2013-01-29 09:26:12 +01:00
|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
|
|
// Copyright (C) 2008-2013, Willow Garage Inc., all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and / or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#ifndef __OPENCV_SOFTCASCADE_HPP__
|
|
|
|
#define __OPENCV_SOFTCASCADE_HPP__
|
|
|
|
|
2013-03-13 13:22:44 +01:00
|
|
|
#include "opencv2/core.hpp"
|
2013-03-14 10:49:48 +01:00
|
|
|
#include "opencv2/core/gpumat.hpp"
|
2013-01-29 09:26:12 +01:00
|
|
|
|
2013-02-01 11:25:10 +01:00
|
|
|
namespace cv { namespace softcascade {
|
2013-01-29 09:26:12 +01:00
|
|
|
|
2013-01-29 10:09:49 +01:00
|
|
|
// Representation of detectors result.
|
2013-03-15 09:26:25 +01:00
|
|
|
// We assume that image is less then 2^16x2^16.
|
2013-01-29 10:09:49 +01:00
|
|
|
struct CV_EXPORTS Detection
|
|
|
|
{
|
|
|
|
// Creates Detection from an object bounding box and confidence.
|
|
|
|
// Param b is a bounding box
|
|
|
|
// Param c is a confidence that object belongs to class k
|
|
|
|
// Param k is an object class
|
2013-03-15 09:26:25 +01:00
|
|
|
Detection(const cv::Rect& b, const float c, int k = PEDESTRIAN);
|
|
|
|
cv::Rect bb() const;
|
|
|
|
enum {PEDESTRIAN = 1};
|
2013-01-29 10:09:49 +01:00
|
|
|
|
2013-03-15 09:26:25 +01:00
|
|
|
ushort x;
|
|
|
|
ushort y;
|
|
|
|
ushort w;
|
|
|
|
ushort h;
|
2013-01-29 10:09:49 +01:00
|
|
|
float confidence;
|
|
|
|
int kind;
|
|
|
|
};
|
|
|
|
|
2013-01-29 11:27:53 +01:00
|
|
|
class CV_EXPORTS Dataset
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
typedef enum {POSITIVE = 1, NEGATIVE = 2} SampleType;
|
|
|
|
|
|
|
|
virtual cv::Mat get(SampleType type, int idx) const = 0;
|
|
|
|
virtual int available(SampleType type) const = 0;
|
|
|
|
virtual ~Dataset();
|
|
|
|
};
|
|
|
|
|
2013-01-30 07:43:18 +01:00
|
|
|
// ========================================================================== //
|
|
|
|
// Public interface feature pool.
|
|
|
|
// ========================================================================== //
|
|
|
|
|
|
|
|
class CV_EXPORTS FeaturePool
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
|
|
|
|
virtual int size() const = 0;
|
|
|
|
virtual float apply(int fi, int si, const Mat& channels) const = 0;
|
|
|
|
virtual void write( cv::FileStorage& fs, int index) const = 0;
|
|
|
|
virtual ~FeaturePool();
|
|
|
|
|
2013-03-01 20:39:32 +01:00
|
|
|
static cv::Ptr<FeaturePool> create(const cv::Size& model, int nfeatures, int nchannels );
|
2013-01-30 07:43:18 +01:00
|
|
|
};
|
|
|
|
|
2013-01-30 06:34:22 +01:00
|
|
|
// ========================================================================== //
|
|
|
|
// First order channel feature.
|
|
|
|
// ========================================================================== //
|
|
|
|
|
|
|
|
class CV_EXPORTS ChannelFeature
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
ChannelFeature(int x, int y, int w, int h, int ch);
|
|
|
|
~ChannelFeature();
|
|
|
|
|
|
|
|
bool operator ==(ChannelFeature b);
|
|
|
|
bool operator !=(ChannelFeature b);
|
|
|
|
|
|
|
|
float operator() (const cv::Mat& integrals, const cv::Size& model) const;
|
|
|
|
|
|
|
|
friend void write(cv::FileStorage& fs, const std::string&, const ChannelFeature& f);
|
|
|
|
friend std::ostream& operator<<(std::ostream& out, const ChannelFeature& f);
|
|
|
|
|
|
|
|
private:
|
|
|
|
cv::Rect bb;
|
|
|
|
int channel;
|
|
|
|
};
|
|
|
|
|
|
|
|
void write(cv::FileStorage& fs, const std::string&, const ChannelFeature& f);
|
|
|
|
std::ostream& operator<<(std::ostream& out, const ChannelFeature& m);
|
2013-01-29 11:27:53 +01:00
|
|
|
|
|
|
|
// ========================================================================== //
|
2013-01-29 14:44:21 +01:00
|
|
|
// Public Interface for Integral Channel Feature.
