fixed compilation with latest master changes

This commit is contained in:
marina.kolpakova 2013-03-14 13:49:48 +04:00
parent 6f11dc03b9
commit a476664144
12 changed files with 65 additions and 254 deletions

View File

@ -55,142 +55,6 @@
#include "opencv2/features2d.hpp"
namespace cv { namespace gpu {
//////////////////////////////// CudaMem ////////////////////////////////
// CudaMem is limited cv::Mat with page locked memory allocation.
// Page locked memory is only needed for async and faster coping to GPU.
// It is convertable to cv::Mat header without reference counting
// so you can use it with other opencv functions.
// Page-locks the matrix m memory and maps it for the device(s)
CV_EXPORTS void registerPageLocked(Mat& m);
// Unmaps the memory of matrix m, and makes it pageable again.
CV_EXPORTS void unregisterPageLocked(Mat& m);
class CV_EXPORTS CudaMem
{
public:
enum { ALLOC_PAGE_LOCKED = 1, ALLOC_ZEROCOPY = 2, ALLOC_WRITE_COMBINED = 4 };
CudaMem();
CudaMem(const CudaMem& m);
CudaMem(int rows, int cols, int type, int _alloc_type = ALLOC_PAGE_LOCKED);
CudaMem(Size size, int type, int alloc_type = ALLOC_PAGE_LOCKED);
//! creates from cv::Mat with coping data
explicit CudaMem(const Mat& m, int alloc_type = ALLOC_PAGE_LOCKED);
~CudaMem();
CudaMem& operator = (const CudaMem& m);
//! returns deep copy of the matrix, i.e. the data is copied
CudaMem clone() const;
//! allocates new matrix data unless the matrix already has specified size and type.
void create(int rows, int cols, int type, int alloc_type = ALLOC_PAGE_LOCKED);
void create(Size size, int type, int alloc_type = ALLOC_PAGE_LOCKED);
//! decrements reference counter and released memory if needed.
void release();
//! returns matrix header with disabled reference counting for CudaMem data.
Mat createMatHeader() const;
operator Mat() const;
//! maps host memory into device address space and returns GpuMat header for it. Throws exception if not supported by hardware.
GpuMat createGpuMatHeader() const;
operator GpuMat() const;
//returns if host memory can be mapperd to gpu address space;
static bool canMapHostMemory();
// Please see cv::Mat for descriptions
bool isContinuous() const;
size_t elemSize() const;
size_t elemSize1() const;
int type() const;
int depth() const;
int channels() const;
size_t step1() const;
Size size() const;
bool empty() const;
// Please see cv::Mat for descriptions
int flags;
int rows, cols;
size_t step;
uchar* data;
int* refcount;
uchar* datastart;
uchar* dataend;
int alloc_type;
};
//////////////////////////////// CudaStream ////////////////////////////////
// Encapculates Cuda Stream. Provides interface for async coping.
// Passed to each function that supports async kernel execution.
// Reference counting is enabled
class CV_EXPORTS Stream
{
public:
Stream();
~Stream();
Stream(const Stream&);
Stream& operator =(const Stream&);
bool queryIfComplete();
void waitForCompletion();
//! downloads asynchronously
// Warning! cv::Mat must point to page locked memory (i.e. to CudaMem data or to its subMat)
void enqueueDownload(const GpuMat& src, CudaMem& dst);
void enqueueDownload(const GpuMat& src, Mat& dst);
//! uploads asynchronously
// Warning! cv::Mat must point to page locked memory (i.e. to CudaMem data or to its ROI)
void enqueueUpload(const CudaMem& src, GpuMat& dst);
void enqueueUpload(const Mat& src, GpuMat& dst);
//! copy asynchronously
void enqueueCopy(const GpuMat& src, GpuMat& dst);
//! memory set asynchronously
void enqueueMemSet(GpuMat& src, Scalar val);
void enqueueMemSet(GpuMat& src, Scalar val, const GpuMat& mask);
//! converts matrix type, ex from float to uchar depending on type
