
 | 
			
		||||
cv::gpu::GpuMat cv::gpu::operator ~ (const GpuMat&) { throw_nogpu(); return GpuMat(); }
 | 
			
		||||
cv::gpu::GpuMat cv::gpu::operator | (const GpuMat&, const GpuMat&) { throw_nogpu(); return GpuMat(); }
 | 
			
		||||
cv::gpu::GpuMat cv::gpu::operator & (const GpuMat&, const GpuMat&) { throw_nogpu(); return GpuMat(); }
 | 
			
		||||
cv::gpu::GpuMat cv::gpu::operator ^ (const GpuMat&, const GpuMat&) { throw_nogpu(); return GpuMat(); }
 | 
			
		||||
void cv::gpu::min(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
 | 
			
		||||
void cv::gpu::min(const GpuMat&, const GpuMat&, GpuMat&, const Stream&) { throw_nogpu(); }
 | 
			
		||||
void cv::gpu::min(const GpuMat&, double, GpuMat&) { throw_nogpu(); }
 | 
			
		||||
@@ -112,164 +89,6 @@ void cv::gpu::max(const GpuMat&, double, GpuMat&, const Stream&) { throw_nogpu()
 | 
			
		||||
 | 
			
		||||
#else /* !defined (HAVE_CUDA) */
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// add subtract multiply divide
 | 
			
		||||
 | 
			
		||||
namespace
 | 
			
		||||
{
 | 
			
		||||
    typedef NppStatus (*npp_arithm_8u_t)(const Npp8u* pSrc1, int nSrc1Step, const Npp8u* pSrc2, int nSrc2Step, Npp8u* pDst, int nDstStep,
 | 
			
		||||
                                         NppiSize oSizeROI, int nScaleFactor);
 | 
			
		||||
    typedef NppStatus (*npp_arithm_32s_t)(const Npp32s* pSrc1, int nSrc1Step, const Npp32s* pSrc2, int nSrc2Step, Npp32s* pDst,
 | 
			
		||||
                                          int nDstStep, NppiSize oSizeROI);
 | 
			
		||||
    typedef NppStatus (*npp_arithm_32f_t)(const Npp32f* pSrc1, int nSrc1Step, const Npp32f* pSrc2, int nSrc2Step, Npp32f* pDst,
 | 
			
		||||
                                          int nDstStep, NppiSize oSizeROI);
 | 
			
		||||
 | 
			
		||||
    void nppArithmCaller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst,
 | 
			
		||||
                         npp_arithm_8u_t npp_func_8uc1, npp_arithm_8u_t npp_func_8uc4,
 | 
			
		||||
                         npp_arithm_32s_t npp_func_32sc1, npp_arithm_32f_t npp_func_32fc1)
 | 
			
		||||
    {
 | 
			
		||||
        CV_DbgAssert(src1.size() == src2.size() && src1.type() == src2.type());
 | 
			
		||||
 | 
			
		||||
        CV_Assert(src1.type() == CV_8UC1 || src1.type() == CV_8UC4 || src1.type() == CV_32SC1 || src1.type() == CV_32FC1);
 | 
			
		||||
 | 
			
		||||
        dst.create( src1.size(), src1.type() );
 | 
			
		||||
 | 
			
		||||
        NppiSize sz;
 | 
			
		||||
        sz.width  = src1.cols;
 | 
			
		||||
        sz.height = src1.rows;
 | 
			
		||||
 | 
			
		||||
        switch (src1.type())
 | 
			
		||||
        {
 | 
			
		||||
        case CV_8UC1:
 | 
			
		||||
            nppSafeCall( npp_func_8uc1(src1.ptr<Npp8u>(), src1.step,
 | 
			
		||||
                src2.ptr<Npp8u>(), src2.step,
 | 
			
		||||
                dst.ptr<Npp8u>(), dst.step, sz, 0) );
 | 
			
		||||
            break;
 | 
			
		||||
        case CV_8UC4:
 | 
			
		||||
            nppSafeCall( npp_func_8uc4(src1.ptr<Npp8u>(), src1.step,
 | 
			
		||||
                src2.ptr<Npp8u>(), src2.step,
 | 
			
		||||
                dst.ptr<Npp8u>(), dst.step, sz, 0) );
 | 
			
		||||
            break;
 | 
			
		||||
        case CV_32SC1:
 | 
			
		||||
            nppSafeCall( npp_func_32sc1(src1.ptr<Npp32s>(), src1.step,
 | 
			
		||||
                src2.ptr<Npp32s>(), src2.step,
 | 
			
		||||
                dst.ptr<Npp32s>(), dst.step, sz) );
 | 
			
		||||
            break;
 | 
			
		||||
        case CV_32FC1:
 | 
			
		||||
            nppSafeCall( npp_func_32fc1(src1.ptr<Npp32f>(), src1.step,
 | 
			
		||||
                src2.ptr<Npp32f>(), src2.step,
 | 
			
		||||
                dst.ptr<Npp32f>(), dst.step, sz) );
 | 
			
		||||
            break;
 | 
			
		||||
        default:
 | 
			
		||||
            CV_Assert(!"Unsupported source type");
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template<int SCN> struct NppArithmScalarFunc;
 | 
			
		||||
    template<> struct NppArithmScalarFunc<1>
 | 
			
		||||
    {
 | 
			
		||||
        typedef NppStatus (*func_ptr)(const Npp32f *pSrc, int nSrcStep, Npp32f nValue, Npp32f *pDst,
 | 
			
		||||
                                      int nDstStep, NppiSize oSizeROI);
 | 
			
		||||
    };
 | 
			
		||||
    template<> struct NppArithmScalarFunc<2>
 | 
			
		||||
    {
 | 
			
		||||
        typedef NppStatus (*func_ptr)(const Npp32fc *pSrc, int nSrcStep, Npp32fc nValue, Npp32fc *pDst,
 | 
			
		||||
                                      int nDstStep, NppiSize oSizeROI);
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    template<int SCN, typename NppArithmScalarFunc<SCN>::func_ptr func> struct NppArithmScalar;
 | 
			
		||||
    template<typename NppArithmScalarFunc<1>::func_ptr func> struct NppArithmScalar<1, func>
 | 
			
		||||
    {
 | 
			
		||||
        static void calc(const GpuMat& src, const Scalar& sc, GpuMat& dst)
 | 
			
		||||
        {
 | 
			
		||||
            dst.create(src.size(), src.type());
 | 
			
		||||
 | 
			
		||||
            NppiSize sz;
 | 
			
		||||
            sz.width  = src.cols;
 | 
			
		||||
            sz.height = src.rows;
 | 
			
		||||
 | 
			
		||||
            nppSafeCall( func(src.ptr<Npp32f>(), src.step, (Npp32f)sc[0], dst.ptr<Npp32f>(), dst.step, sz) );
 | 
			
		||||
        }
 | 
			
		||||
    };
 | 
			
		||||
    template<typename NppArithmScalarFunc<2>::func_ptr func> struct NppArithmScalar<2, func>
 | 
			
		||||
    {
 | 
			
		||||
        static void calc(const GpuMat& src, const Scalar& sc, GpuMat& dst)
 | 
			
		||||
        {
 | 
			
		||||
            dst.create(src.size(), src.type());
 | 
			
		||||
 | 
			
		||||
            NppiSize sz;
 | 
			
		||||
            sz.width  = src.cols;
 | 
			
		||||
            sz.height = src.rows;
 | 
			
		||||
 | 
			
		||||
            Npp32fc nValue;
 | 
			
		||||
            nValue.re = (Npp32f)sc[0];
 | 
			
		||||
            nValue.im = (Npp32f)sc[1];
 | 
			
		||||
 | 
			
		||||
            nppSafeCall( func(src.ptr<Npp32fc>(), src.step, nValue, dst.ptr<Npp32fc>(), dst.step, sz) );
 | 
			
		||||
        }
 | 
			
		||||
    };
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void cv::gpu::add(const GpuMat& src1, const GpuMat& src2, GpuMat& dst)
 | 
			
		||||
{
 | 
			
		||||
    nppArithmCaller(src1, src2, dst, nppiAdd_8u_C1RSfs, nppiAdd_8u_C4RSfs, nppiAdd_32s_C1R, nppiAdd_32f_C1R);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void cv::gpu::subtract(const GpuMat& src1, const GpuMat& src2, GpuMat& dst)
 | 
			
		||||
{
 | 
			
		||||
    nppArithmCaller(src2, src1, dst, nppiSub_8u_C1RSfs, nppiSub_8u_C4RSfs, nppiSub_32s_C1R, nppiSub_32f_C1R);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void cv::gpu::multiply(const GpuMat& src1, const GpuMat& src2, GpuMat& dst)
 | 
			
		||||
{
 | 
			
		||||
    nppArithmCaller(src1, src2, dst, nppiMul_8u_C1RSfs, nppiMul_8u_C4RSfs, nppiMul_32s_C1R, nppiMul_32f_C1R);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void cv::gpu::divide(const GpuMat& src1, const GpuMat& src2, GpuMat& dst)
 | 
			
		||||
{
 | 
			
		||||
    nppArithmCaller(src2, src1, dst, nppiDiv_8u_C1RSfs, nppiDiv_8u_C4RSfs, nppiDiv_32s_C1R, nppiDiv_32f_C1R);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void cv::gpu::add(const GpuMat& src, const Scalar& sc, GpuMat& dst)
 | 
			
		||||
{
 | 
			
		||||
    typedef void (*caller_t)(const GpuMat& src, const Scalar& sc, GpuMat& dst);
 | 
			
		||||
    static const caller_t callers[] = {0, NppArithmScalar<1, nppiAddC_32f_C1R>::calc, NppArithmScalar<2, nppiAddC_32fc_C1R>::calc};
 | 
			
		||||
 | 
			
		||||
    CV_Assert(src.type() == CV_32FC1 || src.type() == CV_32FC2);
 | 
			
		||||
 | 
			
		||||
    callers[src.channels()](src, sc, dst);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void cv::gpu::subtract(const GpuMat& src, const Scalar& sc, GpuMat& dst)
 | 
			
		||||
{
 | 
			
		||||
    typedef void (*caller_t)(const GpuMat& src, const Scalar& sc, GpuMat& dst);
 | 
			
		||||
    static const caller_t callers[] = {0, NppArithmScalar<1, nppiSubC_32f_C1R>::calc, NppArithmScalar<2, nppiSubC_32fc_C1R>::calc};
 | 
			
		||||
 | 
			
		||||
    CV_Assert(src.type() == CV_32FC1 || src.type() == CV_32FC2);
 | 
			
		||||
 | 
			
		||||
    callers[src.channels()](src, sc, dst);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void cv::gpu::multiply(const GpuMat& src, const Scalar& sc, GpuMat& dst)
 | 
			
		||||
{
 | 
			
		||||
    typedef void (*caller_t)(const GpuMat& src, const Scalar& sc, GpuMat& dst);
 | 
			
		||||
    static const caller_t callers[] = {0, NppArithmScalar<1, nppiMulC_32f_C1R>::calc, NppArithmScalar<2, nppiMulC_32fc_C1R>::calc};
 | 
			
		||||
 | 
			
		||||
    CV_Assert(src.type() == CV_32FC1 || src.type() == CV_32FC2);
 | 
			
		||||
 | 
			
		||||
    callers[src.channels()](src, sc, dst);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void cv::gpu::divide(const GpuMat& src, const Scalar& sc, GpuMat& dst)
 | 
			
		||||
{
 | 
			
		||||
    typedef void (*caller_t)(const GpuMat& src, const Scalar& sc, GpuMat& dst);
 | 
			
		||||
    static const caller_t callers[] = {0, NppArithmScalar<1, nppiDivC_32f_C1R>::calc, NppArithmScalar<2, nppiDivC_32fc_C1R>::calc};
 | 
			
		||||
 | 
			
		||||
    CV_Assert(src.type() == CV_32FC1 || src.type() == CV_32FC2);
 | 
			
		||||
 | 
			
		||||
    callers[src.channels()](src, sc, dst);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// transpose
 | 
			
		||||
 | 
			
		||||
@@ -299,112 +118,6 @@ void cv::gpu::transpose(const GpuMat& src, GpuMat& dst)
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// absdiff
 | 
			
		||||
 | 
			
		||||
void cv::gpu::absdiff(const GpuMat& src1, const GpuMat& src2, GpuMat& dst)
 | 
			
		||||
{
 | 
			
		||||
    CV_DbgAssert(src1.size() == src2.size() && src1.type() == src2.type());
 | 
			
		||||
 | 
			
		||||
    CV_Assert(src1.type() == CV_8UC1 || src1.type() == CV_8UC4 || src1.type() == CV_32SC1 || src1.type() == CV_32FC1);
 | 
			
