opencv/samples/gpu/brox_optical_flow.cpp

317 lines
8.9 KiB
C++
Raw Normal View History

#include <iostream>
#include <iomanip>
#include <string>
#include "cvconfig.h"
#include "opencv2/core/core.hpp"
2012-01-11 14:05:03 +01:00
#include "opencv2/core/opengl_interop.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/gpu/gpu.hpp"
using namespace std;
using namespace cv;
using namespace cv::gpu;
2012-01-11 14:05:03 +01:00
void getFlowField(const Mat& u, const Mat& v, Mat& flowField);
2012-01-11 14:05:03 +01:00
#ifdef HAVE_OPENGL
2012-01-11 14:05:03 +01:00
void needleMapDraw(void* userdata);
2011-10-24 10:34:15 +02:00
2012-01-11 14:05:03 +01:00
#endif
2012-01-11 14:05:03 +01:00
int main(int argc, const char* argv[])
{
2012-01-11 14:05:03 +01:00
try
{
2012-01-11 14:05:03 +01:00
const char* keys =
"{ h | help | false | print help message }"
"{ l | left | | specify left image }"
"{ r | right | | specify right image }"
"{ s | scale | 0.8 | set pyramid scale factor }"
"{ a | alpha | 0.197 | set alpha }"
"{ g | gamma | 50.0 | set gamma }"
"{ i | inner | 10 | set number of inner iterations }"
"{ o | outer | 77 | set number of outer iterations }"
"{ si | solver | 10 | set number of basic solver iterations }"
"{ t | time_step | 0.1 | set frame interpolation time step }";
CommandLineParser cmd(argc, argv, keys);
if (cmd.get<bool>("help"))
{
cout << "Usage: brox_optical_flow [options]" << endl;
2012-01-11 14:05:03 +01:00
cout << "Avaible options:" << endl;
cmd.printParams();
return 0;
}
2012-01-11 14:05:03 +01:00
string frame0Name = cmd.get<string>("left");
string frame1Name = cmd.get<string>("right");
float scale = cmd.get<float>("scale");
float alpha = cmd.get<float>("alpha");
float gamma = cmd.get<float>("gamma");
int inner_iterations = cmd.get<int>("inner");
int outer_iterations = cmd.get<int>("outer");
int solver_iterations = cmd.get<int>("solver");
float timeStep = cmd.get<float>("time_step");
if (frame0Name.empty() || frame1Name.empty())
{
2012-01-11 14:05:03 +01:00
cerr << "Missing input file names" << endl;
return -1;
}
2012-01-11 14:05:03 +01:00
Mat frame0Color = imread(frame0Name);
Mat frame1Color = imread(frame1Name);
if (frame0Color.empty() || frame1Color.empty())
{
2012-01-11 14:05:03 +01:00
cout << "Can't load input images" << endl;
return -1;
}
2012-01-11 14:05:03 +01:00
cv::gpu::printShortCudaDeviceInfo(cv::gpu::getDevice());
2012-01-11 14:05:03 +01:00
cout << "OpenCV / NVIDIA Computer Vision" << endl;
cout << "Optical Flow Demo: Frame Interpolation" << endl;
cout << "=========================================" << endl;
namedWindow("Forward flow");
namedWindow("Backward flow");
namedWindow("Needle Map", WINDOW_OPENGL);
namedWindow("Interpolated frame");
setGlDevice();
cout << "Press:" << endl;
cout << "\tESC to quit" << endl;
cout << "\t'a' to move to the previous frame" << endl;
cout << "\t's' to move to the next frame\n" << endl;
frame0Color.convertTo(frame0Color, CV_32F, 1.0 / 255.0);
frame1Color.convertTo(frame1Color, CV_32F, 1.0 / 255.0);
Mat frame0Gray, frame1Gray;
cvtColor(frame0Color, frame0Gray, COLOR_BGR2GRAY);
cvtColor(frame1Color, frame1Gray, COLOR_BGR2GRAY);
GpuMat d_frame0(frame0Gray);
GpuMat d_frame1(frame1Gray);
cout << "Estimating optical flow" << endl;
BroxOpticalFlow d_flow(alpha, gamma, scale, inner_iterations, outer_iterations, solver_iterations);
cout << "\tForward..." << endl;
GpuMat d_fu, d_fv;
d_flow(d_frame0, d_frame1, d_fu, d_fv);
Mat flowFieldForward;
getFlowField(Mat(d_fu), Mat(d_fv), flowFieldForward);
cout << "\tBackward..." << endl;
GpuMat d_bu, d_bv;
d_flow(d_frame1, d_frame0, d_bu, d_bv);
Mat flowFieldBackward;
getFlowField(Mat(d_bu), Mat(d_bv), flowFieldBackward);
#ifdef HAVE_OPENGL
cout << "Create Optical Flow Needle Map..." << endl;
GpuMat d_vertex, d_colors;
2012-02-08 06:45:47 +01:00
createOpticalFlowNeedleMap(d_fu, d_fv, d_vertex, d_colors);
2012-01-11 14:05:03 +01:00
#endif
cout << "Interpolating..." << endl;