void enqueueConvert(const GpuMat& src, GpuMat& dst, int dtype, double a = 1, double b = 0);
//! adds a callback to be called on the host after all currently enqueued items in the stream have completed
typedef void (*StreamCallback)(Stream& stream, int status, void* userData);
void enqueueHostCallback(StreamCallback callback, void* userData);
static Stream& Null();
operator bool() const;
private:
struct Impl;
explicit Stream(Impl* impl);
void create();
void release();
Impl *impl;
friend struct StreamAccessor;
};
//////////////////////////////// Filter Engine ////////////////////////////////
/*!
@ -1522,97 +1386,6 @@ private:
friend class CascadeClassifier_GPU_LBP;
};
// ======================== GPU version for soft cascade ===================== //
class CV_EXPORTS ChannelsProcessor
{
public:
enum
{
GENERIC = 1 << 4,
SEPARABLE = 2 << 4
};
// Appends specified number of HOG first-order features integrals into given vector.
// Param frame is an input 3-channel bgr image.
// Param channels is a GPU matrix of optionally shrinked channels
// Param stream is stream is a high-level CUDA stream abstraction used for asynchronous execution.
virtual void apply(InputArray frame, OutputArray channels, Stream& stream = Stream::Null()) = 0;
// Creates a specific preprocessor implementation.
// Param shrinkage is a resizing factor. Resize is applied before the computing integral sum
// Param bins is a number of HOG-like channels.
// Param flags is a channel computing extra flags.
static cv::Ptr<ChannelsProcessor> create(const int shrinkage, const int bins, const int flags = GENERIC);
virtual ~ChannelsProcessor();
protected:
ChannelsProcessor();
};
// Implementation of soft (stage-less) cascaded detector.
class CV_EXPORTS SCascade : public cv::Algorithm
{
public:
// Representation of detectors result.
struct CV_EXPORTS Detection
{
ushort x;
ushort y;
ushort w;
ushort h;
float confidence;
int kind;
enum {PEDESTRIAN = 0};
};
enum { NO_REJECT = 1, DOLLAR = 2, /*PASCAL = 4,*/ DEFAULT = NO_REJECT, NMS_MASK = 0xF};
// An empty cascade will be created.
// Param minScale is a minimum scale relative to the original size of the image on which cascade will be applied.
// Param minScale is a maximum scale relative to the original size of the image on which cascade will be applied.
// Param scales is a number of scales from minScale to maxScale.
// Param flags is an extra tuning flags.
SCascade(const double minScale = 0.4, const double maxScale = 5., const int scales = 55,
const int flags = NO_REJECT || ChannelsProcessor::GENERIC);
virtual ~SCascade();
cv::AlgorithmInfo* info() const;
// Load cascade from FileNode.
// Param fn is a root node for cascade. Should be <cascade>.
virtual bool load(const FileNode& fn);
// Load cascade config.
virtual void read(const FileNode& fn);
// Return the matrix of of detected objects.
// Param image is a frame on which detector will be applied.
// Param rois is a regions of interests mask generated by genRoi.
// Only the objects that fall into one of the regions will be returned.
// Param objects is an output array of Detections represented as GpuMat of detections (SCascade::Detection)
// The first element of the matrix is actually a count of detections.
// Param stream is stream is a high-level CUDA stream abstraction used for asynchronous execution
virtual void detect(InputArray image, InputArray rois, OutputArray objects, Stream& stream = Stream::Null()) const;
private:
struct Fields;
Fields* fields;
double minScale;
double maxScale;
int scales;
int flags;
};
CV_EXPORTS bool initModule_gpu(void);
////////////////////////////////// SURF //////////////////////////////////////////
class CV_EXPORTS SURF_GPU