		||||
 | 
			
		||||
    dst.create( src1.size(), src1.type() );
 | 
			
		||||
 | 
			
		||||
    NppiSize sz;
 | 
			
		||||
    sz.width  = src1.cols;
 | 
			
		||||
    sz.height = src1.rows;
 | 
			
		||||
 | 
			
		||||
    switch (src1.type())
 | 
			
		||||
    {
 | 
			
		||||
    case CV_8UC1:
 | 
			
		||||
        nppSafeCall( nppiAbsDiff_8u_C1R(src1.ptr<Npp8u>(), src1.step,
 | 
			
		||||
            src2.ptr<Npp8u>(), src2.step,
 | 
			
		||||
            dst.ptr<Npp8u>(), dst.step, sz) );
 | 
			
		||||
        break;
 | 
			
		||||
    case CV_8UC4:
 | 
			
		||||
        nppSafeCall( nppiAbsDiff_8u_C4R(src1.ptr<Npp8u>(), src1.step,
 | 
			
		||||
            src2.ptr<Npp8u>(), src2.step,
 | 
			
		||||
            dst.ptr<Npp8u>(), dst.step, sz) );
 | 
			
		||||
        break;
 | 
			
		||||
    case CV_32SC1:
 | 
			
		||||
        nppSafeCall( nppiAbsDiff_32s_C1R(src1.ptr<Npp32s>(), src1.step,
 | 
			
		||||
            src2.ptr<Npp32s>(), src2.step,
 | 
			
		||||
            dst.ptr<Npp32s>(), dst.step, sz) );
 | 
			
		||||
        break;
 | 
			
		||||
    case CV_32FC1:
 | 
			
		||||
        nppSafeCall( nppiAbsDiff_32f_C1R(src1.ptr<Npp32f>(), src1.step,
 | 
			
		||||
            src2.ptr<Npp32f>(), src2.step,
 | 
			
		||||
            dst.ptr<Npp32f>(), dst.step, sz) );
 | 
			
		||||
        break;
 | 
			
		||||
    default:
 | 
			
		||||
        CV_Assert(!"Unsupported source type");
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void cv::gpu::absdiff(const GpuMat& src, const Scalar& s, GpuMat& dst)
 | 
			
		||||
{
 | 
			
		||||
    CV_Assert(src.type() == CV_32FC1);
 | 
			
		||||
 | 
			
		||||
    dst.create( src.size(), src.type() );
 | 
			
		||||
 | 
			
		||||
    NppiSize sz;
 | 
			
		||||
    sz.width  = src.cols;
 | 
			
		||||
    sz.height = src.rows;
 | 
			
		||||
 | 
			
		||||
    nppSafeCall( nppiAbsDiffC_32f_C1R(src.ptr<Npp32f>(), src.step, dst.ptr<Npp32f>(), dst.step, sz, (Npp32f)s[0]) );
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// compare
 | 
			
		||||
 | 
			
		||||
namespace cv { namespace gpu { namespace mathfunc
 | 
			
		||||
{
 | 
			
		||||
    void compare_ne_8uc4(const DevMem2D& src1, const DevMem2D& src2, const DevMem2D& dst);
 | 
			
		||||
    void compare_ne_32f(const DevMem2D& src1, const DevMem2D& src2, const DevMem2D& dst);
 | 
			
		||||
}}}
 | 
			
		||||
 | 
			
		||||
void cv::gpu::compare(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, int cmpop)
 | 
			
		||||
{
 | 
			
		||||
    CV_DbgAssert(src1.size() == src2.size() && src1.type() == src2.type());
 | 
			
		||||
 | 
			
		||||
    CV_Assert(src1.type() == CV_8UC4 || src1.type() == CV_32FC1);
 | 
			
		||||
 | 
			
		||||
    dst.create( src1.size(), CV_8UC1 );
 | 
			
		||||
 | 
			
		||||
    static const NppCmpOp nppCmpOp[] = { NPP_CMP_EQ, NPP_CMP_GREATER, NPP_CMP_GREATER_EQ, NPP_CMP_LESS, NPP_CMP_LESS_EQ };
 | 
			
		||||
 | 
			
		||||
    NppiSize sz;
 | 
			
		||||
    sz.width  = src1.cols;
 | 
			
		||||
    sz.height = src1.rows;
 | 
			
		||||
 | 
			
		||||
    if (src1.type() == CV_8UC4)
 | 
			
		||||
    {
 | 
			
		||||
        if (cmpop != CMP_NE)
 | 
			
		||||
        {
 | 
			
		||||
            nppSafeCall( nppiCompare_8u_C4R(src1.ptr<Npp8u>(), src1.step,
 | 
			
		||||
                src2.ptr<Npp8u>(), src2.step,
 | 
			
		||||
                dst.ptr<Npp8u>(), dst.step, sz, nppCmpOp[cmpop]) );
 | 
			
		||||
        }
 | 
			
		||||
        else
 | 
			
		||||
        {
 | 
			
		||||
            mathfunc::compare_ne_8uc4(src1, src2, dst);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
    else
 | 
			
		||||
    {
 | 
			
		||||
        if (cmpop != CMP_NE)
 | 
			
		||||
        {
 | 
			
		||||
            nppSafeCall( nppiCompare_32f_C1R(src1.ptr<Npp32f>(), src1.step,
 | 
			
		||||
                src2.ptr<Npp32f>(), src2.step,
 | 
			
		||||
                dst.ptr<Npp8u>(), dst.step, sz, nppCmpOp[cmpop]) );
 | 
			
		||||
        }
 | 
			
		||||
        else
 | 
			
		||||
        {
 | 
			
		||||
            mathfunc::compare_ne_32f(src1, src2, dst);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// meanStdDev
 | 
			
		||||
 | 
			
		||||
@@ -997,249 +710,6 @@ void cv::gpu::polarToCart(const GpuMat& magnitude, const GpuMat& angle, GpuMat&
 | 
			
		||||
    ::polarToCart_caller(magnitude, angle, x, y, angleInDegrees, StreamAccessor::getStream(stream));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Per-element bit-wise logical matrix operations
 | 
			
		||||
 | 
			
		||||
namespace cv { namespace gpu { namespace mathfunc
 | 
			
		||||
{
 | 
			
		||||
    void bitwise_not_caller(int rows, int cols, int elem_size1, int cn, const PtrStep src, PtrStep dst, cudaStream_t stream);
 | 
			
		||||
 | 
			
		||||
    template <typename T>
 | 
			
		||||
    void bitwise_mask_not_caller(int rows, int cols, int cn, const PtrStep src, const PtrStep mask, PtrStep dst, cudaStream_t stream);
 | 
			
		||||
 | 
			
		||||
    void bitwise_or_caller(int rows, int cols, int elem_size1, int cn, const PtrStep src1, const PtrStep src2, PtrStep dst, cudaStream_t stream);
 | 
			
		||||
 | 
			
		||||
    template <typename T>
 | 
			
		||||
    void bitwise_mask_or_caller(int rows, int cols, int cn, const PtrStep src1, const PtrStep src2, const PtrStep mask, PtrStep dst, cudaStream_t stream);
 | 
			
		||||
 | 
			
		||||
    void bitwise_and_caller(int rows, int cols, int elem_size1, int cn, const PtrStep src1, const PtrStep src2, PtrStep dst, cudaStream_t stream);
 | 
			
		||||
 | 
			
		||||
    template <typename T>
 | 
			
		||||
    void bitwise_mask_and_caller(int rows, int cols, int cn, const PtrStep src1, const PtrStep src2, const PtrStep mask, PtrStep dst, cudaStream_t stream);
 | 
			
		||||
 | 
			
		||||
    void bitwise_xor_caller(int rows, int cols, int elem_size1, int cn, const PtrStep src1, const PtrStep src2, PtrStep dst, cudaStream_t stream);
 | 
			
		||||
 | 
			
		||||
    template <typename T>
 | 
			
		||||
    void bitwise_mask_xor_caller(int rows, int cols, int cn, const PtrStep src1, const PtrStep src2, const PtrStep mask, PtrStep dst, cudaStream_t stream);
 | 
			
		||||
}}}
 | 
			
		||||
 | 
			
		||||
namespace
 | 
			
		||||
{
 | 
			
		||||
    void bitwise_not_caller(const GpuMat& src, GpuMat& dst, cudaStream_t stream)
 | 
			
		||||
    {
 | 
			
		||||
        dst.create(src.size(), src.type());
 | 
			
		||||
 | 
			
		||||
        cv::gpu::mathfunc::bitwise_not_caller(src.rows, src.cols, src.elemSize1(), 
 | 
			
		||||
                                              dst.channels(), src, dst, stream);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    void bitwise_not_caller(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream)
 | 
			
		||||
    {
 | 
			
		||||
        using namespace cv::gpu;
 | 
			
		||||
 | 
			
		||||
        typedef void (*Caller)(int, int, int, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
 | 
			
		||||
        static Caller callers[] = {mathfunc::bitwise_mask_not_caller<unsigned char>, mathfunc::bitwise_mask_not_caller<unsigned char>, 
 | 
			
		||||
                                   mathfunc::bitwise_mask_not_caller<unsigned short>, mathfunc::bitwise_mask_not_caller<unsigned short>,
 | 
			
		||||
                                   mathfunc::bitwise_mask_not_caller<unsigned int>, mathfunc::bitwise_mask_not_caller<unsigned int>,
 | 
			
		||||
                                   mathfunc::bitwise_mask_not_caller<unsigned int>};
 | 
			
		||||
 | 
			
		||||
        CV_Assert(mask.type() == CV_8U && mask.size() == src.size());
 | 
			
		||||
        dst.create(src.size(), src.type());
 | 
			
		||||
 | 
			
		||||
        Caller caller = callers[src.depth()];
 | 
			
		||||
        CV_Assert(caller);
 | 
			
		||||
 | 
			
		||||
        int cn = src.depth() != CV_64F ? src.channels() : src.channels() * (sizeof(double) / sizeof(unsigned int));
 | 
			
		||||
        caller(src.rows, src.cols, cn, src, mask, dst, stream);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    void bitwise_or_caller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream)
 | 
			
		||||
    {
 | 
			
		||||
        CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
 | 
			
		||||
        dst.create(src1.size(), src1.type());
 | 
			
		||||
 | 
			
		||||
        cv::gpu::mathfunc::bitwise_or_caller(dst.rows, dst.cols, dst.elemSize1(), 
 | 
			
		||||
                                             dst.channels(), src1, src2, dst, stream);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    void bitwise_or_caller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, cudaStream_t stream)
 | 
			
		||||
    {
 | 
			
		||||
        using namespace cv::gpu;
 | 
			
		||||
 | 
			
		||||
        typedef void (*Caller)(int, int, int, const PtrStep, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
 | 
			
		||||
        static Caller callers[] = {mathfunc::bitwise_mask_or_caller<unsigned char>, mathfunc::bitwise_mask_or_caller<unsigned char>, 
 | 
			
		||||
                                   mathfunc::bitwise_mask_or_caller<unsigned short>, mathfunc::bitwise_mask_or_caller<unsigned short>,
 | 
			
		||||
                                   mathfunc::bitwise_mask_or_caller<unsigned int>, mathfunc::bitwise_mask_or_caller<unsigned int>,
 | 
			
		||||
                                   mathfunc::bitwise_mask_or_caller<unsigned int>};
 | 
			
		||||
 | 
			
		||||
        CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
 | 
			
		||||
        dst.create(src1.size(), src1.type());
 | 
			
		||||
 | 
			
		||||
        Caller caller = callers[src1.depth()];
 | 
			
		||||
        CV_Assert(caller);
 | 
			
		||||
 | 
			
		||||
        int cn = dst.depth() != CV_64F ? dst.channels() : dst.channels() * (sizeof(double) / sizeof(unsigned int));
 | 
			
		||||
        caller(dst.rows, dst.cols, cn, src1, src2, mask, dst, stream);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    void bitwise_and_caller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream)
 | 
			
		||||
    {
 | 
			
		||||
        CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
 | 
			
		||||
        dst.create(src1.size(), src1.type());
 | 
			
		||||
 | 
			
		||||
        cv::gpu::mathfunc::bitwise_and_caller(dst.rows, dst.cols, dst.elemSize1(), 
 | 
			
		||||
                                              dst.channels(), src1, src2, dst, stream);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    void bitwise_and_caller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, cudaStream_t stream)
 | 
			
		||||
    {
 | 
			
		||||
        using namespace cv::gpu;
 | 
			
		||||
 | 
			
		||||
        typedef void (*Caller)(int, int, int, const PtrStep, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
 | 
			
		||||
        static Caller callers[] = {mathfunc::bitwise_mask_and_caller<unsigned char>, mathfunc::bitwise_mask_and_caller<unsigned char>, 
 | 
			
		||||
                                   mathfunc::bitwise_mask_and_caller<unsigned short>, mathfunc::bitwise_mask_and_caller<unsigned short>,
 | 
			
		||||
                                   mathfunc::bitwise_mask_and_caller<unsigned int>, mathfunc::bitwise_mask_and_caller<unsigned int>,
 | 
			
		||||
                                   mathfunc::bitwise_mask_and_caller<unsigned int>};
 | 
			
		||||
 | 
			
		||||
        CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
 | 
			
		||||
        dst.create(src1.size(), src1.type());
 | 
			
		||||
 | 
			
		||||
        Caller caller = callers[src1.depth()];
 | 
			
		||||
        CV_Assert(caller);
 | 
			
		||||
 | 
			
		||||
        int cn = dst.depth() != CV_64F ? dst.channels() : dst.channels() * (sizeof(double) / sizeof(unsigned int));
 | 
			