|
2013-01-29 11:27:53 +01:00
|
|
|
// ========================================================================== //
|
|
|
|
|
2013-01-31 16:17:56 +01:00
|
|
|
class CV_EXPORTS_W ChannelFeatureBuilder : public cv::Algorithm
|
2013-01-29 11:27:53 +01:00
|
|
|
{
|
|
|
|
public:
|
2013-01-29 13:55:01 +01:00
|
|
|
virtual ~ChannelFeatureBuilder();
|
2013-01-29 11:27:53 +01:00
|
|
|
|
2013-01-29 13:55:01 +01:00
|
|
|
// apply channels to source frame
|
2013-03-14 11:49:15 +01:00
|
|
|
CV_WRAP_AS(compute) virtual void operator()(InputArray src, OutputArray channels, cv::Size channelsSize = cv::Size()) const = 0;
|
2013-01-29 11:27:53 +01:00
|
|
|
|
2013-03-01 20:39:32 +01:00
|
|
|
CV_WRAP virtual int totalChannels() const = 0;
|
|
|
|
virtual cv::AlgorithmInfo* info() const = 0;
|
|
|
|
|
|
|
|
CV_WRAP static cv::Ptr<ChannelFeatureBuilder> create(const std::string& featureType);
|
2013-01-29 10:32:21 +01:00
|
|
|
};
|
|
|
|
|
2013-01-29 10:09:49 +01:00
|
|
|
// ========================================================================== //
|
|
|
|
// Implementation of soft (stageless) cascaded detector.
|
|
|
|
// ========================================================================== //
|
2013-02-01 11:25:10 +01:00
|
|
|
class CV_EXPORTS_W Detector : public cv::Algorithm
|
2013-01-29 10:09:49 +01:00
|
|
|
{
|
|
|
|
public:
|
2013-01-29 09:26:12 +01:00
|
|
|
|
|
|
|
enum { NO_REJECT = 1, DOLLAR = 2, /*PASCAL = 4,*/ DEFAULT = NO_REJECT};
|
|
|
|
|
|
|
|
// An empty cascade will be created.
|
|
|
|
// Param minScale is a minimum scale relative to the original size of the image on which cascade will be applied.
|
|
|
|
// Param minScale is a maximum scale relative to the original size of the image on which cascade will be applied.
|
|
|
|
// Param scales is a number of scales from minScale to maxScale.
|
|
|
|
// Param rejCriteria is used for NMS.
|
2013-02-01 11:25:10 +01:00
|
|
|
CV_WRAP Detector(double minScale = 0.4, double maxScale = 5., int scales = 55, int rejCriteria = 1);
|
2013-01-29 09:26:12 +01:00
|
|
|
|
2013-02-01 11:25:10 +01:00
|
|
|
CV_WRAP virtual ~Detector();
|
2013-01-29 09:26:12 +01:00
|
|
|
|
|
|
|
cv::AlgorithmInfo* info() const;
|
|
|
|
|
2013-01-29 10:09:49 +01:00
|
|
|
// Load soft cascade from FileNode.
|
|
|
|
// Param fileNode is a root node for cascade.
|
|
|
|
CV_WRAP virtual bool load(const FileNode& fileNode);
|
2013-01-29 09:26:12 +01:00
|
|
|
|
2013-01-29 10:09:49 +01:00
|
|
|
// Load soft cascade config.
|
|
|
|
CV_WRAP virtual void read(const FileNode& fileNode);
|
2013-01-29 09:26:12 +01:00
|
|
|
|
|
|
|
// Return the vector of Detection objects.