View File

@ -1,3 +1,3 @@
set(the_description "Soft Cascade detection and training")
ocv_warnings_disable(CMAKE_CXX_FLAGS /wd4310 -Wundef -Wsign-promo -Wmissing-declarations -Wmissing-prototypes)
ocv_define_module(softcascade opencv_core opencv_imgproc opencv_ml)
ocv_warnings_disable(CMAKE_CXX_FLAGS /wd4310 -Wundef)

View File

@ -30,28 +30,28 @@ Implementation of soft (stageless) cascaded detector. ::
softcascade::SCascade::~SCascade
---------------------------
---------------------------------
Destructor for SCascade.
.. ocv:function:: gpu::SCascade::~SCascade()
.. ocv:function:: softcascade::SCascade::~SCascade()
softcascade::SCascade::load
--------------------------
----------------------------
Load cascade from FileNode.
.. ocv:function:: bool gpu::SCascade::load(const FileNode& fn)
.. ocv:function:: bool softcascade::SCascade::load(const FileNode& fn)
:param fn: File node from which the soft cascade are read.
softcascade::SCascade::detect
--------------------------
------------------------------
Apply cascade to an input frame and return the vector of Decection objcts.
.. ocv:function:: void gpu::SCascade::detect(InputArray image, InputArray rois, OutputArray objects, Stream& stream = Stream::Null()) const
.. ocv:function:: void softcascade::SCascade::detect(InputArray image, InputArray rois, OutputArray objects, cv::gpu::Stream& stream = cv::gpu::Stream::Null()) const
:param image: a frame on which detector will be applied.

View File

@ -44,6 +44,7 @@
#define __OPENCV_SOFTCASCADE_HPP__
#include "opencv2/core.hpp"
#include "opencv2/core/gpumat.hpp"
namespace cv { namespace softcascade {

View File

@ -42,6 +42,9 @@
#include "opencv2/core/cuda_devptrs.hpp"
namespace cv { namespace softcascade { namespace internal {
void error(const char *error_string, const char *file, const int line, const char *func);
}}}
#if defined(__GNUC__)
#define cudaSafeCall(expr) ___cudaSafeCall(expr, __FILE__, __LINE__, __func__)
#else /* defined(__CUDACC__) || defined(__MSVC__) */
@ -50,7 +53,7 @@
static inline void ___cudaSafeCall(cudaError_t err, const char *file, const int line, const char *func = "")
{
// if (cudaSuccess != err) cv::gpu::error(cudaGetErrorString(err), file, line, func);
if (cudaSuccess != err) cv::softcascade::internal::error(cudaGetErrorString(err), file, line, func);
}
__host__ __device__ __forceinline__ int divUp(int total, int grain)
@ -490,16 +493,30 @@ namespace cv { namespace softcascade { namespace device
B2Y = 1868
};
template <int bidx> static __device__ __forceinline__ unsigned char RGB2GrayConvert(uint src)
template <int bidx> static __device__ __forceinline__ unsigned char RGB2GrayConvert(unsigned char b, unsigned char g, unsigned char r)
{
uint b = 0xffu & (src >> (bidx * 8));
uint g = 0xffu & (src >> 8);
uint r = 0xffu & (src >> ((bidx ^ 2) * 8));
// uint b = 0xffu & (src >> (bidx * 8));
// uint g = 0xffu & (src >> 8);
// uint r = 0xffu & (src >> ((bidx ^ 2) * 8));
return CV_DESCALE((uint)(b * B2Y + g * G2Y + r * R2Y), yuv_shift);
}
__global__ void device_transform(const cv::gpu::PtrStepSz<uchar3> bgr, cv::gpu::PtrStepSzb gray)
{
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const uchar3 colored = (uchar3)(bgr.ptr(y))[x];
gray.ptr(y)[x] = RGB2GrayConvert<0>(colored.x, colored.y, colored.z);
}
///////
void transform(const cv::gpu::PtrStepSz<uchar3>& bgr, cv::gpu::PtrStepSzb gray)
{
const dim3 block(32, 8);
const dim3 grid(divUp(bgr.cols, block.x), divUp(bgr.rows, block.y));
device_transform<<<grid, block>>>(bgr, gray);
cudaSafeCall(cudaDeviceSynchronize());
}
}}}