		||||
        caller(dst.rows, dst.cols, cn, src1, src2, mask, dst, stream);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    void bitwise_xor_caller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream)
 | 
			
		||||
    {
 | 
			
		||||
        CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
 | 
			
		||||
        dst.create(src1.size(), src1.type());
 | 
			
		||||
 | 
			
		||||
        cv::gpu::mathfunc::bitwise_xor_caller(dst.rows, dst.cols, dst.elemSize1(), 
 | 
			
		||||
                                              dst.channels(), src1, src2, dst, stream);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    void bitwise_xor_caller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, cudaStream_t stream)
 | 
			
		||||
    {
 | 
			
		||||
        using namespace cv::gpu;
 | 
			
		||||
 | 
			
		||||
        typedef void (*Caller)(int, int, int, const PtrStep, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
 | 
			
		||||
        static Caller callers[] = {mathfunc::bitwise_mask_xor_caller<unsigned char>, mathfunc::bitwise_mask_xor_caller<unsigned char>, 
 | 
			
		||||
                                   mathfunc::bitwise_mask_xor_caller<unsigned short>, mathfunc::bitwise_mask_xor_caller<unsigned short>,
 | 
			
		||||
                                   mathfunc::bitwise_mask_xor_caller<unsigned int>, mathfunc::bitwise_mask_xor_caller<unsigned int>,
 | 
			
		||||
                                   mathfunc::bitwise_mask_xor_caller<unsigned int>};
 | 
			
		||||
 | 
			
		||||
        CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
 | 
			
		||||
        dst.create(src1.size(), src1.type());
 | 
			
		||||
 | 
			
		||||
        Caller caller = callers[src1.depth()];
 | 
			
		||||
        CV_Assert(caller);
 | 
			
		||||
 | 
			
		||||
        int cn = dst.depth() != CV_64F ? dst.channels() : dst.channels() * (sizeof(double) / sizeof(unsigned int));
 | 
			
		||||
        caller(dst.rows, dst.cols, cn, src1, src2, mask, dst, stream);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void cv::gpu::bitwise_not(const GpuMat& src, GpuMat& dst, const GpuMat& mask)
 | 
			
		||||
{
 | 
			
		||||
    if (mask.empty())
 | 
			
		||||
        ::bitwise_not_caller(src, dst, 0);
 | 
			
		||||
    else
 | 
			
		||||
        ::bitwise_not_caller(src, dst, mask, 0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void cv::gpu::bitwise_not(const GpuMat& src, GpuMat& dst, const GpuMat& mask, const Stream& stream)
 | 
			
		||||
{
 | 
			
		||||
    if (mask.empty())
 | 
			
		||||
        ::bitwise_not_caller(src, dst, StreamAccessor::getStream(stream));
 | 
			
		||||
    else
 | 
			
		||||
        ::bitwise_not_caller(src, dst, mask, StreamAccessor::getStream(stream));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void cv::gpu::bitwise_or(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask)
 | 
			
		||||
{
 | 
			
		||||
    if (mask.empty())
 | 
			
		||||
        ::bitwise_or_caller(src1, src2, dst, 0);
 | 
			
		||||
    else
 | 
			
		||||
        ::bitwise_or_caller(src1, src2, dst, mask, 0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void cv::gpu::bitwise_or(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, const Stream& stream)
 | 
			
		||||
{
 | 
			
		||||
    if (mask.empty())
 | 
			
		||||
        ::bitwise_or_caller(src1, src2, dst, StreamAccessor::getStream(stream));
 | 
			
		||||
    else
 | 
			
		||||
        ::bitwise_or_caller(src1, src2, dst, mask, StreamAccessor::getStream(stream));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void cv::gpu::bitwise_and(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask)
 | 
			
		||||
{
 | 
			
		||||
    if (mask.empty())
 | 
			
		||||
        ::bitwise_and_caller(src1, src2, dst, 0);
 | 
			
		||||
    else
 | 
			
		||||
        ::bitwise_and_caller(src1, src2, dst, mask, 0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void cv::gpu::bitwise_and(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, const Stream& stream)
 | 
			
		||||
{
 | 
			
		||||
    if (mask.empty())
 | 
			
		||||
        ::bitwise_and_caller(src1, src2, dst, StreamAccessor::getStream(stream));
 | 
			
		||||
    else
 | 
			
		||||
        ::bitwise_and_caller(src1, src2, dst, mask, StreamAccessor::getStream(stream));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void cv::gpu::bitwise_xor(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask)
 | 
			
		||||
{
 | 
			
		||||
    if (mask.empty())
 | 
			
		||||
        ::bitwise_xor_caller(src1, src2, dst, 0);
 | 
			
		||||
    else
 | 
			
		||||
        ::bitwise_xor_caller(src1, src2, dst, mask, 0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void cv::gpu::bitwise_xor(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, const Stream& stream)
 | 
			
		||||
{
 | 
			
		||||
    if (mask.empty())
 | 
			
		||||
        ::bitwise_xor_caller(src1, src2, dst, StreamAccessor::getStream(stream));
 | 
			
		||||
    else
 | 
			
		||||
        ::bitwise_xor_caller(src1, src2, dst, mask, StreamAccessor::getStream(stream));
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
cv::gpu::GpuMat cv::gpu::operator ~ (const GpuMat& src)
 | 
			
		||||
{
 | 
			
		||||
    GpuMat dst;
 | 
			
		||||
    bitwise_not(src, dst);
 | 
			
		||||
    return dst;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
cv::gpu::GpuMat cv::gpu::operator | (const GpuMat& src1, const GpuMat& src2)
 | 
			
		||||
{
 | 
			
		||||
    GpuMat dst;
 | 
			
		||||
    bitwise_or(src1, src2, dst);
 | 
			
		||||
    return dst;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
cv::gpu::GpuMat cv::gpu::operator & (const GpuMat& src1, const GpuMat& src2)
 | 
			
		||||
{
 | 
			
		||||
    GpuMat dst;
 | 
			
		||||
    bitwise_and(src1, src2, dst);
 | 
			
		||||
    return dst;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
cv::gpu::GpuMat cv::gpu::operator ^ (const GpuMat& src1, const GpuMat& src2)
 | 
			
		||||
{
 | 
			
		||||
    GpuMat dst;
 | 
			
		||||
    bitwise_xor(src1, src2, dst);
 | 
			
		||||
    return dst;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// min/max
 | 
			
		||||
 
 | 
			
		||||
@@ -0,0 +1,348 @@
 | 
			
		||||
/*M///////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
//
 | 
			
		||||
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | 
			
		||||
//
 | 
			
		||||
//  By downloading, copying, installing or using the software you agree to this license.
 | 
			
		||||
//  If you do not agree to this license, do not download, install,
 | 
			
		||||
//  copy or use the software.
 | 
			
		||||
//
 | 
			
		||||
//
 | 
			
		||||
//                           License Agreement
 | 
			
		||||
//                For Open Source Computer Vision Library
 | 
			
		||||
//
 | 
			
		||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | 
			
		||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | 
			
		||||
// Third party copyrights are property of their respective owners.
 | 
			
		||||
//
 | 
			
		||||
// Redistribution and use in source and binary forms, with or without modification,
 | 
			
		||||
// are permitted provided that the following conditions are met:
 | 
			
		||||
//
 | 
			
		||||
//   * Redistribution's of source code must retain the above copyright notice,
 | 
			
		||||
//     this list of conditions and the following disclaimer.
 | 
			
		||||
//
 | 
			
		||||
//   * Redistribution's in binary form must reproduce the above copyright notice,
 | 
			
		||||
//     this list of conditions and the following disclaimer in the documentation
 | 
			
		||||
//     and/or other materials provided with the distribution.
 | 
			
		||||
//
 | 
			
		||||
//   * The name of the copyright holders may not be used to endorse or promote products
 | 
			
		||||
//     derived from this software without specific prior written permission.
 | 
			
		||||
//
 | 
			
		||||
// This software is provided by the copyright holders and contributors "as is" and
 | 
			
		||||
// any express or implied warranties, including, but not limited to, the implied
 | 
			
		||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
 | 
			
		||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
 | 
			
		||||
// indirect, incidental, special, exemplary, or consequential damages
 | 
			
		||||
// (including, but not limited to, procurement of substitute goods or services;
 | 
			
		||||
// loss of use, data, or profits; or business interruption) however caused
 | 
			
		||||
// and on any theory of liability, whether in contract, strict liability,
 | 
			
		||||
// or tort (including negligence or otherwise) arising in any way out of
 | 
			
		||||
// the use of this software, even if advised of the possibility of such damage.
 | 
			
		||||
//
 | 
			
		||||
//M*/
 | 
			
		||||
 | 
			
		||||
#include "opencv2/gpu/device/vecmath.hpp"
 | 
			
		||||
#include "transform.hpp"
 | 
			
		||||
#include "internal_shared.hpp"
 | 
			
		||||
 | 
			
		||||
using namespace cv::gpu;
 | 
			
		||||
using namespace cv::gpu::device;
 | 
			
		||||
 | 
			
		||||
namespace cv { namespace gpu { namespace mathfunc
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Compare
 | 
			
		||||
 | 
			
		||||
    template <typename T1, typename T2>
 | 
			
		||||
    struct NotEqual
 | 
			
		||||
    {
 | 
			
		||||
        __device__ uchar operator()(const T1& src1, const T2& src2)
 | 
			
		||||
        {
 | 
			
		||||
            return static_cast<uchar>(static_cast<int>(src1 != src2) * 255);
 | 
			
		||||
        }
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    template <typename T1, typename T2>
 | 
			
		||||
    inline void compare_ne(const DevMem2D& src1, const DevMem2D& src2, const DevMem2D& dst)
 | 
			
		||||
    {
 | 
			
		||||
        NotEqual<T1, T2> op;
 | 
			
		||||
        transform(static_cast< DevMem2D_<T1> >(src1), static_cast< DevMem2D_<T2> >(src2), dst, op, 0);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void compare_ne_8uc4(const DevMem2D& src1, const DevMem2D& src2, const DevMem2D& dst)
 | 
			
		||||
    {
 | 
			
		||||
        compare_ne<uint, uint>(src1, src2, dst);
 | 
			
		||||
    }
 | 
			
		||||
    void compare_ne_32f(const DevMem2D& src1, const DevMem2D& src2, const DevMem2D& dst)
 | 
			
		||||
    {
 | 
			
		||||
        compare_ne<float, float>(src1, src2, dst);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Unary bitwise logical matrix operations
 | 
			
		||||
 | 
			
		||||
    enum { UN_OP_NOT };
 | 
			
		||||
 | 
			
		||||
    template <typename T, int opid>
 | 
			
		||||
    struct UnOp;
 | 
			
		||||
 | 
			
		||||
    template <typename T>
 | 
			
		||||
    struct UnOp<T, UN_OP_NOT>
 | 
			
		||||
    { 
 | 
			
		||||
        static __device__ T call(T v) { return ~v; }
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    template <int opid>
 | 
			
		||||
    __global__ void bitwiseUnOpKernel(int rows, int width, const PtrStep src, PtrStep dst)
 | 
			
		||||
    {
 | 
			
		||||
        const int x = (blockDim.x * blockIdx.x + threadIdx.x) * 4;
 | 
			
		||||
        const int y = blockDim.y * blockIdx.y + threadIdx.y;
 | 
			
		||||
 | 
			
		||||
        if (y < rows) 
 | 
			
		||||
        {
 | 
			
		||||
            uchar* dst_ptr = dst.ptr(y) + x;
 | 
			
		||||
            const uchar* src_ptr = src.ptr(y) + x;
 | 
			
		||||
            if (x + sizeof(uint) - 1 < width)
 | 
			
		||||
            {
 | 
			
		||||
                *(uint*)dst_ptr = UnOp<uint, opid>::call(*(uint*)src_ptr);
 | 
			
		||||
            }
 | 
			
		||||
            else
 | 
			
		||||
            {
 | 
			
		||||
                const uchar* src_end = src.ptr(y) + width;
 | 
			
		||||
                while (src_ptr < src_end)
 | 
			
		||||
                {
 | 
			
		||||
                    *dst_ptr++ = UnOp<uchar, opid>::call(*src_ptr++);
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    template <int opid>
 | 
			
		||||
    void bitwiseUnOp(int rows, int width, const PtrStep src, PtrStep dst, 
 | 
			
		||||
                     cudaStream_t stream)
 | 
			
		||||
    {
 | 
			
		||||
        dim3 threads(16, 16);
 | 
			
		||||
        dim3 grid(divUp(width, threads.x * sizeof(uint)), 
 | 
			
		||||
                  divUp(rows, threads.y));
 | 
			
		||||
 | 
			
		||||
        bitwiseUnOpKernel<opid><<<grid, threads>>>(rows, width, src, dst);
 | 
			
		||||
 | 
			
		||||
        if (stream == 0) 
 | 
			
		||||
            cudaSafeCall(cudaThreadSynchronize());
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    template <typename T, int opid>
 | 
			
		||||
    __global__ void bitwiseUnOpKernel(int rows, int cols, int cn, const PtrStep src, 
 | 
			
