The first draft of simplex algorithm, simple tests.

What we have now corresponds to "formal simplex algorithm", described in
Cormen's "Intro to Algorithms". It will work *only* if the initial
problem has (0,0,0,...,0) as feasible solution (consequently, it will
work unpredictably if problem was unfeasible or did not have zero-vector as
feasible solution). Moreover, it might cycle.

TODO (first priority)
1. Implement initialize_simplex() procedure, that shall check for
feasibility and generate initial feasible solution. (in particular, code
should pass all 4 tests implemented at the moment)
2. Implement Bland's rule to avoid cycling.
3. Make the code more clear.
4. Implement several non-trivial tests (??) and check algorithm against
them. Debug if necessary.

TODO (second priority)
1. Concentrate on stability and speed (make difficult tests)
This commit is contained in:
Alex Leontiev 2013-06-28 15:28:57 +03:00
parent b216c0940c
commit ddc0010e7d
6 changed files with 338 additions and 14 deletions

View File

@ -82,12 +82,12 @@ class CV_EXPORTS LPSolver : public Solver
public:
class CV_EXPORTS LPFunction:public Solver::Function
{
cv::Mat z;
Mat z;
public:
//! Note, that this class is supposed to be immutable, so it's ok to make only a shallow copy of z_in.*/
LPFunction(cv::Mat z_in):z(z_in){}
LPFunction(Mat z_in):z(z_in){}
~LPFunction(){};
const cv::Mat& getz()const{return z;}
const Mat& getz()const{return z;}
double calc(InputArray args)const;
};
@ -96,18 +96,19 @@ public:
//!this form and **we shall create various constructors for this class that will perform these conversions**.
class CV_EXPORTS LPConstraints:public Solver::Constraints
{
cv::Mat A,b;
Mat A,b;
public:
~LPConstraints(){};
//! Note, that this class is supposed to be immutable, so it's ok to make only a shallow copy of A_in and b_in.*/
LPConstraints(cv::Mat A_in, cv::Mat b_in):A(A_in),b(b_in){}
const cv::Mat& getA()const{return A;}
const cv::Mat& getb()const{return b;}
LPConstraints(Mat A_in, Mat b_in):A(A_in),b(b_in){}
const Mat& getA()const{return A;}
const Mat& getb()const{return b;}
};
LPSolver(){}
double solve(const Function& F,const Constraints& C, OutputArray result)const;
};
CV_EXPORTS_W int solveLP(const Mat& Func, const Mat& Constr, Mat& z);
}}// cv
#endif