|
|
|
|
// Param image is a frame on which detector will be applied.
|
|
|
|
// Param rois is a vector of regions of interest. Only the objects that fall into one of the regions will be returned.
|
|
|
|
// Param objects is an output array of Detections
|
|
|
|
virtual void detect(InputArray image, InputArray rois, std::vector<Detection>& objects) const;
|
2013-01-29 10:09:49 +01:00
|
|
|
|
2013-01-29 09:26:12 +01:00
|
|
|
// Param rects is an output array of bounding rectangles for detected objects.
|
|
|
|
// Param confs is an output array of confidence for detected objects. i-th bounding rectangle corresponds i-th confidence.
|
2013-03-14 11:49:15 +01:00
|
|
|
CV_WRAP virtual void detect(InputArray image, InputArray rois, OutputArray rects, OutputArray confs) const;
|
2013-01-29 09:26:12 +01:00
|
|
|
|
|
|
|
private:
|
|
|
|
void detectNoRoi(const Mat& image, std::vector<Detection>& objects) const;
|
|
|
|
|
|
|
|
struct Fields;
|
|
|
|
Fields* fields;
|
|
|
|
|
|
|
|
double minScale;
|
|
|
|
double maxScale;
|
|
|
|
|
|
|
|
int scales;
|
|
|
|
int rejCriteria;
|
|
|
|
};
|
|
|
|
|
2013-01-29 10:32:21 +01:00
|
|
|
// ========================================================================== //
|
2013-01-29 14:44:21 +01:00
|
|
|
// Public Interface for singe soft (stageless) cascade octave training.
|
2013-01-29 10:32:21 +01:00
|
|
|
// ========================================================================== //
|
2013-02-01 11:25:10 +01:00
|
|
|
class CV_EXPORTS Octave : public cv::Algorithm
|
2013-01-29 10:32:21 +01:00
|
|
|
{
|
|
|
|
public:
|
|
|
|
enum
|
|
|
|
{
|
|
|
|
// Direct backward pruning. (Cha Zhang and Paul Viola)
|
|
|
|
DBP = 1,
|
|
|
|
// Multiple instance pruning. (Cha Zhang and Paul Viola)
|
|
|
|
MIP = 2,
|
|
|
|
// Originally proposed by L. Bourdev and J. Brandt
|
|
|
|
HEURISTIC = 4
|
|
|
|
};
|
|
|
|
|
2013-02-01 11:25:10 +01:00
|
|
|
virtual ~Octave();
|
|
|
|
static cv::Ptr<Octave> create(cv::Rect boundingBox, int npositives, int nnegatives,
|
2013-03-02 10:06:29 +01:00
|
|
|
int logScale, int shrinkage, cv::Ptr<ChannelFeatureBuilder> builder);
|
2013-01-29 10:32:21 +01:00
|
|
|
|
2013-01-29 14:44:21 +01:00
|
|
|
virtual bool train(const Dataset* dataset, const FeaturePool* pool, int weaks, int treeDepth) = 0;
|
|
|
|
virtual void setRejectThresholds(OutputArray thresholds) = 0;
|
|
|
|
virtual void write( cv::FileStorage &fs, const FeaturePool* pool, InputArray thresholds) const = 0;
|
2013-02-24 17:14:01 +01:00
|
|
|
virtual void write( CvFileStorage* fs, std::string name) const = 0;
|
2013-01-29 10:32:21 +01:00
|
|
|
};
|
|
|
|
|
2013-01-29 09:26:12 +01:00
|
|
|
CV_EXPORTS bool initModule_softcascade(void);
|
2013-01-29 10:09:49 +01:00
|
|
|
|
2013-03-03 08:11:42 +01:00
|
|
|
// ======================== GPU version for soft cascade ===================== //
|
|
|
|
|
|
|
|
class CV_EXPORTS ChannelsProcessor
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
enum
|
|
|
|
{
|
2013-03-13 12:06:27 +01:00
|
|
|
// GENERIC = 1 << 4, does not supported
|
2013-03-03 08:11:42 +01:00
|
|
|
SEPARABLE = 2 << 4
|
|
|
|
};
|
|
|
|
|
|
|
|
// Appends specified number of HOG first-order features integrals into given vector.
