opencv/apps/sft/misc/sft.py

208 lines
5.8 KiB
Python
Raw Normal View History

#!/usr/bin/env python
import cv2, re, glob
import numpy as np
import matplotlib.pyplot as plt
from itertools import izip
""" Convert numPy matrices with rectangles and confidences to sorted list of detections."""
def convert2detections(rects, confs, crop_factor = 0.125):
if rects is None:
return []
dts = zip(*[rects.tolist(), confs.tolist()])
dts = zip(dts[0][0], dts[0][1])
dts = [Detection(r,c) for r, c in dts]
dts.sort(lambda x, y : -1 if (x.conf - y.conf) > 0 else 1)
for dt in dts:
dt.crop(crop_factor)
return dts
""" Create new instance of soft cascade."""
def cascade(min_scale, max_scale, nscales, f):
# where we use nms cv::SCascade::DOLLAR == 2
c = cv2.SCascade(min_scale, max_scale, nscales, 2)
xml = cv2.FileStorage(f, 0)
dom = xml.getFirstTopLevelNode()
assert c.load(dom)
return c
""" Compute prefix sum for en array"""
def cumsum(n):
cum = []
y = 0
for i in n:
y += i
cum.append(y)
return cum
""" Compute x and y arrays for ROC plot"""
def computeROC(confidenses, tp, nannotated, nframes, ignored):
confidenses, tp, ignored = zip(*sorted(zip(confidenses, tp, ignored), reverse = True))
fp = [(1 - x) for x in tp]
fp = [(x - y) for x, y in izip(fp, ignored)]
fp = cumsum(fp)
tp = cumsum(tp)
miss_rate = [(1 - x / (nannotated + 0.000001)) for x in tp]
fppi = [x / float(nframes) for x in fp]
return fppi, miss_rate
""" Crop rectangle by factor"""
def crop_rect(rect, factor):
val_x = factor * float(rect[2])
val_y = factor * float(rect[3])
x = [int(rect[0] + val_x), int(rect[1] + val_y), int(rect[2] - 2.0 * val_x), int(rect[3] - 2.0 * val_y)]
return x
"""Initialize plot axises"""
def initPlot(name = "ROC curve Bahnhof"):
fig, ax = plt.subplots()
fig.canvas.draw()
plt.xlabel("fppi")
plt.ylabel("miss rate")
plt.title(name)
plt.grid(True)
plt.xscale('log')
plt.yscale('log')
"""Show resulted plot"""
def showPlot(file_name):
plt.savefig(file_name)
plt.axis((pow(10, -3), pow(10, 1), 0.0, 1))
plt.yticks( [0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.64, 0.8, 1], ['.05', '.10', '.20', '.30', '.40', '.50', '.64', '.80', '1'] )
plt.show()
def match(gts, dts):
matches_gt = [0]*len(gts)
matches_dt = [0]*len(dts)
matches_ignore = [0]*len(dts)
if len(gts) == 0:
return matches_dt, matches_ignore
# Cartesian product for each detection BB_dt with each BB_gt
overlaps = [[dt.overlap(gt) for gt in gts]for dt in dts]
for idx, row in enumerate(overlaps):
imax = row.index(max(row))
# try to match ground thrush
if (matches_gt[imax] == 0 and row[imax] > 0.5):
matches_gt[imax] = 1
matches_dt[idx] = 1
for idx, dt in enumerate(dts):
# try to math ignored
if matches_dt[idx] == 0:
row = gts
row = [i for i in row if (i[3] - i[1]) < 53 or (i[3] - i[1]) > 256]
for each in row:
if dts[idx].overlapIgnored(each) > 0.5:
matches_ignore[idx] = 1
return matches_dt, matches_ignore
2013-01-21 15:53:25 +04:00
def plotLogLog(fppi, miss_rate, c):
print
plt.loglog(fppi, miss_rate, color = c, linewidth = 2)
2013-01-21 15:53:25 +04:00
def draw_rects(img, rects, color, l = lambda x, y : x + y):
if rects is not None:
for x1, y1, x2, y2 in rects:
cv2.rectangle(img, (x1, y1), (l(x1, x2), l(y1, y2)), color, 2)
def draw_dt(img, dts, color, l = lambda x, y : x + y):
if dts is not None:
for dt in dts:
bb = dt.bb
x1, y1, x2, y2 = dt.bb[0], dt.bb[1], dt.bb[2], dt.bb[3]
cv2.rectangle(img, (x1, y1), (l(x1, x2), l(y1, y2)), color, 2)
class Annotation:
def __init__(self, bb):
self.bb = bb
class Detection:
def __init__(self, bb, conf):
self.bb = bb
self.conf = conf
self.matched = False
def crop(self, factor):
self.bb = crop_rect(self.bb, factor)
# we use rect-style for dt and box style for gt. ToDo: fix it
def overlap(self, b):
a = self.bb
w = min( a[0] + a[2], b[2]) - max(a[0], b[0]);
h = min( a[1] + a[3], b[3]) - max(a[1], b[1]);
cross_area = 0.0 if (w < 0 or h < 0) else float(w * h)
union_area = (a[2] * a[3]) + ((b[2] - b[0]) * (b[3] - b[1])) - cross_area;
return cross_area / union_area
# we use rect-style for dt and box style for gt. ToDo: fix it
def overlapIgnored(self, b):
a = self.bb
w = min( a[0] + a[2], b[2]) - max(a[0], b[0]);
h = min( a[1] + a[3], b[3]) - max(a[1], b[1]);
cross_area = 0.0 if (w < 0 or h < 0) else float(w * h)
self_area = (a[2] * a[3]);
return cross_area / self_area
def mark_matched(self):
self.matched = True
def parse_inria(ipath, f):
bbs = []
path = None
for l in f:
box = None
if l.startswith("Bounding box"):
b = [x.strip() for x in l.split(":")[1].split("-")]
c = [x[1:-1].split(",") for x in b]
d = [int(x) for x in sum(c, [])]
bbs.append(d)
if l.startswith("Image filename"):
path = l.split('"')[-2]
return Sample(path, bbs)
def glob_set(pattern):
return [__n for __n in glob.iglob(pattern)] #glob.iglob(pattern)
# parse ETH idl file
def parse_idl(f):
map = {}
for l in open(f):
l = re.sub(r"^\"left\/", "{\"", l)
l = re.sub(r"\:", ":[", l)
l = re.sub(r"(\;|\.)$", "]}", l)
map.update(eval(l))
return map
def norm_box(box, ratio):
middle = float(box[0] + box[2]) / 2.0
new_half_width = float(box[3] - box[1]) * ratio / 2.0
return (int(round(middle - new_half_width)), box[1], int(round(middle + new_half_width)), box[3])
def norm_acpect_ratio(boxes, ratio):
return [ norm_box(box, ratio) for box in boxes]