View File

@ -1,15 +1,12 @@
#include "opencv2/ts.hpp"
#include "precomp.hpp"
#include <climits>
#include <algorithm>
namespace cv{namespace optim{
using std::vector;
double LPSolver::solve(const Function& F,const Constraints& C, OutputArray result)const{
printf("call to solve\n");
//TODO: sanity check and throw exception, if appropriate
//TODO: copy A,b,z
//TODO: run simplex algo
return 0.0;
}
@ -18,5 +15,251 @@ double LPSolver::LPFunction::calc(InputArray args)const{
printf("call to LPFunction::calc()\n");
return 0.0;
}
void print_matrix(const Mat& X){
printf("\ttype:%d vs %d,\tsize: %d-on-%d\n",X.type(),CV_64FC1,X.rows,X.cols);
for(int i=0;i<X.rows;i++){
printf("\t[");
for(int j=0;j<X.cols;j++){
printf("%g, ",X.at<double>(i,j));
}
printf("]\n");
}
}
namespace solveLP_aux{
//return -1 if problem is unfeasible, 0 if feasible
//in latter case it returns feasible solution in z with homogenised b's and v
int initialize_simplex(const Mat& c, Mat& b, Mat& z,double& v);
}
int solveLP(const Mat& Func, const Mat& Constr, Mat& z){
printf("call to solveLP\n");//-3(incorrect),-2 (no_sol - unbdd),-1(no_sol - unfsbl), 0(single_sol), 1(multiple_sol=>least_l2_norm)
//sanity check (size, type, no. of channels) (and throw exception, if appropriate)
if(Func.type()!=CV_64FC1 || Constr.type()!=CV_64FC1){
printf("both Func and Constr should be one-channel matrices of double's\n");
return -3;
}
if(Func.rows!=1){
printf("Func should be row-vector\n");
return -3;
}
vector<int> N(Func.cols);
N[0]=1;
for (std::vector<int>::iterator it = N.begin()+1 ; it != N.end(); ++it){
*it=it[-1]+1;
}
if((Constr.cols-1)!=Func.cols){
printf("Constr should have one more column when compared to Func\n");
return -3;
}
vector<int> B(Constr.rows);
B[0]=Func.cols+1;
for (std::vector<int>::iterator it = B.begin()+1 ; it != B.end(); ++it){
*it=it[-1]+1;
}
//copy arguments for we will shall modify them
Mat c=Func.clone(),
b=Constr.clone();
double v=0;
solveLP_aux::initialize_simplex(c,b,z,v);
int count=0;
while(1){
printf("iteration #%d\n",count++);
MatIterator_<double> pos_ptr;
int e=0;
for(pos_ptr=c.begin<double>();(*pos_ptr<=0) && pos_ptr!=c.end<double>();pos_ptr++,e++);
if(pos_ptr==c.end<double>()){
break;
}
printf("offset of first nonneg coef is %d\n",e);//TODO: choose the var with the smallest index
int l=-1;
double min=DBL_MAX;
int row_it=0;
double ite=0;
MatIterator_<double> min_row_ptr=b.begin<double>();
for(MatIterator_<double> it=b.begin<double>();it!=b.end<double>();it+=b.cols,row_it++){
double myite=0;
//check constraints, select the tightest one, TODO: smallest index
if((myite=it[e])>0){
double val=it[b.cols-1]/myite;
if(val<min){
min_row_ptr=it;
ite=myite;
min=val;
l=row_it;
}
}
}
if(l==-1){
//unbounded
return -2;
}
printf("the tightest constraint is in row %d with %g\n",l,min);
//pivoting:
{
int col_count=0;
for(MatIterator_<double> it=min_row_ptr;col_count<b.cols;col_count++,it++){
if(col_count==e){
*it=1/ite;
}else{
*it/=ite;
}
}
}
int row_count=0;
for(MatIterator_<double> it=b.begin<double>();row_count<b.rows;row_count++){
printf("offset: %d\n",it-b.begin<double>());
if(row_count==l){
it+=b.cols;
}else{
//remaining constraints
double coef=it[e];
MatIterator_<double> shadow_it=min_row_ptr;
for(int col_it=0;col_it<(b.cols);col_it++,it++,shadow_it++){
if(col_it==e){
*it=-coef*(*shadow_it);
}else{
*it-=coef*(*shadow_it);
}
}
}
}
//objective function
double coef=*pos_ptr;
MatIterator_<double> shadow_it=min_row_ptr;
MatIterator_<double> it=c.begin<double>();
for(int col_it=0;col_it<(b.cols-1);col_it++,it++,shadow_it++){
if(col_it==e){
*it=-coef*(*shadow_it);
}else{
*it-=coef*(*shadow_it);
}
}
v+=coef*(*shadow_it);
//new basis and nonbasic sets
int tmp=N[e];
N[e]=B[l];
B[l]=tmp;
printf("objective, v=%g\n",v);
print_matrix(c);
printf("constraints\n");
print_matrix(b);
printf("non-basic: ");
for (std::vector<int>::iterator it = N.begin() ; it != N.end(); ++it){
printf("%d, ",*it);
}
printf("\nbasic: ");
for (std::vector<int>::iterator it = B.begin() ; it != B.end(); ++it){
printf("%d, ",*it);
}
printf("\n");
}
//return the optimal solution
//z=cv::Mat_<double>(1,c.cols,0);
MatIterator_<double> it=z.begin<double>();
for(int i=1;i<=c.cols;i++,it++){
std::vector<int>::iterator pos=B.begin();
if((pos=std::find(B.begin(),B.end(),i))==B.end()){
*it+=0;
}else{
*it+=b.at<double>(pos-B.begin(),b.cols-1);
}
}
return 0;
}
int solveLP_aux::initialize_simplex(const Mat& c, Mat& b, Mat& z,double& v){//TODO
z=Mat_<double>(1,c.cols,0.0);
v=0;
return 0;
cv::Mat mod_b=(cv::Mat_<double>(1,b.rows));
bool gen_new_sol_flag=false,hom_sol_given=false;
if(z.type()!=CV_64FC1 || z.rows!=1 || z.cols!=c.cols || (hom_sol_given=(countNonZero(z)==0))){
printf("line %d\n",__LINE__);
if(hom_sol_given==false){
printf("line %d, %d\n",__LINE__,hom_sol_given);
z=cv::Mat_<double>(1,c.cols,(double)0);
}
//check homogeneous solution
printf("line %d\n",__LINE__);
for(MatIterator_<double> b_it=b.begin<double>()+b.cols-1,mod_b_it=mod_b.begin<double>();mod_b_it!=mod_b.end<double>();
b_it+=b.cols,mod_b_it++){
if(*b_it<0){
//if no - we need feasible solution
gen_new_sol_flag=true;
break;
}
}
printf("line %d, gen_new_sol_flag=%d - I've got here!!!\n",__LINE__,gen_new_sol_flag);
//if yes - we have feasible solution!
}else{
//check for feasibility
MatIterator_<double> it=b.begin<double>();
for(MatIterator_<double> mod_b_it=mod_b.begin<double>();it!=b.end<double>();mod_b_it++){
double sum=0;
for(MatIterator_<double> z_it=z.begin<double>();z_it!=z.end<double>();z_it++,it++){
sum+=(*it)*(*z_it);
}
if((*mod_b_it=(*it-sum))<0){
break;
}
it++;
}
if(it==b.end<double>()){
//z contains feasible solution - just homogenise b's TODO: and v
gen_new_sol_flag=false;
for(MatIterator_<double> b_it=b.begin<double>()+b.cols-1,mod_b_it=mod_b.begin<double>();mod_b_it!=mod_b.end<double>();
b_it+=b.cols,mod_b_it++){
*b_it=*mod_b_it;
}
}else{
//if no - we need feasible solution
gen_new_sol_flag=true;
}
}
if(gen_new_sol_flag==true){
//we should generate new solution - TODO
printf("we should generate new solution\n");
Mat new_c=Mat_<double>(1,c.cols+1,0.0),
new_b=Mat_<double>(b.rows,b.cols+1,-1.0),
new_z=Mat_<double>(1,c.cols+1,0.0);
new_c.end<double>()[-1]=-1;
c.copyTo(new_c.colRange(0,new_c.cols-1));
b.col(b.cols-1).copyTo(new_b.col(new_b.cols-1));
b.colRange(0,b.cols-1).copyTo(new_b.colRange(0,new_b.cols-2));
Mat b_slice=b.col(b.cols-1);
new_z.end<double>()[-1]=-*(std::min_element(b_slice.begin<double>(),b_slice.end<double>()));
/*printf("matrix new_c\n");
print_matrix(new_c);
printf("matrix new_b\n");
print_matrix(new_b);
printf("matrix new_z\n");
print_matrix(new_z);*/
printf("run for the second time!\n");
solveLP(new_c,new_b,new_z);
printf("original z was\n");
print_matrix(z);
printf("that's what I've got\n");
print_matrix(new_z);
printf("for the constraints\n");
print_matrix(b);
return 0;
}
}
}}