|
|
|
|
// Param frame is an input 3-channel bgr image.
|
|
|
|
// Param channels is a GPU matrix of optionally shrinked channels
|
|
|
|
// Param stream is stream is a high-level CUDA stream abstraction used for asynchronous execution.
|
|
|
|
virtual void apply(InputArray frame, OutputArray channels, cv::gpu::Stream& stream = cv::gpu::Stream::Null()) = 0;
|
|
|
|
|
|
|
|
// Creates a specific preprocessor implementation.
|
|
|
|
// Param shrinkage is a resizing factor. Resize is applied before the computing integral sum
|
|
|
|
// Param bins is a number of HOG-like channels.
|
|
|
|
// Param flags is a channel computing extra flags.
|
2013-03-13 12:06:27 +01:00
|
|
|
static cv::Ptr<ChannelsProcessor> create(const int shrinkage, const int bins, const int flags = SEPARABLE);
|
2013-03-03 08:11:42 +01:00
|
|
|
|
|
|
|
virtual ~ChannelsProcessor();
|
|
|
|
|
|
|
|
protected:
|
|
|
|
ChannelsProcessor();
|
|
|
|
};
|
|
|
|
|
|
|
|
// Implementation of soft (stage-less) cascaded detector.
|
|
|
|
class CV_EXPORTS SCascade : public cv::Algorithm
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
|
|
|
|
enum { NO_REJECT = 1, DOLLAR = 2, /*PASCAL = 4,*/ DEFAULT = NO_REJECT, NMS_MASK = 0xF};
|
|
|
|
|
|
|
|
// An empty cascade will be created.
|
|
|
|
// Param minScale is a minimum scale relative to the original size of the image on which cascade will be applied.
|
|
|
|
// Param minScale is a maximum scale relative to the original size of the image on which cascade will be applied.
|
|
|
|
// Param scales is a number of scales from minScale to maxScale.
|
|
|
|
// Param flags is an extra tuning flags.
|
|
|
|
SCascade(const double minScale = 0.4, const double maxScale = 5., const int scales = 55,
|
2013-03-13 12:06:27 +01:00
|
|
|
const int flags = NO_REJECT | ChannelsProcessor::SEPARABLE);
|
2013-03-03 08:11:42 +01:00
|
|
|
|
|
|
|
virtual ~SCascade();
|
|
|
|
|
|
|
|
cv::AlgorithmInfo* info() const;
|
|
|
|
|
|
|
|
// Load cascade from FileNode.
|
|
|
|
// Param fn is a root node for cascade. Should be <cascade>.
|
|
|
|
virtual bool load(const FileNode& fn);
|
|
|
|
|
|
|
|
// Load cascade config.
|
|
|
|
virtual void read(const FileNode& fn);
|
|
|
|
|
|
|
|
// Return the matrix of of detected objects.
|
|
|
|
// Param image is a frame on which detector will be applied.
|
|
|
|
// Param rois is a regions of interests mask generated by genRoi.
|
|
|
|
// Only the objects that fall into one of the regions will be returned.
|
|
|
|
// Param objects is an output array of Detections represented as GpuMat of detections (SCascade::Detection)
|
|
|
|
// The first element of the matrix is actually a count of detections.
|
|
|
|
// Param stream is stream is a high-level CUDA stream abstraction used for asynchronous execution
|
|
|
|
virtual void detect(InputArray image, InputArray rois, OutputArray objects, cv::gpu::Stream& stream = cv::gpu::Stream::Null()) const;
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
|
|
|
struct Fields;
|
|
|
|
Fields* fields;
|
|
|
|
|
|
|
|
double minScale;
|
|
|
|
double maxScale;
|
|
|
|
int scales;
|
|
|
|
|
|
|
|
int flags;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
2013-02-01 11:25:10 +01:00
|
|
|
}} // namespace cv { namespace softcascade {
|
2013-01-29 09:26:12 +01:00
|
|
|
|
|
|
|
#endif
|