		||||
                                      const PtrStep mask, PtrStep dst)
 | 
			
		||||
    {
 | 
			
		||||
        const int x = blockDim.x * blockIdx.x + threadIdx.x;
 | 
			
		||||
        const int y = blockDim.y * blockIdx.y + threadIdx.y;
 | 
			
		||||
 | 
			
		||||
        if (x < cols && y < rows && mask.ptr(y)[x / cn]) 
 | 
			
		||||
        {
 | 
			
		||||
            T* dst_row = (T*)dst.ptr(y);
 | 
			
		||||
            const T* src_row = (const T*)src.ptr(y);
 | 
			
		||||
 | 
			
		||||
            dst_row[x] = UnOp<T, opid>::call(src_row[x]);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    template <typename T, int opid>
 | 
			
		||||
    void bitwiseUnOp(int rows, int cols, int cn, const PtrStep src, 
 | 
			
		||||
                     const PtrStep mask, PtrStep dst, cudaStream_t stream)
 | 
			
		||||
    {
 | 
			
		||||
        dim3 threads(16, 16);
 | 
			
		||||
        dim3 grid(divUp(cols, threads.x), divUp(rows, threads.y));
 | 
			
		||||
 | 
			
		||||
        bitwiseUnOpKernel<T, opid><<<grid, threads>>>(rows, cols, cn, src, mask, dst); 
 | 
			
		||||
 | 
			
		||||
        if (stream == 0) 
 | 
			
		||||
            cudaSafeCall(cudaThreadSynchronize());
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    void bitwiseNotCaller(int rows, int cols, int elem_size1, int cn, 
 | 
			
		||||
                          const PtrStep src, PtrStep dst, cudaStream_t stream)
 | 
			
		||||
    {
 | 
			
		||||
        bitwiseUnOp<UN_OP_NOT>(rows, cols * elem_size1 * cn, src, dst, stream);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    template <typename T>
 | 
			
		||||
    void bitwiseMaskNotCaller(int rows, int cols, int cn, const PtrStep src, 
 | 
			
		||||
                              const PtrStep mask, PtrStep dst, cudaStream_t stream)
 | 
			
		||||
    {
 | 
			
		||||
        bitwiseUnOp<T, UN_OP_NOT>(rows, cols * cn, cn, src, mask, dst, stream);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template void bitwiseMaskNotCaller<uchar>(int, int, int, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
 | 
			
		||||
    template void bitwiseMaskNotCaller<ushort>(int, int, int, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
 | 
			
		||||
    template void bitwiseMaskNotCaller<uint>(int, int, int, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Binary bitwise logical matrix operations
 | 
			
		||||
 | 
			
		||||
    enum { BIN_OP_OR, BIN_OP_AND, BIN_OP_XOR };
 | 
			
		||||
 | 
			
		||||
    template <typename T, int opid>
 | 
			
		||||
    struct BinOp;
 | 
			
		||||
 | 
			
		||||
    template <typename T>
 | 
			
		||||
    struct BinOp<T, BIN_OP_OR>
 | 
			
		||||
    { 
 | 
			
		||||
        static __device__ T call(T a, T b) { return a | b; } 
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    template <typename T>
 | 
			
		||||
    struct BinOp<T, BIN_OP_AND>
 | 
			
		||||
    { 
 | 
			
		||||
        static __device__ T call(T a, T b) { return a & b; } 
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    template <typename T>
 | 
			
		||||
    struct BinOp<T, BIN_OP_XOR>
 | 
			
		||||
    { 
 | 
			
		||||
        static __device__ T call(T a, T b) { return a ^ b; } 
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    template <int opid>
 | 
			
		||||
    __global__ void bitwiseBinOpKernel(int rows, int width, const PtrStep src1, 
 | 
			
		||||
                                       const PtrStep src2, PtrStep dst)
 | 
			
		||||
    {
 | 
			
		||||
        const int x = (blockDim.x * blockIdx.x + threadIdx.x) * 4;
 | 
			
		||||
        const int y = blockDim.y * blockIdx.y + threadIdx.y;
 | 
			
		||||
 | 
			
		||||
        if (y < rows) 
 | 
			
		||||
        {
 | 
			
		||||
            uchar* dst_ptr = dst.ptr(y) + x;
 | 
			
		||||
            const uchar* src1_ptr = src1.ptr(y) + x;
 | 
			
		||||
            const uchar* src2_ptr = src2.ptr(y) + x;
 | 
			
		||||
 | 
			
		||||
            if (x + sizeof(uint) - 1 < width)
 | 
			
		||||
            {
 | 
			
		||||
                *(uint*)dst_ptr = BinOp<uint, opid>::call(*(uint*)src1_ptr, *(uint*)src2_ptr);
 | 
			
		||||
            }
 | 
			
		||||
            else
 | 
			
		||||
            {
 | 
			
		||||
                const uchar* src1_end = src1.ptr(y) + width;
 | 
			
		||||
                while (src1_ptr < src1_end)
 | 
			
		||||
                {
 | 
			
		||||
                    *dst_ptr++ = BinOp<uchar, opid>::call(*src1_ptr++, *src2_ptr++);
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    template <int opid>
 | 
			
		||||
    void bitwiseBinOp(int rows, int width, const PtrStep src1, const PtrStep src2, 
 | 
			
		||||
                      PtrStep dst, cudaStream_t stream)
 | 
			
		||||
    {
 | 
			
		||||
        dim3 threads(16, 16);
 | 
			
		||||
        dim3 grid(divUp(width, threads.x * sizeof(uint)), divUp(rows, threads.y));
 | 
			
		||||
 | 
			
		||||
        bitwiseBinOpKernel<opid><<<grid, threads>>>(rows, width, src1, src2, dst);
 | 
			
		||||
 | 
			
		||||
        if (stream == 0) 
 | 
			
		||||
            cudaSafeCall(cudaThreadSynchronize());
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    template <typename T, int opid>
 | 
			
		||||
    __global__ void bitwiseBinOpKernel(
 | 
			
		||||
            int rows, int cols, int cn, const PtrStep src1, const PtrStep src2, 
 | 
			
		||||
            const PtrStep mask, PtrStep dst)
 | 
			
		||||
    {
 | 
			
		||||
        const int x = blockDim.x * blockIdx.x + threadIdx.x;
 | 
			
		||||
        const int y = blockDim.y * blockIdx.y + threadIdx.y;
 | 
			
		||||
 | 
			
		||||
        if (x < cols && y < rows && mask.ptr(y)[x / cn]) 
 | 
			
		||||
        {
 | 
			
		||||
            T* dst_row = (T*)dst.ptr(y);
 | 
			
		||||
            const T* src1_row = (const T*)src1.ptr(y);
 | 
			
		||||
            const T* src2_row = (const T*)src2.ptr(y);
 | 
			
		||||
 | 
			
		||||
            dst_row[x] = BinOp<T, opid>::call(src1_row[x], src2_row[x]);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    template <typename T, int opid>
 | 
			
		||||
    void bitwiseBinOp(int rows, int cols, int cn, const PtrStep src1, const PtrStep src2, 
 | 
			
		||||
                        const PtrStep mask, PtrStep dst, cudaStream_t stream)
 | 
			
		||||
    {
 | 
			
		||||
        dim3 threads(16, 16);
 | 
			
		||||
        dim3 grid(divUp(cols, threads.x), divUp(rows, threads.y));
 | 
			
		||||
 | 
			
		||||
        bitwiseBinOpKernel<T, opid><<<grid, threads>>>(rows, cols, cn, src1, src2, mask, dst); 
 | 
			
		||||
 | 
			
		||||
        if (stream == 0) 
 | 
			
		||||
            cudaSafeCall(cudaThreadSynchronize());
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    void bitwiseOrCaller(int rows, int cols, int elem_size1, int cn, const PtrStep src1, 
 | 
			
		||||
                         const PtrStep src2, PtrStep dst, cudaStream_t stream)
 | 
			
		||||
    {
 | 
			
		||||
        bitwiseBinOp<BIN_OP_OR>(rows, cols * elem_size1 * cn, src1, src2, dst, stream);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    template <typename T>
 | 
			
		||||
    void bitwiseMaskOrCaller(int rows, int cols, int cn, const PtrStep src1, const PtrStep src2, 
 | 
			
		||||
                             const PtrStep mask, PtrStep dst, cudaStream_t stream)
 | 
			
		||||
    {
 | 
			
		||||
        bitwiseBinOp<T, BIN_OP_OR>(rows, cols * cn, cn, src1, src2, mask, dst, stream);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template void bitwiseMaskOrCaller<uchar>(int, int, int, const PtrStep, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
 | 
			
		||||
    template void bitwiseMaskOrCaller<ushort>(int, int, int, const PtrStep, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
 | 
			
		||||
    template void bitwiseMaskOrCaller<uint>(int, int, int, const PtrStep, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    void bitwiseAndCaller(int rows, int cols, int elem_size1, int cn, const PtrStep src1, 
 | 
			
		||||
                          const PtrStep src2, PtrStep dst, cudaStream_t stream)
 | 
			
		||||
    {
 | 
			
		||||
        bitwiseBinOp<BIN_OP_AND>(rows, cols * elem_size1 * cn, src1, src2, dst, stream);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    template <typename T>
 | 
			
		||||
    void bitwiseMaskAndCaller(int rows, int cols, int cn, const PtrStep src1, const PtrStep src2, 
 | 
			
		||||
                              const PtrStep mask, PtrStep dst, cudaStream_t stream)
 | 
			
		||||
    {
 | 
			
		||||
        bitwiseBinOp<T, BIN_OP_AND>(rows, cols * cn, cn, src1, src2, mask, dst, stream);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template void bitwiseMaskAndCaller<uchar>(int, int, int, const PtrStep, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
 | 
			
		||||
    template void bitwiseMaskAndCaller<ushort>(int, int, int, const PtrStep, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
 | 
			
		||||
    template void bitwiseMaskAndCaller<uint>(int, int, int, const PtrStep, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    void bitwiseXorCaller(int rows, int cols, int elem_size1, int cn, const PtrStep src1, 
 | 
			
		||||
                          const PtrStep src2, PtrStep dst, cudaStream_t stream)
 | 
			
		||||
    {
 | 
			
		||||
        bitwiseBinOp<BIN_OP_XOR>(rows, cols * elem_size1 * cn, src1, src2, dst, stream);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    template <typename T>
 | 
			
		||||
    void bitwiseMaskXorCaller(int rows, int cols, int cn, const PtrStep src1, const PtrStep src2, 
 | 
			
		||||
                              const PtrStep mask, PtrStep dst, cudaStream_t stream)
 | 
			
		||||
    {
 | 
			
		||||
        bitwiseBinOp<T, BIN_OP_XOR>(rows, cols * cn, cn, src1, src2, mask, dst, stream);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template void bitwiseMaskXorCaller<uchar>(int, int, int, const PtrStep, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
 | 
			
		||||
    template void bitwiseMaskXorCaller<ushort>(int, int, int, const PtrStep, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
 | 
			
		||||
    template void bitwiseMaskXorCaller<uint>(int, int, int, const PtrStep, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
 | 
			
		||||
 | 
			
		||||
}}}
 | 
			
		||||
 
 | 
			
		||||
@@ -78,6 +78,29 @@ namespace cv { namespace gpu { namespace mathfunc
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    struct Mask8U
 | 
			
		||||
    {
 | 
			
		||||
        explicit Mask8U(PtrStep mask): mask(mask) {}
 | 
			
		||||
 | 
			
		||||
        __device__ bool operator()(int y, int x) const 
 | 
			
		||||
        { 
 | 
			
		||||
            return mask.ptr(y)[x]; 
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        PtrStep mask;
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    struct MaskTrue 
 | 
			
		||||
    { 
 | 
			
		||||
        __device__ bool operator()(int y, int x) const 
 | 
			
		||||
        { 
 | 
			
		||||
            return true; 
 | 
			
		||||
        } 
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    struct Nothing
 | 
			
		||||
    {
 | 
			
		||||
        static __device__ void calc(int, int, float, float, float*, size_t, float)
 | 
			
		||||
@@ -235,313 +258,6 @@ namespace cv { namespace gpu { namespace mathfunc
 | 
			
		||||
        callers[mag.data == 0](mag, angle, x, y, angleInDegrees, stream);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Compare
 | 
			
		||||
 | 
			
		||||
    template <typename T1, typename T2>
 | 
			
		||||
    struct NotEqual
 | 
			
		||||
    {
 | 
			
		||||
        __device__ uchar operator()(const T1& src1, const T2& src2)
 | 
			
		||||
        {
 | 
			
		||||
            return static_cast<uchar>(static_cast<int>(src1 != src2) * 255);
 | 
			
		||||
        }
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    template <typename T1, typename T2>
 | 
			
		||||
    inline void compare_ne(const DevMem2D& src1, const DevMem2D& src2, const DevMem2D& dst)
 | 
			
		||||
    {
 | 
			
		||||
        NotEqual<T1, T2> op;
 | 
			
		||||
        transform(static_cast< DevMem2D_<T1> >(src1), static_cast< DevMem2D_<T2> >(src2), dst, op, 0);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void compare_ne_8uc4(const DevMem2D& src1, const DevMem2D& src2, const DevMem2D& dst)
 | 
			