// first frame color components
GpuMat d_b, d_g, d_r;
// second frame color components
GpuMat d_bt, d_gt, d_rt;
// prepare color components on host and copy them to device memory
Mat channels[3];
cv::split(frame0Color, channels);
d_b.upload(channels[0]);
d_g.upload(channels[1]);
d_r.upload(channels[2]);
cv::split(frame1Color, channels);
d_bt.upload(channels[0]);
d_gt.upload(channels[1]);
d_rt.upload(channels[2]);
// temporary buffer
GpuMat d_buf;
// intermediate frame color components (GPU memory)
GpuMat d_rNew, d_gNew, d_bNew;
GpuMat d_newFrame;
vector<Mat> frames;
frames.reserve(static_cast<int>(1.0f / timeStep) + 2);
frames.push_back(frame0Color);
// compute interpolated frames
for (float timePos = timeStep; timePos < 1.0f; timePos += timeStep)
{
2012-01-11 14:05:03 +01:00
// interpolate blue channel
interpolateFrames(d_b, d_bt, d_fu, d_fv, d_bu, d_bv, timePos, d_bNew, d_buf);
// interpolate green channel
interpolateFrames(d_g, d_gt, d_fu, d_fv, d_bu, d_bv, timePos, d_gNew, d_buf);
// interpolate red channel
interpolateFrames(d_r, d_rt, d_fu, d_fv, d_bu, d_bv, timePos, d_rNew, d_buf);
GpuMat channels[] = {d_bNew, d_gNew, d_rNew};
merge(channels, 3, d_newFrame);
frames.push_back(Mat(d_newFrame));
cout << setprecision(4) << timePos * 100.0f << "%\r";
}
2012-01-11 14:05:03 +01:00
frames.push_back(frame1Color);
cout << setw(5) << "100%" << endl;
cout << "Done" << endl;
imshow("Forward flow", flowFieldForward);
imshow("Backward flow", flowFieldBackward);
#ifdef HAVE_OPENGL
GlArrays arr;
arr.setVertexArray(d_vertex);
arr.setColorArray(d_colors, false);
setOpenGlDrawCallback("Needle Map", needleMapDraw, &arr);
#endif
int currentFrame = 0;
imshow("Interpolated frame", frames[currentFrame]);
while (true)
{
2012-01-16 14:22:28 +01:00
int key = toupper(waitKey(10) & 0xff);
2012-01-11 14:05:03 +01:00
switch (key)
{
case 27:
return 0;
break;
case 'A':
if (currentFrame > 0)
--currentFrame;
imshow("Interpolated frame", frames[currentFrame]);
break;
case 'S':
if (currentFrame < frames.size() - 1)
++currentFrame;
imshow("Interpolated frame", frames[currentFrame]);
break;
}
}
}
2012-01-11 14:05:03 +01:00
catch (const exception& ex)
{
cerr << ex.what() << endl;
return -1;
}
catch (...)
{
cerr << "Unknow error" << endl;
return -1;
}
return 0;
}
template <typename T> inline T clamp (T x, T a, T b)
{
return ((x) > (a) ? ((x) < (b) ? (x) : (b)) : (a));
}
template <typename T> inline T mapValue(T x, T a, T b, T c, T d)
{
x = clamp(x, a, b);
return c + (d - c) * (x - a) / (b - a);
}
void getFlowField(const Mat& u, const Mat& v, Mat& flowField)
{
float maxDisplacement = 1.0f;
for (int i = 0; i < u.rows; ++i)
{
const float* ptr_u = u.ptr<float>(i);
const float* ptr_v = v.ptr<float>(i);
for (int j = 0; j < u.cols; ++j)
{
float d = max(fabsf(ptr_u[j]), fabsf(ptr_v[j]));
if (d > maxDisplacement)
maxDisplacement = d;
}
}
flowField.create(u.size(), CV_8UC4);
for (int i = 0; i < flowField.rows; ++i)
{
const float* ptr_u = u.ptr<float>(i);
const float* ptr_v = v.ptr<float>(i);
2012-01-16 14:22:28 +01:00
Vec4b* row = flowField.ptr<Vec4b>(i);
for (int j = 0; j < flowField.cols; ++j)
{
row[j][0] = 0;
row[j][1] = static_cast<unsigned char> (mapValue (-ptr_v[j], -maxDisplacement, maxDisplacement, 0.0f, 255.0f));
row[j][2] = static_cast<unsigned char> (mapValue ( ptr_u[j], -maxDisplacement, maxDisplacement, 0.0f, 255.0f));
row[j][3] = 255;
}
}
}
2012-01-11 14:05:03 +01:00
#ifdef HAVE_OPENGL
2012-01-11 14:05:03 +01:00
void needleMapDraw(void* userdata)
{
const GlArrays* arr = static_cast<const GlArrays*>(userdata);
2012-01-11 14:05:03 +01:00
GlCamera camera;
camera.setOrthoProjection(0.0, 1.0, 1.0, 0.0, 0.0, 1.0);
camera.lookAt(Point3d(0.0, 0.0, 1.0), Point3d(0.0, 0.0, 0.0), Point3d(0.0, 1.0, 0.0));
2012-01-11 14:05:03 +01:00
camera.setupProjectionMatrix();
camera.setupModelViewMatrix();
2012-01-11 14:05:03 +01:00
render(*arr, RenderMode::TRIANGLES);
}
#endif