View File

@ -536,7 +536,7 @@ void cv::softcascade::SCascade::detect(InputArray _image, InputArray _rois, Outp
flds.mask.create( rois.cols / shr, rois.rows / shr, rois.type());
device::shrink(rois, flds.genRoiTmp);
device::shrink(rois, flds.mask);
//cv::gpu::transpose(flds.genRoiTmp, flds.mask, s);
if (type == CV_8UC3)
@ -594,15 +594,16 @@ struct SeparablePreprocessor : public cv::softcascade::ChannelsProcessor
virtual void apply(InputArray _frame, OutputArray _shrunk, cv::gpu::Stream& s = cv::gpu::Stream::Null())
{
const cv::gpu::GpuMat frame = _frame.getGpuMat();
bgr = _frame.getGpuMat();
//cv::gpu::GaussianBlur(frame, bgr, cv::Size(3, 3), -1.0);
_shrunk.create(frame.rows * (4 + bins) / shrinkage, frame.cols / shrinkage, CV_8UC1);
_shrunk.create(bgr.rows * (4 + bins) / shrinkage, bgr.cols / shrinkage, CV_8UC1);
cv::gpu::GpuMat shrunk = _shrunk.getGpuMat();
channels.create(frame.rows * (4 + bins), frame.cols, CV_8UC1);
channels.create(bgr.rows * (4 + bins), bgr.cols, CV_8UC1);
setZero(channels, s);
gray.create(bgr.size(), CV_8UC1);
cv::softcascade::device::transform(bgr, gray); //cv::gpu::cvtColor(bgr, gray, CV_BGR2GRAY);
cv::softcascade::device::gray2hog(gray, channels(cv::Rect(0, 0, bgr.cols, bgr.rows * (bins + 1))), bins);

View File

@ -56,6 +56,7 @@
namespace cv { namespace softcascade { namespace internal
{
namespace rnd {
typedef cv::RNG_MT19937 engine;

View File

@ -63,4 +63,22 @@ bool initModule_softcascade(void)
return (sc1->info() != 0) && (sc->info() != 0);
}
namespace internal {
void error(const char *error_string, const char *file, const int line, const char *func)
{
int code = CV_GpuApiCallError;
if (std::uncaught_exception())
{
const char* errorStr = cvErrorStr(code);
const char* function = func ? func : "unknown function";
std::cerr << "OpenCV Error: " << errorStr << "(" << error_string << ") in " << function << ", file " << file << ", line " << line;
std::cerr.flush();
}
else
cv::error( cv::Exception(code, error_string, func, file, line) );
}
}
} }

View File

@ -55,5 +55,6 @@
# include "opencv2/softcascade.hpp"
# include "opencv2/imgproc.hpp"
# include "opencv2/highgui.hpp"
# include "utility.hpp"
#endif

View File

@ -42,10 +42,9 @@
#ifndef __OPENCV_SOFTCASCADE_TEST_UTILITY_HPP__
#define __OPENCV_SOFTCASCADE_TEST_UTILITY_HPP__
#include "opencv2/core/core.hpp"
#include "opencv2/core.hpp"
#include "opencv2/core/gpumat.hpp"
#include "opencv2/ts/ts.hpp"
#include "opencv2/ts/ts_perf.hpp"
#include "opencv2/ts.hpp"
//////////////////////////////////////////////////////////////////////
// Gpu devices

View File

@ -1,7 +1,7 @@
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <opencv2/softcascade/softcascade.hpp>
#include "opencv2/imgproc.hpp"
#include "opencv2/objdetect.hpp"
#include "opencv2/highgui.hpp"
#include <opencv2/softcascade.hpp>
#include <iostream>
#include <vector>

View File

@ -1,6 +1,6 @@
#include <opencv2/gpu/gpu.hpp>
#include <opencv2/softcascade/softcascade.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/gpu.hpp>
#include <opencv2/softcascade.hpp>
#include <opencv2/highgui.hpp>
#include <iostream>
int main(int argc, char** argv)