		||||
    {
 | 
			
		||||
        compare_ne<uint, uint>(src1, src2, dst);
 | 
			
		||||
    }
 | 
			
		||||
    void compare_ne_32f(const DevMem2D& src1, const DevMem2D& src2, const DevMem2D& dst)
 | 
			
		||||
    {
 | 
			
		||||
        compare_ne<float, float>(src1, src2, dst);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Per-element bit-wise logical matrix operations
 | 
			
		||||
 | 
			
		||||
    struct Mask8U
 | 
			
		||||
    {
 | 
			
		||||
        explicit Mask8U(PtrStep mask): mask(mask) {}
 | 
			
		||||
 | 
			
		||||
        __device__ bool operator()(int y, int x) const 
 | 
			
		||||
        { 
 | 
			
		||||
            return mask.ptr(y)[x]; 
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        PtrStep mask;
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    struct MaskTrue 
 | 
			
		||||
    { 
 | 
			
		||||
        __device__ bool operator()(int y, int x) const 
 | 
			
		||||
        { 
 | 
			
		||||
            return true; 
 | 
			
		||||
        } 
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    //------------------------------------------------------------------------
 | 
			
		||||
    // Unary operations
 | 
			
		||||
 | 
			
		||||
    enum { UN_OP_NOT };
 | 
			
		||||
 | 
			
		||||
    template <typename T, int opid>
 | 
			
		||||
    struct UnOp;
 | 
			
		||||
 | 
			
		||||
    template <typename T>
 | 
			
		||||
    struct UnOp<T, UN_OP_NOT>
 | 
			
		||||
    { 
 | 
			
		||||
        static __device__ T call(T v) { return ~v; }
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    template <int opid>
 | 
			
		||||
    __global__ void bitwise_un_op_kernel(int rows, int width, const PtrStep src, PtrStep dst)
 | 
			
		||||
    {
 | 
			
		||||
        const int x = (blockDim.x * blockIdx.x + threadIdx.x) * 4;
 | 
			
		||||
        const int y = blockDim.y * blockIdx.y + threadIdx.y;
 | 
			
		||||
 | 
			
		||||
        if (y < rows) 
 | 
			
		||||
        {
 | 
			
		||||
            uchar* dst_ptr = dst.ptr(y) + x;
 | 
			
		||||
            const uchar* src_ptr = src.ptr(y) + x;
 | 
			
		||||
            if (x + sizeof(uint) - 1 < width)
 | 
			
		||||
            {
 | 
			
		||||
                *(uint*)dst_ptr = UnOp<uint, opid>::call(*(uint*)src_ptr);
 | 
			
		||||
            }
 | 
			
		||||
            else
 | 
			
		||||
            {
 | 
			
		||||
                const uchar* src_end = src.ptr(y) + width;
 | 
			
		||||
                while (src_ptr < src_end)
 | 
			
		||||
                {
 | 
			
		||||
                    *dst_ptr++ = UnOp<uchar, opid>::call(*src_ptr++);
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    template <int opid>
 | 
			
		||||
    void bitwise_un_op(int rows, int width, const PtrStep src, PtrStep dst, cudaStream_t stream)
 | 
			
		||||
    {
 | 
			
		||||
        dim3 threads(16, 16);
 | 
			
		||||
        dim3 grid(divUp(width, threads.x * sizeof(uint)), 
 | 
			
		||||
                  divUp(rows, threads.y));
 | 
			
		||||
 | 
			
		||||
        bitwise_un_op_kernel<opid><<<grid, threads>>>(rows, width, src, dst);
 | 
			
		||||
 | 
			
		||||
        if (stream == 0) 
 | 
			
		||||
            cudaSafeCall(cudaThreadSynchronize());
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    template <typename T, int opid>
 | 
			
		||||
    __global__ void bitwise_un_op_kernel(int rows, int cols, int cn, const PtrStep src, const PtrStep mask, PtrStep dst)
 | 
			
		||||
    {
 | 
			
		||||
        const int x = blockDim.x * blockIdx.x + threadIdx.x;
 | 
			
		||||
        const int y = blockDim.y * blockIdx.y + threadIdx.y;
 | 
			
		||||
 | 
			
		||||
        if (x < cols && y < rows && mask.ptr(y)[x / cn]) 
 | 
			
		||||
        {
 | 
			
		||||
            T* dst_row = (T*)dst.ptr(y);
 | 
			
		||||
            const T* src_row = (const T*)src.ptr(y);
 | 
			
		||||
 | 
			
		||||
            dst_row[x] = UnOp<T, opid>::call(src_row[x]);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    template <typename T, int opid>
 | 
			
		||||
    void bitwise_un_op(int rows, int cols, int cn, const PtrStep src, const PtrStep mask, PtrStep dst, cudaStream_t stream)
 | 
			
		||||
    {
 | 
			
		||||
        dim3 threads(16, 16);
 | 
			
		||||
        dim3 grid(divUp(cols, threads.x), divUp(rows, threads.y));
 | 
			
		||||
 | 
			
		||||
        bitwise_un_op_kernel<T, opid><<<grid, threads>>>(rows, cols, cn, src, mask, dst); 
 | 
			
		||||
 | 
			
		||||
        if (stream == 0) 
 | 
			
		||||
            cudaSafeCall(cudaThreadSynchronize());
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    void bitwise_not_caller(int rows, int cols, int elem_size1, int cn, const PtrStep src, PtrStep dst, cudaStream_t stream)
 | 
			
		||||
    {
 | 
			
		||||
        bitwise_un_op<UN_OP_NOT>(rows, cols * elem_size1 * cn, src, dst, stream);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    template <typename T>
 | 
			
		||||
    void bitwise_mask_not_caller(int rows, int cols, int cn, const PtrStep src, const PtrStep mask, PtrStep dst, cudaStream_t stream)
 | 
			
		||||
    {
 | 
			
		||||
        bitwise_un_op<T, UN_OP_NOT>(rows, cols * cn, cn, src, mask, dst, stream);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template void bitwise_mask_not_caller<uchar>(int, int, int, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
 | 
			
		||||
    template void bitwise_mask_not_caller<ushort>(int, int, int, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
 | 
			
		||||
    template void bitwise_mask_not_caller<uint>(int, int, int, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
 | 
			
		||||
 | 
			
		||||
    //------------------------------------------------------------------------
 | 
			
		||||
    // Binary operations
 | 
			
		||||
 | 
			
		||||
    enum { BIN_OP_OR, BIN_OP_AND, BIN_OP_XOR };
 | 
			
		||||
 | 
			
		||||
    template <typename T, int opid>
 | 
			
		||||
    struct BinOp;
 | 
			
		||||
 | 
			
		||||
    template <typename T>
 | 
			
		||||
    struct BinOp<T, BIN_OP_OR>
 | 
			
		||||
    { 
 | 
			
		||||
        static __device__ T call(T a, T b) { return a | b; } 
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    template <typename T>
 | 
			
		||||
    struct BinOp<T, BIN_OP_AND>
 | 
			
		||||
    { 
 | 
			
		||||
        static __device__ T call(T a, T b) { return a & b; } 
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    template <typename T>
 | 
			
		||||
    struct BinOp<T, BIN_OP_XOR>
 | 
			
		||||
    { 
 | 
			
		||||
        static __device__ T call(T a, T b) { return a ^ b; } 
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    template <int opid>
 | 
			
		||||
    __global__ void bitwise_bin_op_kernel(int rows, int width, const PtrStep src1, const PtrStep src2, PtrStep dst)
 | 
			
		||||
    {
 | 
			
		||||
        const int x = (blockDim.x * blockIdx.x + threadIdx.x) * 4;
 | 
			
		||||
        const int y = blockDim.y * blockIdx.y + threadIdx.y;
 | 
			
		||||
 | 
			
		||||
        if (y < rows) 
 | 
			
		||||
        {
 | 
			
		||||
            uchar* dst_ptr = dst.ptr(y) + x;
 | 
			
		||||
            const uchar* src1_ptr = src1.ptr(y) + x;
 | 
			
		||||
            const uchar* src2_ptr = src2.ptr(y) + x;
 | 
			
		||||
 | 
			
		||||
            if (x + sizeof(uint) - 1 < width)
 | 
			
		||||
            {
 | 
			
		||||
                *(uint*)dst_ptr = BinOp<uint, opid>::call(*(uint*)src1_ptr, *(uint*)src2_ptr);
 | 
			
		||||
            }
 | 
			
		||||
            else
 | 
			
		||||
            {
 | 
			
		||||
                const uchar* src1_end = src1.ptr(y) + width;
 | 
			
		||||
                while (src1_ptr < src1_end)
 | 
			
		||||
                {
 | 
			
		||||
                    *dst_ptr++ = BinOp<uchar, opid>::call(*src1_ptr++, *src2_ptr++);
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    template <int opid>
 | 
			
		||||
    void bitwise_bin_op(int rows, int width, const PtrStep src1, const PtrStep src2, PtrStep dst, 
 | 
			
		||||
                        cudaStream_t stream)
 | 
			
		||||
    {
 | 
			
		||||
        dim3 threads(16, 16);
 | 
			
		||||
        dim3 grid(divUp(width, threads.x * sizeof(uint)), divUp(rows, threads.y));
 | 
			
		||||
 | 
			
		||||
        bitwise_bin_op_kernel<opid><<<grid, threads>>>(rows, width, src1, src2, dst);
 | 
			
		||||
 | 
			
		||||
        if (stream == 0) 
 | 
			
		||||
            cudaSafeCall(cudaThreadSynchronize());
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    template <typename T, int opid>
 | 
			
		||||
    __global__ void bitwise_bin_op_kernel(
 | 
			
		||||
            int rows, int cols, int cn, const PtrStep src1, const PtrStep src2, 
 | 
			
		||||
            const PtrStep mask, PtrStep dst)
 | 
			
		||||
    {
 | 
			
		||||
        const int x = blockDim.x * blockIdx.x + threadIdx.x;
 | 
			
		||||
        const int y = blockDim.y * blockIdx.y + threadIdx.y;
 | 
			
		||||
 | 
			
		||||
        if (x < cols && y < rows && mask.ptr(y)[x / cn]) 
 | 
			
		||||
        {
 | 
			
		||||
            T* dst_row = (T*)dst.ptr(y);
 | 
			
		||||
            const T* src1_row = (const T*)src1.ptr(y);
 | 
			
		||||
            const T* src2_row = (const T*)src2.ptr(y);
 | 
			
		||||
 | 
			
		||||
            dst_row[x] = BinOp<T, opid>::call(src1_row[x], src2_row[x]);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    template <typename T, int opid>
 | 
			
		||||
    void bitwise_bin_op(int rows, int cols, int cn, const PtrStep src1, const PtrStep src2, 
 | 
			
		||||
                        const PtrStep mask, PtrStep dst, cudaStream_t stream)
 | 
			
		||||
    {
 | 
			
		||||
        dim3 threads(16, 16);
 | 
			
		||||
        dim3 grid(divUp(cols, threads.x), divUp(rows, threads.y));
 | 
			
		||||
 | 
			
		||||
        bitwise_bin_op_kernel<T, opid><<<grid, threads>>>(rows, cols, cn, src1, src2, mask, dst); 
 | 
			
		||||
 | 
			
		||||
        if (stream == 0) 
 | 
			
		||||
            cudaSafeCall(cudaThreadSynchronize());
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    void bitwise_or_caller(int rows, int cols, int elem_size1, int cn, const PtrStep src1, const PtrStep src2, PtrStep dst, cudaStream_t stream)
 | 
			
		||||
    {
 | 
			
		||||
        bitwise_bin_op<BIN_OP_OR>(rows, cols * elem_size1 * cn, src1, src2, dst, stream);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    template <typename T>
 | 
			
		||||
    void bitwise_mask_or_caller(int rows, int cols, int cn, const PtrStep src1, const PtrStep src2, const PtrStep mask, PtrStep dst, cudaStream_t stream)
 | 
			
		||||
    {
 | 
			
		||||
        bitwise_bin_op<T, BIN_OP_OR>(rows, cols * cn, cn, src1, src2, mask, dst, stream);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template void bitwise_mask_or_caller<uchar>(int, int, int, const PtrStep, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
 | 
			
		||||
    template void bitwise_mask_or_caller<ushort>(int, int, int, const PtrStep, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
 | 
			
		||||
    template void bitwise_mask_or_caller<uint>(int, int, int, const PtrStep, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    void bitwise_and_caller(int rows, int cols, int elem_size1, int cn, const PtrStep src1, const PtrStep src2, PtrStep dst, cudaStream_t stream)
 | 
			
		||||
    {
 | 
			
		||||
        bitwise_bin_op<BIN_OP_AND>(rows, cols * elem_size1 * cn, src1, src2, dst, stream);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    template <typename T>
 | 
			
		||||
    void bitwise_mask_and_caller(int rows, int cols, int cn, const PtrStep src1, const PtrStep src2, const PtrStep mask, PtrStep dst, cudaStream_t stream)
 | 
			