View File

@ -0,0 +1,61 @@
#include "test_precomp.hpp"
#include "opencv2/optim.hpp"
TEST(Optim_LpSolver, regression)
{
cv::Mat A,B,z,etalon_z;
if(true){
//cormen's example #1
A=(cv::Mat_<double>(1,3)<<3,1,2);
B=(cv::Mat_<double>(3,4)<<1,1,3,30,2,2,5,24,4,1,2,36);
std::cout<<"here A goes\n"<<A<<"\n";
cv::optim::solveLP(A,B,z);
std::cout<<"here z goes\n"<<z<<"\n";
etalon_z=(cv::Mat_<double>(1,3)<<8,4,0);
ASSERT_EQ(cv::countNonZero(z!=etalon_z),0);
}
if(true){
//cormen's example #2
A=(cv::Mat_<double>(1,2)<<18,12.5);
B=(cv::Mat_<double>(3,3)<<1,1,20,1,0,20,0,1,16);
std::cout<<"here A goes\n"<<A<<"\n";
cv::optim::solveLP(A,B,z);
std::cout<<"here z goes\n"<<z<<"\n";
etalon_z=(cv::Mat_<double>(1,2)<<20,0);
ASSERT_EQ(cv::countNonZero(z!=etalon_z),0);
}
if(true){
//cormen's example #3
A=(cv::Mat_<double>(1,2)<<5,-3);
B=(cv::Mat_<double>(2,3)<<1,-1,1,2,1,2);
std::cout<<"here A goes\n"<<A<<"\n";
cv::optim::solveLP(A,B,z);
std::cout<<"here z goes\n"<<z<<"\n";
etalon_z=(cv::Mat_<double>(1,2)<<1,0);
ASSERT_EQ(cv::countNonZero(z!=etalon_z),0);
}
if(false){
//cormen's example #4 - unfeasible
A=(cv::Mat_<double>(1,3)<<-1,-1,-1);
B=(cv::Mat_<double>(2,4)<<-2,-7.5,-3,-10000,-20,-5,-10,-30000);
std::cout<<"here A goes\n"<<A<<"\n";
cv::optim::solveLP(A,B,z);
std::cout<<"here z goes\n"<<z<<"\n";
etalon_z=(cv::Mat_<double>(1,2)<<1,0);
ASSERT_EQ(cv::countNonZero(z!=etalon_z),0);
}
}
//TODO
// get optimal solution from initial (0,0,...,0) - DONE
// milestone: pass first test (wo initial solution) - DONE
// learn how to get initial solution
// Blands_rule
// 1_more_test & make_more_clear
// -> **contact_Vadim**: min_l2_norm, init_optional_fsbl_check, error_codes, comment_style-too_many?, copyTo temp headers
// ??how to get smallest l2 norm
// FUTURE: compress&debug-> more_tests(Cormen) -> readNumRecipes-> fast&stable || hill_climbing

View File

@ -0,0 +1,3 @@
#include "test_precomp.hpp"
CV_TEST_MAIN("cv")

View File

@ -0,0 +1 @@
#include "test_precomp.hpp"

View File

@ -0,0 +1,15 @@
#ifdef __GNUC__
# pragma GCC diagnostic ignored "-Wmissing-declarations"
# if defined __clang__ || defined __APPLE__
# pragma GCC diagnostic ignored "-Wmissing-prototypes"
# pragma GCC diagnostic ignored "-Wextra"
# endif
#endif
#ifndef __OPENCV_TEST_PRECOMP_HPP__
#define __OPENCV_TEST_PRECOMP_HPP__
#include "opencv2/ts.hpp"
#include "opencv2/optim.hpp"
#endif