add ROC estimation

in the same way as Dallar's matlab toolbox does
This commit is contained in:
marina.kolpakova 2013-01-21 02:36:23 +04:00
parent 4c4c878b1b
commit 469eeea370
2 changed files with 61 additions and 54 deletions

View File

@ -34,43 +34,47 @@ if __name__ == "__main__":
args = parser.parse_args()
# parse annotations
samples = call_parser(args.anttn_format, args.annotations)
# where we use nms cv::SCascade::DOLLAR == 2
cascade = cv2.SCascade(args.min_scale, args.max_scale, args.nscales, 2)
xml = cv2.FileStorage(args.cascade, 0)
dom = xml.getFirstTopLevelNode()
assert cascade.load(dom)
cascade = sft.cascade(args.min_scale, args.max_scale, args.nscales, args.cascade)
pattern = args.input
camera = cv2.VideoCapture(pattern)
frame = 0
# for plotting over dataset
nannotated = 0
nframes = 0
confidenses = []
tp = []
while True:
ret, img = camera.read()
if not ret:
break;
name = pattern % (frame,)
qq = pattern.format(frame)
name = pattern % (nframes,)
_, tail = os.path.split(name)
boxes = samples[tail]
boxes = sft.norm_acpect_ratio(boxes, 0.5)
frame = frame + 1
nannotated = nannotated + len(boxes)
nframes = nframes + 1
rects, confs = cascade.detect(img, rois = None)
if confs is None:
continue
dts = sft.convert2detections(rects, confs)
sft.draw_dt(img, dts, bgr["green"])
fp, fn = sft.match(boxes, dts)
print "fp and fn", fp, fn
confs = confs.tolist()[0]
confs.sort(lambda x, y : -1 if (x - y) > 0 else 1)
confidenses = confidenses + confs
matched = sft.match(boxes, dts)
tp = tp + matched
sft.draw_rects(img, boxes, bgr["blue"], lambda x, y : y)
cv2.imshow("result", img);
if (cv2.waitKey (0) == 27):
break;
print nframes, nannotated
# sft.plot_curve()
fppi, miss_rate = sft.computeROC(confidenses, tp, nannotated, nframes)
sft.plotLogLog(fppi, miss_rate)

View File

@ -19,6 +19,34 @@ def convert2detections(rects, confs, crop_factor = 0.125):
return dts
def cascade(min_scale, max_scale, nscales, f):
# where we use nms cv::SCascade::DOLLAR == 2
c = cv2.SCascade(min_scale, max_scale, nscales, 2)
xml = cv2.FileStorage(f, 0)
dom = xml.getFirstTopLevelNode()
assert c.load(dom)
return c
def cumsum(n):
cum = []
y = 0
for i in n:
y += i
cum.append(y)
return cum
def computeROC(confidenses, tp, nannotated, nframes):
confidenses, tp = zip(*sorted(zip(confidenses, tp), reverse = True))
fp = [(1 - x) for x in tp]
fp = cumsum(fp)
tp = cumsum(tp)
miss_rate = [(1 - x / (nannotated + 0.000001)) for x in tp]
fppi = [x / float(nframes) for x in fp]
return fppi, miss_rate
def crop_rect(rect, factor):
val_x = factor * float(rect[2])
val_y = factor * float(rect[3])
@ -27,29 +55,28 @@ def crop_rect(rect, factor):
#
def plot_curve():
def plotLogLog(fppi, miss_rate):
fig, ax = plt.subplots()
fig.canvas.draw()
x = np.linspace(pow(10,-4), pow(10,1), 101)
y = 1 - x
plt.semilogy(x,y,color='m',linewidth=2)
plt.xlabel("fppi")
plt.ylabel("miss rate")
plt.title("ROC curve Bahnhof")
plt.yticks( [0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.64, 0.80])
ylabels = [item.get_text() for item in ax.get_yticklabels()]
ax.set_yticklabels( ylabels )
# plt.yticks( [0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.64, 0.80])
# ylabels = [item.get_text() for item in ax.get_yticklabels()]
# ax.set_yticklabels( ylabels )
plt.grid(True)
# plt.xticks( [pow(10, -4), pow(10, -3), pow(10, -2), pow(10, -1), pow(10, 0), pow(10, 0)])
# plt.xticks( [pow(10, -4), pow(10, -3), pow(10, -2), pow(10, -1), pow(10, 0), pow(10, 1)])
# xlabels = [item.get_text() for item in ax.get_xticklabels()]
# ax.set_xticklabels( xlabels )
plt.xscale('log')
plt.yscale('log')
plt.semilogy(fppi, miss_rate, color='m', linewidth=2)
plt.show()
def draw_rects(img, rects, color, l = lambda x, y : x + y):
@ -81,7 +108,6 @@ class Detection:
# we use rect-stype for dt and box style for gt. ToDo: fix it
def overlap(self, b):
print self.bb, "vs", b
a = self.bb
w = min( a[0] + a[2], b[2]) - max(a[0], b[0]);
h = min( a[1] + a[3], b[3]) - max(a[1], b[1]);
@ -135,39 +161,16 @@ def norm_acpect_ratio(boxes, ratio):
def match(gts, dts):
for dt in dts:
print dt.bb,
print
for gt in gts:
print gt
# Cartesian product for each detection BB_dt with each BB_gt
overlaps = [[dt.overlap(gt) for gt in gts]for dt in dts]
print overlaps
matches_gt = [0]*len(gts)
print matches_gt
matches_dt = [0]*len(dts)
print matches_dt
for idx, row in enumerate(overlaps):
print idx, row
imax = row.index(max(row))
if (matches_gt[imax] == 0 and row[imax] > 0.5):
matches_gt[imax] = 1
matches_dt[idx] = 1
print matches_gt
print matches_dt
fp = sum(1 for x in matches_dt if x == 0)
fn = sum(1 for x in matches_gt if x == 0)
return fp, fn
return matches_dt