		||||
    {
 | 
			
		||||
        bitwise_bin_op<T, BIN_OP_AND>(rows, cols * cn, cn, src1, src2, mask, dst, stream);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template void bitwise_mask_and_caller<uchar>(int, int, int, const PtrStep, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
 | 
			
		||||
    template void bitwise_mask_and_caller<ushort>(int, int, int, const PtrStep, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
 | 
			
		||||
    template void bitwise_mask_and_caller<uint>(int, int, int, const PtrStep, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    void bitwise_xor_caller(int rows, int cols, int elem_size1, int cn, const PtrStep src1, const PtrStep src2, PtrStep dst, cudaStream_t stream)
 | 
			
		||||
    {
 | 
			
		||||
        bitwise_bin_op<BIN_OP_XOR>(rows, cols * elem_size1 * cn, src1, src2, dst, stream);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    template <typename T>
 | 
			
		||||
    void bitwise_mask_xor_caller(int rows, int cols, int cn, const PtrStep src1, const PtrStep src2, const PtrStep mask, PtrStep dst, cudaStream_t stream)
 | 
			
		||||
    {
 | 
			
		||||
        bitwise_bin_op<T, BIN_OP_XOR>(rows, cols * cn, cn, src1, src2, mask, dst, stream);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template void bitwise_mask_xor_caller<uchar>(int, int, int, const PtrStep, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
 | 
			
		||||
    template void bitwise_mask_xor_caller<ushort>(int, int, int, const PtrStep, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
 | 
			
		||||
    template void bitwise_mask_xor_caller<uint>(int, int, int, const PtrStep, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Min max
 | 
			
		||||
 
 | 
			
		||||
@@ -1,16 +1,609 @@
 | 
			
		||||
/*M///////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
//
 | 
			
		||||
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | 
			
		||||
//
 | 
			
		||||
//  By downloading, copying, installing or using the software you agree to this license.
 | 
			
		||||
//  If you do not agree to this license, do not download, install,
 | 
			
		||||
//  copy or use the software.
 | 
			
		||||
//
 | 
			
		||||
//
 | 
			
		||||
//                           License Agreement
 | 
			
		||||
//                For Open Source Computer Vision Library
 | 
			
		||||
//
 | 
			
		||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | 
			
		||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | 
			
		||||
// Third party copyrights are property of their respective owners.
 | 
			
		||||
//
 | 
			
		||||
// Redistribution and use in source and binary forms, with or without modification,
 | 
			
		||||
// are permitted provided that the following conditions are met:
 | 
			
		||||
//
 | 
			
		||||
//   * Redistribution's of source code must retain the above copyright notice,
 | 
			
		||||
//     this list of conditions and the following disclaimer.
 | 
			
		||||
//
 | 
			
		||||
//   * Redistribution's in binary form must reproduce the above copyright notice,
 | 
			
		||||
//     this list of conditions and the following disclaimer in the documentation
 | 
			
		||||
//     and/or other GpuMaterials provided with the distribution.
 | 
			
		||||
//
 | 
			
		||||
//   * The name of the copyright holders may not be used to endorse or promote products
 | 
			
		||||
//     derived from this software without specific prior written permission.
 | 
			
		||||
//
 | 
			
		||||
// This software is provided by the copyright holders and contributors "as is" and
 | 
			
		||||
// any express or bpied warranties, including, but not limited to, the bpied
 | 
			
		||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
 | 
			
		||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
 | 
			
		||||
// indirect, incidental, special, exemplary, or consequential damages
 | 
			
		||||
// (including, but not limited to, procurement of substitute goods or services;
 | 
			
		||||
// loss of use, data, or profits; or business interruption) however caused
 | 
			
		||||
// and on any theory of liability, whether in contract, strict liability,
 | 
			
		||||
// or tort (including negligence or otherwise) arising in any way out of
 | 
			
		||||
// the use of this software, even if advised of the possibility of such damage.
 | 
			
		||||
//
 | 
			
		||||
//M*/
 | 
			
		||||
 | 
			
		||||
#include "precomp.hpp"
 | 
			
		||||
 | 
			
		||||
using namespace cv;
 | 
			
		||||
using namespace cv::gpu;
 | 
			
		||||
 | 
			
		||||
#if !defined (HAVE_CUDA)
 | 
			
		||||
 | 
			
		||||
void cv::gpu::add(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
 | 
			
		||||
void cv::gpu::add(const GpuMat&, const Scalar&, GpuMat&) { throw_nogpu(); }
 | 
			
		||||
void cv::gpu::subtract(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
 | 
			
		||||
void cv::gpu::subtract(const GpuMat&, const Scalar&, GpuMat&) { throw_nogpu(); }
 | 
			
		||||
void cv::gpu::multiply(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
 | 
			
		||||
void cv::gpu::multiply(const GpuMat&, const Scalar&, GpuMat&) { throw_nogpu(); }
 | 
			
		||||
void cv::gpu::divide(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
 | 
			
		||||
void cv::gpu::divide(const GpuMat&, const Scalar&, GpuMat&) { throw_nogpu(); }
 | 
			
		||||
void cv::gpu::absdiff(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
 | 
			
		||||
void cv::gpu::absdiff(const GpuMat&, const Scalar&, GpuMat&) { throw_nogpu(); }
 | 
			
		||||
void cv::gpu::compare(const GpuMat&, const GpuMat&, GpuMat&, int) { throw_nogpu(); }
 | 
			
		||||
void cv::gpu::bitwise_not(const GpuMat&, GpuMat&, const GpuMat&) { throw_nogpu(); }
 | 
			
		||||
void cv::gpu::bitwise_not(const GpuMat&, GpuMat&, const GpuMat&, const Stream&) { throw_nogpu(); }
 | 
			
		||||
void cv::gpu::bitwise_or(const GpuMat&, const GpuMat&, GpuMat&, const GpuMat&) { throw_nogpu(); }
 | 
			
		||||
void cv::gpu::bitwise_or(const GpuMat&, const GpuMat&, GpuMat&, const GpuMat&, const Stream&) { throw_nogpu(); }
 | 
			
		||||
void cv::gpu::bitwise_and(const GpuMat&, const GpuMat&, GpuMat&, const GpuMat&) { throw_nogpu(); }
 | 
			
		||||
void cv::gpu::bitwise_and(const GpuMat&, const GpuMat&, GpuMat&, const GpuMat&, const Stream&) { throw_nogpu(); }
 | 
			
		||||
void cv::gpu::bitwise_xor(const GpuMat&, const GpuMat&, GpuMat&, const GpuMat&) { throw_nogpu(); }
 | 
			
		||||
void cv::gpu::bitwise_xor(const GpuMat&, const GpuMat&, GpuMat&, const GpuMat&, const Stream&) { throw_nogpu(); }
 | 
			
		||||
cv::gpu::GpuMat cv::gpu::operator ~ (const GpuMat&) { throw_nogpu(); return GpuMat(); }
 | 
			
		||||
cv::gpu::GpuMat cv::gpu::operator | (const GpuMat&, const GpuMat&) { throw_nogpu(); return GpuMat(); }
 | 
			
		||||
cv::gpu::GpuMat cv::gpu::operator & (const GpuMat&, const GpuMat&) { throw_nogpu(); return GpuMat(); }
 | 
			
		||||
cv::gpu::GpuMat cv::gpu::operator ^ (const GpuMat&, const GpuMat&) { throw_nogpu(); return GpuMat(); }
 | 
			
		||||
 | 
			
		||||
#else
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Basic arithmetical operations (add subtract multiply divide)
 | 
			
		||||
 | 
			
		||||
namespace
 | 
			
		||||
{
 | 
			
		||||
    typedef NppStatus (*npp_arithm_8u_t)(const Npp8u* pSrc1, int nSrc1Step, const Npp8u* pSrc2, int nSrc2Step, Npp8u* pDst, int nDstStep,
 | 
			
		||||
                                         NppiSize oSizeROI, int nScaleFactor);
 | 
			
		||||
    typedef NppStatus (*npp_arithm_32s_t)(const Npp32s* pSrc1, int nSrc1Step, const Npp32s* pSrc2, int nSrc2Step, Npp32s* pDst,
 | 
			
		||||
                                          int nDstStep, NppiSize oSizeROI);
 | 
			
		||||
    typedef NppStatus (*npp_arithm_32f_t)(const Npp32f* pSrc1, int nSrc1Step, const Npp32f* pSrc2, int nSrc2Step, Npp32f* pDst,
 | 
			
		||||
                                          int nDstStep, NppiSize oSizeROI);
 | 
			
		||||
 | 
			
		||||
    void nppArithmCaller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst,
 | 
			
		||||
                         npp_arithm_8u_t npp_func_8uc1, npp_arithm_8u_t npp_func_8uc4,
 | 
			
		||||
                         npp_arithm_32s_t npp_func_32sc1, npp_arithm_32f_t npp_func_32fc1)
 | 
			
		||||
    {
 | 
			
		||||
        CV_DbgAssert(src1.size() == src2.size() && src1.type() == src2.type());
 | 
			
		||||
 | 
			
		||||
        CV_Assert(src1.type() == CV_8UC1 || src1.type() == CV_8UC4 || src1.type() == CV_32SC1 || src1.type() == CV_32FC1);
 | 
			
		||||
 | 
			
		||||
        dst.create( src1.size(), src1.type() );
 | 
			
		||||
 | 
			
		||||
        NppiSize sz;
 | 
			
		||||
        sz.width  = src1.cols;
 | 
			
		||||
        sz.height = src1.rows;
 | 
			
		||||
 | 
			
		||||
        switch (src1.type())
 | 
			
		||||
        {
 | 
			
		||||
        case CV_8UC1:
 | 
			
		||||
            nppSafeCall( npp_func_8uc1(src1.ptr<Npp8u>(), src1.step,
 | 
			
		||||
                src2.ptr<Npp8u>(), src2.step,
 | 
			
		||||
                dst.ptr<Npp8u>(), dst.step, sz, 0) );
 | 
			
		||||
            break;
 | 
			
		||||
        case CV_8UC4:
 | 
			
		||||
            nppSafeCall( npp_func_8uc4(src1.ptr<Npp8u>(), src1.step,
 | 
			
		||||
                src2.ptr<Npp8u>(), src2.step,
 | 
			
		||||
                dst.ptr<Npp8u>(), dst.step, sz, 0) );
 | 
			
		||||
            break;
 | 
			
		||||
        case CV_32SC1:
 | 
			
		||||
            nppSafeCall( npp_func_32sc1(src1.ptr<Npp32s>(), src1.step,
 | 
			
		||||
                src2.ptr<Npp32s>(), src2.step,
 | 
			
		||||
                dst.ptr<Npp32s>(), dst.step, sz) );
 | 
			
		||||
            break;
 | 
			
		||||
        case CV_32FC1:
 | 
			
		||||
            nppSafeCall( npp_func_32fc1(src1.ptr<Npp32f>(), src1.step,
 | 
			
		||||
                src2.ptr<Npp32f>(), src2.step,
 | 
			
		||||
                dst.ptr<Npp32f>(), dst.step, sz) );
 | 
			
		||||
            break;
 | 
			
		||||
        default:
 | 
			
		||||
            CV_Assert(!"Unsupported source type");
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template<int SCN> struct NppArithmScalarFunc;
 | 
			
		||||
    template<> struct NppArithmScalarFunc<1>
 | 
			
		||||
    {
 | 
			
		||||
        typedef NppStatus (*func_ptr)(const Npp32f *pSrc, int nSrcStep, Npp32f nValue, Npp32f *pDst,
 | 
			
		||||
                                      int nDstStep, NppiSize oSizeROI);
 | 
			
		||||
    };
 | 
			
		||||
    template<> struct NppArithmScalarFunc<2>
 | 
			
		||||
    {
 | 
			
		||||
        typedef NppStatus (*func_ptr)(const Npp32fc *pSrc, int nSrcStep, Npp32fc nValue, Npp32fc *pDst,
 | 
			
		||||
                                      int nDstStep, NppiSize oSizeROI);
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    template<int SCN, typename NppArithmScalarFunc<SCN>::func_ptr func> struct NppArithmScalar;
 | 
			
		||||
    template<typename NppArithmScalarFunc<1>::func_ptr func> struct NppArithmScalar<1, func>
 | 
			
		||||
    {
 | 
			
		||||
        static void calc(const GpuMat& src, const Scalar& sc, GpuMat& dst)
 | 
			
		||||
        {
 | 
			
		||||
            dst.create(src.size(), src.type());
 | 
			
		||||
 | 
			
		||||
            NppiSize sz;
 | 
			
		||||
            sz.width  = src.cols;
 | 
			
		||||
            sz.height = src.rows;
 | 
			
		||||
 | 
			
		||||
            nppSafeCall( func(src.ptr<Npp32f>(), src.step, (Npp32f)sc[0], dst.ptr<Npp32f>(), dst.step, sz) );
 | 
			
		||||
        }
 | 
			
		||||
    };
 | 
			
		||||
    template<typename NppArithmScalarFunc<2>::func_ptr func> struct NppArithmScalar<2, func>
 | 
			
		||||
    {
 | 
			
		||||
        static void calc(const GpuMat& src, const Scalar& sc, GpuMat& dst)
 | 
			
