opencv/modules/objdetect/src/latentsvmdetector.cpp

136 lines
4.5 KiB
C++
Raw Normal View History

#include "precomp.hpp"
#include "_lsvmparser.h"
#include "_lsvm_matching.h"
/*
// load trained detector from a file
//
// API
// CvLatentSvmDetector* cvLoadLatentSvmDetector(const char* filename);
// INPUT
// filename - path to the file containing the parameters of
- trained Latent SVM detector
// OUTPUT
// trained Latent SVM detector in internal representation
*/
CvLatentSvmDetector* cvLoadLatentSvmDetector(const char* filename)
{
CvLatentSvmDetector* detector = 0;
filterObject** filters = 0;
int kFilters = 0;
int kComponents = 0;
int* kPartFilters = 0;
float* b = 0;
float scoreThreshold = 0.f;
int err_code = 0;
err_code = loadModel(filename, &filters, &kFilters, &kComponents, &kPartFilters, &b, &scoreThreshold);
if (err_code != LATENT_SVM_OK) return 0;
detector = (CvLatentSvmDetector*)malloc(sizeof(CvLatentSvmDetector));
detector->filters = filters;
detector->b = b;
detector->num_components = kComponents;
detector->num_filters = kFilters;
detector->num_part_filters = kPartFilters;
detector->score_threshold = scoreThreshold;
return detector;
}
/*
// release memory allocated for CvLatentSvmDetector structure
//
// API
// void cvReleaseLatentSvmDetector(CvLatentSvmDetector** detector);
// INPUT
// detector - CvLatentSvmDetector structure to be released
// OUTPUT
*/
void cvReleaseLatentSvmDetector(CvLatentSvmDetector** detector)
{
free((*detector)->b);
free((*detector)->num_part_filters);
for (int i = 0; i < (*detector)->num_filters; i++)
{
free((*detector)->filters[i]->H);
free((*detector)->filters[i]);
}
free((*detector)->filters);
free((*detector));
*detector = 0;
}
/*
// find rectangular regions in the given image that are likely
// to contain objects and corresponding confidence levels
//
// API
// CvSeq* cvLatentSvmDetectObjects(const IplImage* image,
// CvLatentSvmDetector* detector,
// CvMemStorage* storage,
// float overlap_threshold = 0.5f);
// INPUT
// image - image to detect objects in
// detector - Latent SVM detector in internal representation
// storage - memory storage to store the resultant sequence
// of the object candidate rectangles
// overlap_threshold - threshold for the non-maximum suppression algorithm [here will be the reference to original paper]
// OUTPUT
// sequence of detected objects (bounding boxes and confidence levels stored in CvObjectDetection structures)
*/
CvSeq* cvLatentSvmDetectObjects(IplImage* image,
CvLatentSvmDetector* detector,
CvMemStorage* storage,
float overlap_threshold)
{
featurePyramid *H = 0;
CvPoint *points = 0, *oppPoints = 0;
int kPoints = 0;
float *score = 0;
unsigned int maxXBorder = 0, maxYBorder = 0;
int numBoxesOut = 0;
CvPoint *pointsOut = 0;
CvPoint *oppPointsOut = 0;
float *scoreOut = 0;
CvSeq* result_seq = 0;
cvConvertImage(image, image, CV_CVTIMG_SWAP_RB);
// Getting maximum filter dimensions
getMaxFilterDims((const filterObject**)(detector->filters), detector->num_components, detector->num_part_filters, &maxXBorder, &maxYBorder);
// Create feature pyramid with nullable border
H = createFeaturePyramidWithBorder(image, maxXBorder, maxYBorder);
// Search object
searchObjectThresholdSomeComponents(H, (const filterObject**)(detector->filters), detector->num_components,
detector->num_part_filters, detector->b, detector->score_threshold,
&points, &oppPoints, &score, &kPoints);
// Clipping boxes
clippingBoxes(image->width, image->height, points, kPoints);
clippingBoxes(image->width, image->height, oppPoints, kPoints);
// NMS procedure
nonMaximumSuppression(kPoints, points, oppPoints, score, overlap_threshold,
&numBoxesOut, &pointsOut, &oppPointsOut, &scoreOut);
result_seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvObjectDetection), storage );
for (int i = 0; i < numBoxesOut; i++)
{
CvObjectDetection detection = {{0, 0, 0, 0}, 0};
detection.score = scoreOut[i];
CvRect bounding_box = {0, 0, 0, 0};
bounding_box.x = pointsOut[i].x;
bounding_box.y = pointsOut[i].y;
bounding_box.width = oppPointsOut[i].x - pointsOut[i].x;
bounding_box.height = oppPointsOut[i].y - pointsOut[i].y;
detection.rect = bounding_box;
cvSeqPush(result_seq, &detection);
}
cvConvertImage(image, image, CV_CVTIMG_SWAP_RB);
freeFeaturePyramidObject(&H);
free(points);
free(oppPoints);
free(score);
return result_seq;
}