109 lines
4.9 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the OpenCV Foundation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_OPTIM_HPP__
#define __OPENCV_OPTIM_HPP__
#include "opencv2/core.hpp"
namespace cv{namespace optim
{
class CV_EXPORTS Solver : public Algorithm
{
public:
class CV_EXPORTS Function
{
public:
virtual ~Function() {}
virtual double calc(const double* x) const = 0;
virtual void getGradient(const double* /*x*/,double* /*grad*/) {}
};
virtual Ptr<Function> getFunction() const = 0;
virtual void setFunction(const Ptr<Function>& f) = 0;
virtual TermCriteria getTermCriteria() const = 0;
virtual void setTermCriteria(const TermCriteria& termcrit) = 0;
// x contain the initial point before the call and the minima position (if algorithm converged) after. x is assumed to be (something that
// after getMat() will return) row-vector or column-vector. *It's size and should
// be consisted with previous dimensionality data given, if any (otherwise, it determines dimensionality)*
virtual double minimize(InputOutputArray x) = 0;
};
//! downhill simplex class
class CV_EXPORTS DownhillSolver : public Solver
{
public:
//! returns row-vector, even if the column-vector was given
virtual void getInitStep(OutputArray step) const=0;
//!This should be called at least once before the first call to minimize() and step is assumed to be (something that
//! after getMat() will return) row-vector or column-vector. *It's dimensionality determines the dimensionality of a problem.*
virtual void setInitStep(InputArray step)=0;
};
// both minRange & minError are specified by termcrit.epsilon; In addition, user may specify the number of iterations that the algorithm does.
CV_EXPORTS_W Ptr<DownhillSolver> createDownhillSolver(const Ptr<Solver::Function>& f=Ptr<Solver::Function>(),
InputArray initStep=Mat_<double>(1,1,0.0),
TermCriteria termcrit=TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS,5000,0.000001));
//! conjugate gradient method
class CV_EXPORTS ConjGradSolver : public Solver{
};
CV_EXPORTS_W Ptr<ConjGradSolver> createConjGradSolver(const Ptr<Solver::Function>& f=Ptr<ConjGradSolver::Function>(),
TermCriteria termcrit=TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS,5000,0.000001));
//!the return codes for solveLP() function
enum
{
SOLVELP_UNBOUNDED = -2, //problem is unbounded (target function can achieve arbitrary high values)
SOLVELP_UNFEASIBLE = -1, //problem is unfeasible (there are no points that satisfy all the constraints imposed)
SOLVELP_SINGLE = 0, //there is only one maximum for target function
SOLVELP_MULTI = 1 //there are multiple maxima for target function - the arbitrary one is returned
};
CV_EXPORTS_W int solveLP(const Mat& Func, const Mat& Constr, Mat& z);
CV_EXPORTS_W void denoise_TVL1(const std::vector<Mat>& observations,Mat& result, double lambda=1.0, int niters=30);
}}// cv
#endif