		||||
        {
 | 
			
		||||
            dst.create(src.size(), src.type());
 | 
			
		||||
 | 
			
		||||
            NppiSize sz;
 | 
			
		||||
            sz.width  = src.cols;
 | 
			
		||||
            sz.height = src.rows;
 | 
			
		||||
 | 
			
		||||
            Npp32fc nValue;
 | 
			
		||||
            nValue.re = (Npp32f)sc[0];
 | 
			
		||||
            nValue.im = (Npp32f)sc[1];
 | 
			
		||||
 | 
			
		||||
            nppSafeCall( func(src.ptr<Npp32fc>(), src.step, nValue, dst.ptr<Npp32fc>(), dst.step, sz) );
 | 
			
		||||
        }
 | 
			
		||||
    };
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void cv::gpu::add(const GpuMat& src1, const GpuMat& src2, GpuMat& dst)
 | 
			
		||||
{
 | 
			
		||||
    nppArithmCaller(src1, src2, dst, nppiAdd_8u_C1RSfs, nppiAdd_8u_C4RSfs, nppiAdd_32s_C1R, nppiAdd_32f_C1R);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void cv::gpu::subtract(const GpuMat& src1, const GpuMat& src2, GpuMat& dst)
 | 
			
		||||
{
 | 
			
		||||
    nppArithmCaller(src2, src1, dst, nppiSub_8u_C1RSfs, nppiSub_8u_C4RSfs, nppiSub_32s_C1R, nppiSub_32f_C1R);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void cv::gpu::multiply(const GpuMat& src1, const GpuMat& src2, GpuMat& dst)
 | 
			
		||||
{
 | 
			
		||||
    nppArithmCaller(src1, src2, dst, nppiMul_8u_C1RSfs, nppiMul_8u_C4RSfs, nppiMul_32s_C1R, nppiMul_32f_C1R);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void cv::gpu::divide(const GpuMat& src1, const GpuMat& src2, GpuMat& dst)
 | 
			
		||||
{
 | 
			
		||||
    nppArithmCaller(src2, src1, dst, nppiDiv_8u_C1RSfs, nppiDiv_8u_C4RSfs, nppiDiv_32s_C1R, nppiDiv_32f_C1R);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void cv::gpu::add(const GpuMat& src, const Scalar& sc, GpuMat& dst)
 | 
			
		||||
{
 | 
			
		||||
    typedef void (*caller_t)(const GpuMat& src, const Scalar& sc, GpuMat& dst);
 | 
			
		||||
    static const caller_t callers[] = {0, NppArithmScalar<1, nppiAddC_32f_C1R>::calc, NppArithmScalar<2, nppiAddC_32fc_C1R>::calc};
 | 
			
		||||
 | 
			
		||||
    CV_Assert(src.type() == CV_32FC1 || src.type() == CV_32FC2);
 | 
			
		||||
 | 
			
		||||
    callers[src.channels()](src, sc, dst);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void cv::gpu::subtract(const GpuMat& src, const Scalar& sc, GpuMat& dst)
 | 
			
		||||
{
 | 
			
		||||
    typedef void (*caller_t)(const GpuMat& src, const Scalar& sc, GpuMat& dst);
 | 
			
		||||
    static const caller_t callers[] = {0, NppArithmScalar<1, nppiSubC_32f_C1R>::calc, NppArithmScalar<2, nppiSubC_32fc_C1R>::calc};
 | 
			
		||||
 | 
			
		||||
    CV_Assert(src.type() == CV_32FC1 || src.type() == CV_32FC2);
 | 
			
		||||
 | 
			
		||||
    callers[src.channels()](src, sc, dst);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void cv::gpu::multiply(const GpuMat& src, const Scalar& sc, GpuMat& dst)
 | 
			
		||||
{
 | 
			
		||||
    typedef void (*caller_t)(const GpuMat& src, const Scalar& sc, GpuMat& dst);
 | 
			
		||||
    static const caller_t callers[] = {0, NppArithmScalar<1, nppiMulC_32f_C1R>::calc, NppArithmScalar<2, nppiMulC_32fc_C1R>::calc};
 | 
			
		||||
 | 
			
		||||
    CV_Assert(src.type() == CV_32FC1 || src.type() == CV_32FC2);
 | 
			
		||||
 | 
			
		||||
    callers[src.channels()](src, sc, dst);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void cv::gpu::divide(const GpuMat& src, const Scalar& sc, GpuMat& dst)
 | 
			
		||||
{
 | 
			
		||||
    typedef void (*caller_t)(const GpuMat& src, const Scalar& sc, GpuMat& dst);
 | 
			
		||||
    static const caller_t callers[] = {0, NppArithmScalar<1, nppiDivC_32f_C1R>::calc, NppArithmScalar<2, nppiDivC_32fc_C1R>::calc};
 | 
			
		||||
 | 
			
		||||
    CV_Assert(src.type() == CV_32FC1 || src.type() == CV_32FC2);
 | 
			
		||||
 | 
			
		||||
    callers[src.channels()](src, sc, dst);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Absolute difference
 | 
			
		||||
 | 
			
		||||
void cv::gpu::absdiff(const GpuMat& src1, const GpuMat& src2, GpuMat& dst)
 | 
			
		||||
{
 | 
			
		||||
    CV_DbgAssert(src1.size() == src2.size() && src1.type() == src2.type());
 | 
			
		||||
 | 
			
		||||
    CV_Assert(src1.type() == CV_8UC1 || src1.type() == CV_8UC4 || src1.type() == CV_32SC1 || src1.type() == CV_32FC1);
 | 
			
		||||
 | 
			
		||||
    dst.create( src1.size(), src1.type() );
 | 
			
		||||
 | 
			
		||||
    NppiSize sz;
 | 
			
		||||
    sz.width  = src1.cols;
 | 
			
		||||
    sz.height = src1.rows;
 | 
			
		||||
 | 
			
		||||
    switch (src1.type())
 | 
			
		||||
    {
 | 
			
		||||
    case CV_8UC1:
 | 
			
		||||
        nppSafeCall( nppiAbsDiff_8u_C1R(src1.ptr<Npp8u>(), src1.step,
 | 
			
		||||
            src2.ptr<Npp8u>(), src2.step,
 | 
			
		||||
            dst.ptr<Npp8u>(), dst.step, sz) );
 | 
			
		||||
        break;
 | 
			
		||||
    case CV_8UC4:
 | 
			
		||||
        nppSafeCall( nppiAbsDiff_8u_C4R(src1.ptr<Npp8u>(), src1.step,
 | 
			
		||||
            src2.ptr<Npp8u>(), src2.step,
 | 
			
		||||
            dst.ptr<Npp8u>(), dst.step, sz) );
 | 
			
		||||
        break;
 | 
			
		||||
    case CV_32SC1:
 | 
			
		||||
        nppSafeCall( nppiAbsDiff_32s_C1R(src1.ptr<Npp32s>(), src1.step,
 | 
			
		||||
            src2.ptr<Npp32s>(), src2.step,
 | 
			
		||||
            dst.ptr<Npp32s>(), dst.step, sz) );
 | 
			
		||||
        break;
 | 
			
		||||
    case CV_32FC1:
 | 
			
		||||
        nppSafeCall( nppiAbsDiff_32f_C1R(src1.ptr<Npp32f>(), src1.step,
 | 
			
		||||
            src2.ptr<Npp32f>(), src2.step,
 | 
			
		||||
            dst.ptr<Npp32f>(), dst.step, sz) );
 | 
			
		||||
        break;
 | 
			
		||||
    default:
 | 
			
		||||
        CV_Assert(!"Unsupported source type");
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void cv::gpu::absdiff(const GpuMat& src, const Scalar& s, GpuMat& dst)
 | 
			
		||||
{
 | 
			
		||||
    CV_Assert(src.type() == CV_32FC1);
 | 
			
		||||
 | 
			
		||||
    dst.create( src.size(), src.type() );
 | 
			
		||||
 | 
			
		||||
    NppiSize sz;
 | 
			
		||||
    sz.width  = src.cols;
 | 
			
		||||
    sz.height = src.rows;
 | 
			
		||||
 | 
			
		||||
    nppSafeCall( nppiAbsDiffC_32f_C1R(src.ptr<Npp32f>(), src.step, dst.ptr<Npp32f>(), dst.step, sz, (Npp32f)s[0]) );
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Comparison of two matrixes
 | 
			
		||||
 | 
			
		||||
namespace cv { namespace gpu { namespace mathfunc
 | 
			
		||||
{
 | 
			
		||||
    void compare_ne_8uc4(const DevMem2D& src1, const DevMem2D& src2, const DevMem2D& dst);
 | 
			
		||||
    void compare_ne_32f(const DevMem2D& src1, const DevMem2D& src2, const DevMem2D& dst);
 | 
			
		||||
}}}
 | 
			
		||||
 | 
			
		||||
void cv::gpu::compare(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, int cmpop)
 | 
			
		||||
{
 | 
			
		||||
    CV_DbgAssert(src1.size() == src2.size() && src1.type() == src2.type());
 | 
			
		||||
 | 
			
		||||
    CV_Assert(src1.type() == CV_8UC4 || src1.type() == CV_32FC1);
 | 
			
		||||
 | 
			
		||||
    dst.create( src1.size(), CV_8UC1 );
 | 
			
		||||
 | 
			
		||||
    static const NppCmpOp nppCmpOp[] = { NPP_CMP_EQ, NPP_CMP_GREATER, NPP_CMP_GREATER_EQ, NPP_CMP_LESS, NPP_CMP_LESS_EQ };
 | 
			
		||||
 | 
			
		||||
    NppiSize sz;
 | 
			
		||||
    sz.width  = src1.cols;
 | 
			
		||||
    sz.height = src1.rows;
 | 
			
		||||
 | 
			
		||||
    if (src1.type() == CV_8UC4)
 | 
			
		||||
    {
 | 
			
		||||
        if (cmpop != CMP_NE)
 | 
			
		||||
        {
 | 
			
		||||
            nppSafeCall( nppiCompare_8u_C4R(src1.ptr<Npp8u>(), src1.step,
 | 
			
		||||
                src2.ptr<Npp8u>(), src2.step,
 | 
			
		||||
                dst.ptr<Npp8u>(), dst.step, sz, nppCmpOp[cmpop]) );
 | 
			
		||||
        }
 | 
			
		||||
        else
 | 
			
		||||
        {
 | 
			
		||||
            mathfunc::compare_ne_8uc4(src1, src2, dst);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
    else
 | 
			
		||||
    {
 | 
			
		||||
        if (cmpop != CMP_NE)
 | 
			
		||||
        {
 | 
			
		||||
            nppSafeCall( nppiCompare_32f_C1R(src1.ptr<Npp32f>(), src1.step,
 | 
			
		||||
                src2.ptr<Npp32f>(), src2.step,
 | 
			
		||||
                dst.ptr<Npp8u>(), dst.step, sz, nppCmpOp[cmpop]) );
 | 
			
		||||
        }
 | 
			
		||||
        else
 | 
			
		||||
        {
 | 
			
		||||
            mathfunc::compare_ne_32f(src1, src2, dst);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
//////////////////////////  Unary per-element operations /////////////////////////////////////////
 | 
			
		||||
// operation(GpuMat src, GpuMat dst)
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Unary bitwise logical operations
 | 
			
		||||
 | 
			
		||||
namespace cv { namespace gpu { namespace mathfunc
 | 
			
		||||
{
 | 
			
		||||
    void bitwiseNotCaller(int rows, int cols, int elem_size1, int cn, const PtrStep src, PtrStep dst, cudaStream_t stream);
 | 
			
		||||
 | 
			
		||||
    template <typename T>
 | 
			
		||||
    void bitwiseMaskNotCaller(int rows, int cols, int cn, const PtrStep src, const PtrStep mask, PtrStep dst, cudaStream_t stream);
 | 
			
		||||
}}}
 | 
			
		||||
 | 
			
		||||
namespace
 | 
			
		||||
{
 | 
			
		||||
    void bitwiseNotCaller(const GpuMat& src, GpuMat& dst, cudaStream_t stream)
 | 
			
		||||
    {
 | 
			
		||||
        dst.create(src.size(), src.type());
 | 
			
		||||
 | 
			
		||||
        cv::gpu::mathfunc::bitwiseNotCaller(src.rows, src.cols, src.elemSize1(), 
 | 
			
		||||
                                              dst.channels(), src, dst, stream);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    void bitwiseNotCaller(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream)
 | 
			
		||||
    {
 | 
			
		||||
        using namespace cv::gpu;
 | 
			
		||||
 | 
			
		||||
        typedef void (*Caller)(int, int, int, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
 | 
			
		||||
        static Caller callers[] = {mathfunc::bitwiseMaskNotCaller<unsigned char>, mathfunc::bitwiseMaskNotCaller<unsigned char>, 
 | 
			
		||||
                                   mathfunc::bitwiseMaskNotCaller<unsigned short>, mathfunc::bitwiseMaskNotCaller<unsigned short>,
 | 
			
		||||
                                   mathfunc::bitwiseMaskNotCaller<unsigned int>, mathfunc::bitwiseMaskNotCaller<unsigned int>,
 | 
			
		||||
                                   mathfunc::bitwiseMaskNotCaller<unsigned int>};
 | 
			
		||||
 | 
			
		||||
        CV_Assert(mask.type() == CV_8U && mask.size() == src.size());
 | 
			
		||||
        dst.create(src.size(), src.type());
 | 
			
		||||
 | 
			
		||||
        Caller caller = callers[src.depth()];
 | 
			
		||||
        CV_Assert(caller);
 | 
			
		||||
 | 
			
		||||
        int cn = src.depth() != CV_64F ? src.channels() : src.channels() * (sizeof(double) / sizeof(unsigned int));
 | 
			
		||||
        caller(src.rows, src.cols, cn, src, mask, dst, stream);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
//////////////////////////  Binary per-element operations ////////////////////////////////////////
 | 
			
		||||
// operation(GpuMat src1, GpuMat src2, GpuMat dst)
 | 
			
		||||
void cv::gpu::bitwise_not(const GpuMat& src, GpuMat& dst, const GpuMat& mask)
 | 
			
		||||
{
 | 
			
		||||
    if (mask.empty())
 | 
			
		||||
        ::bitwiseNotCaller(src, dst, 0);
 | 
			
		||||
    else
 | 
			
		||||
        ::bitwiseNotCaller(src, dst, mask, 0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void cv::gpu::bitwise_not(const GpuMat& src, GpuMat& dst, const GpuMat& mask, const Stream& stream)
 | 
			
		||||
{
 | 
			
		||||
    if (mask.empty())
 | 
			
		||||
        ::bitwiseNotCaller(src, dst, StreamAccessor::getStream(stream));
 | 
			
		||||
    else
 | 
			
		||||
        ::bitwiseNotCaller(src, dst, mask, StreamAccessor::getStream(stream));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
cv::gpu::GpuMat cv::gpu::operator ~ (const GpuMat& src)
 | 
			
		||||
{
 | 
			
		||||
    GpuMat dst;
 | 
			
		||||
    bitwise_not(src, dst);
 | 
			
		||||
    return dst;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Binary bitwise logical operations
 | 
			
		||||
 | 
			
		||||
namespace cv { namespace gpu { namespace mathfunc
 | 
			
		||||
{
 | 
			
		||||
    void bitwiseOrCaller(int rows, int cols, int elem_size1, int cn, const PtrStep src1, const PtrStep src2, PtrStep dst, cudaStream_t stream);
 | 
			
		||||
 | 
			
		||||
    template <typename T>
 | 
			
		||||
    void bitwiseMaskOrCaller(int rows, int cols, int cn, const PtrStep src1, const PtrStep src2, const PtrStep mask, PtrStep dst, cudaStream_t stream);
 | 
			
		||||
 | 
			
		||||
    void bitwiseAndCaller(int rows, int cols, int elem_size1, int cn, const PtrStep src1, const PtrStep src2, PtrStep dst, cudaStream_t stream);
 | 
			
		||||
 | 
			
		||||
    template <typename T>
 | 
			
		||||
    void bitwiseMaskAndCaller(int rows, int cols, int cn, const PtrStep src1, const PtrStep src2, const PtrStep mask, PtrStep dst, cudaStream_t stream);
 | 
			
		||||
 | 
			
		||||
    void bitwiseXorCaller(int rows, int cols, int elem_size1, int cn, const PtrStep src1, const PtrStep src2, PtrStep dst, cudaStream_t stream);
 | 
			
		||||
 | 
			
		||||
    template <typename T>
 | 
			
		||||
    void bitwiseMaskXorCaller(int rows, int cols, int cn, const PtrStep src1, const PtrStep src2, const PtrStep mask, PtrStep dst, cudaStream_t stream);
 | 
			
		||||
}}}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
namespace
 | 
			
		||||
{
 | 
			
		||||
    void bitwiseOrCaller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream)
 | 
			
		||||
    {
 | 
			
		||||
        CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
 | 
			
		||||
        dst.create(src1.size(), src1.type());
 | 
			
		||||
 | 
			
		||||
        cv::gpu::mathfunc::bitwiseOrCaller(dst.rows, dst.cols, dst.elemSize1(), 
 | 
			
		||||
                                             dst.channels(), src1, src2, dst, stream);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    void bitwiseOrCaller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, cudaStream_t stream)
 | 
			
		||||
    {
 | 
			
		||||
        using namespace cv::gpu;
 | 
			
		||||
 | 
			
		||||
        typedef void (*Caller)(int, int, int, const PtrStep, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
 | 
			
		||||
        static Caller callers[] = {mathfunc::bitwiseMaskOrCaller<unsigned char>, mathfunc::bitwiseMaskOrCaller<unsigned char>, 
 | 
			
		||||
                                   mathfunc::bitwiseMaskOrCaller<unsigned short>, mathfunc::bitwiseMaskOrCaller<unsigned short>,
 | 
			
		||||
                                   mathfunc::bitwiseMaskOrCaller<unsigned int>, mathfunc::bitwiseMaskOrCaller<unsigned int>,
 | 
			
		||||
                                   mathfunc::bitwiseMaskOrCaller<unsigned int>};
 | 
			
		||||
 | 
			
		||||
        CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
 | 
			
		||||
        dst.create(src1.size(), src1.type());
 | 
			
		||||
 | 
			
		||||
        Caller caller = callers[src1.depth()];
 | 
			
		||||
        CV_Assert(caller);
 | 
			
		||||
 | 
			
		||||
        int cn = dst.depth() != CV_64F ? dst.channels() : dst.channels() * (sizeof(double) / sizeof(unsigned int));
 | 
			
		||||
        caller(dst.rows, dst.cols, cn, src1, src2, mask, dst, stream);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    void bitwiseAndCaller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream)
 | 
			
		||||
    {
 | 
			
		||||
        CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
 | 
			
		||||
        dst.create(src1.size(), src1.type());
 | 
			
		||||
 | 
			
		||||
        cv::gpu::mathfunc::bitwiseAndCaller(dst.rows, dst.cols, dst.elemSize1(), 
 | 
			
		||||
                                              dst.channels(), src1, src2, dst, stream);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    void bitwiseAndCaller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, cudaStream_t stream)
 | 
			
		||||
    {
 | 
			
		||||
        using namespace cv::gpu;
 | 
			
		||||
 | 
			
		||||
        typedef void (*Caller)(int, int, int, const PtrStep, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
 | 
			
		||||
        static Caller callers[] = {mathfunc::bitwiseMaskAndCaller<unsigned char>, mathfunc::bitwiseMaskAndCaller<unsigned char>, 
 | 
			
		||||
                                   mathfunc::bitwiseMaskAndCaller<unsigned short>, mathfunc::bitwiseMaskAndCaller<unsigned short>,
 | 
			
		||||
                                   mathfunc::bitwiseMaskAndCaller<unsigned int>, mathfunc::bitwiseMaskAndCaller<unsigned int>,
 | 
			
		||||
                                   mathfunc::bitwiseMaskAndCaller<unsigned int>};
 | 
			
		||||
 | 
			
		||||
        CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
 | 
			
		||||
        dst.create(src1.size(), src1.type());
 | 
			
		||||
 | 
			
		||||
        Caller caller = callers[src1.depth()];
 | 
			
		||||
        CV_Assert(caller);
 | 
			
		||||
 | 
			
		||||
        int cn = dst.depth() != CV_64F ? dst.channels() : dst.channels() * (sizeof(double) / sizeof(unsigned int));
 | 
			
		||||
        caller(dst.rows, dst.cols, cn, src1, src2, mask, dst, stream);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    void bitwiseXorCaller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream)
 | 
			
		||||
    {
 | 
			
		||||
        CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
 | 
			
		||||
        dst.create(src1.size(), src1.type());
 | 
			
		||||
 | 
			
		||||
        cv::gpu::mathfunc::bitwiseXorCaller(dst.rows, dst.cols, dst.elemSize1(), 
 | 
			
		||||
                                              dst.channels(), src1, src2, dst, stream);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    void bitwiseXorCaller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, cudaStream_t stream)
 | 
			
		||||
    {
 | 
			
		||||
        using namespace cv::gpu;
 | 
			
		||||
 | 
			
		||||
        typedef void (*Caller)(int, int, int, const PtrStep, const PtrStep, const PtrStep, PtrStep, cudaStream_t);
 | 
			
		||||
        static Caller callers[] = {mathfunc::bitwiseMaskXorCaller<unsigned char>, mathfunc::bitwiseMaskXorCaller<unsigned char>, 
 | 
			
		||||
                                   mathfunc::bitwiseMaskXorCaller<unsigned short>, mathfunc::bitwiseMaskXorCaller<unsigned short>,
 | 
			
		||||
                                   mathfunc::bitwiseMaskXorCaller<unsigned int>, mathfunc::bitwiseMaskXorCaller<unsigned int>,
 | 
			
		||||
                                   mathfunc::bitwiseMaskXorCaller<unsigned int>};
 | 
			
		||||
 | 
			
		||||
        CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
 | 
			
		||||
        dst.create(src1.size(), src1.type());
 | 
			
		||||
 | 
			
		||||
        Caller caller = callers[src1.depth()];
 | 
			
		||||
        CV_Assert(caller);
 | 
			
		||||
 | 
			
		||||
        int cn = dst.depth() != CV_64F ? dst.channels() : dst.channels() * (sizeof(double) / sizeof(unsigned int));
 | 
			
		||||
        caller(dst.rows, dst.cols, cn, src1, src2, mask, dst, stream);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void cv::gpu::bitwise_or(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask)
 | 
			
		||||
{
 | 
			
		||||
    if (mask.empty())
 | 
			
		||||
        ::bitwiseOrCaller(src1, src2, dst, 0);
 | 
			
		||||
    else
 | 
			
		||||
        ::bitwiseOrCaller(src1, src2, dst, mask, 0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void cv::gpu::bitwise_or(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, const Stream& stream)
 | 
			
		||||
{
 | 
			
		||||
    if (mask.empty())
 | 
			
		||||
        ::bitwiseOrCaller(src1, src2, dst, StreamAccessor::getStream(stream));
 | 
			
		||||
    else
 | 
			
		||||
        ::bitwiseOrCaller(src1, src2, dst, mask, StreamAccessor::getStream(stream));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void cv::gpu::bitwise_and(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask)
 | 
			
		||||
{
 | 
			
		||||
    if (mask.empty())
 | 
			
		||||
        ::bitwiseAndCaller(src1, src2, dst, 0);
 | 
			
		||||
    else
 | 
			
		||||
        ::bitwiseAndCaller(src1, src2, dst, mask, 0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void cv::gpu::bitwise_and(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, const Stream& stream)
 | 
			
		||||
{
 | 
			
		||||
    if (mask.empty())
 | 
			
		||||
        ::bitwiseAndCaller(src1, src2, dst, StreamAccessor::getStream(stream));
 | 
			
		||||
    else
 | 
			
		||||
        ::bitwiseAndCaller(src1, src2, dst, mask, StreamAccessor::getStream(stream));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void cv::gpu::bitwise_xor(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask)
 | 
			
		||||
{
 | 
			
		||||
    if (mask.empty())
 | 
			
		||||
        ::bitwiseXorCaller(src1, src2, dst, 0);
 | 
			
		||||
    else
 | 
			
		||||
        ::bitwiseXorCaller(src1, src2, dst, mask, 0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void cv::gpu::bitwise_xor(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, const Stream& stream)
 | 
			
		||||
{
 | 
			
		||||
    if (mask.empty())
 | 
			
		||||
        ::bitwiseXorCaller(src1, src2, dst, StreamAccessor::getStream(stream));
 | 
			
		||||
    else
 | 
			
		||||
        ::bitwiseXorCaller(src1, src2, dst, mask, StreamAccessor::getStream(stream));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
cv::gpu::GpuMat cv::gpu::operator | (const GpuMat& src1, const GpuMat& src2)
 | 
			
		||||
{
 | 
			
		||||
    GpuMat dst;
 | 
			
		||||
    bitwise_or(src1, src2, dst);
 | 
			
		||||
    return dst;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
cv::gpu::GpuMat cv::gpu::operator & (const GpuMat& src1, const GpuMat& src2)
 | 
			
		||||
{
 | 
			
		||||
    GpuMat dst;
 | 
			
		||||
    bitwise_and(src1, src2, dst);
 | 
			
		||||
    return dst;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
cv::gpu::GpuMat cv::gpu::operator ^ (const GpuMat& src1, const GpuMat& src2)
 | 
			
		||||
{
 | 
			
		||||
    GpuMat dst;
 | 
			
		||||
    bitwise_xor(src1, src2, dst);
 | 
			
		||||
    return dst;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -53,7 +53,7 @@ using namespace std;
 | 
			
		||||
 | 
			
		||||
struct CV_GpuBitwiseTest: public CvTest
 | 
			
		||||
{
 | 
			
		||||
    CV_GpuBitwiseTest(): CvTest("GPU-BitwiseOpers", "bitwiseMatOperators") {}
 | 
			
		||||
    CV_GpuBitwiseTest(): CvTest("GPU-BitwiseOpersTest", "bitwiseMatOperators") {}
 | 
			
		||||
 | 
			
		||||
    void run(int)
 | 
			
		||||
    {
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user