opencv/modules/stitching/matchers.cpp

505 lines
18 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include <algorithm>
#include <functional>
#include "matchers.hpp"
#include "util.hpp"
using namespace std;
using namespace cv;
using namespace cv::gpu;
//////////////////////////////////////////////////////////////////////////////
void FeaturesFinder::operator ()(const Mat &image, ImageFeatures &features)
{
find(image, features);
features.img_size = image.size();
//features.img = image.clone();
}
//////////////////////////////////////////////////////////////////////////////
namespace
{
class CpuSurfFeaturesFinder : public FeaturesFinder
{
public:
CpuSurfFeaturesFinder(double hess_thresh, int num_octaves, int num_layers,
int num_octaves_descr, int num_layers_descr)
{
detector_ = new SurfFeatureDetector(hess_thresh, num_octaves, num_layers);
extractor_ = new SurfDescriptorExtractor(num_octaves_descr, num_layers_descr);
}
protected:
void find(const Mat &image, ImageFeatures &features);
private:
Ptr<FeatureDetector> detector_;
Ptr<DescriptorExtractor> extractor_;
};
class GpuSurfFeaturesFinder : public FeaturesFinder
{
public:
GpuSurfFeaturesFinder(double hess_thresh, int num_octaves, int num_layers,
int num_octaves_descr, int num_layers_descr)
{
surf_.keypointsRatio = 0.1f;
surf_.hessianThreshold = hess_thresh;
surf_.extended = false;
num_octaves_ = num_octaves;
num_layers_ = num_layers;
num_octaves_descr_ = num_octaves_descr;
num_layers_descr_ = num_layers_descr;
}
void releaseMemory();
protected:
void find(const Mat &image, ImageFeatures &features);
private:
GpuMat image_;
GpuMat gray_image_;
SURF_GPU surf_;
GpuMat keypoints_;
GpuMat descriptors_;
int num_octaves_, num_layers_;
int num_octaves_descr_, num_layers_descr_;
};
void CpuSurfFeaturesFinder::find(const Mat &image, ImageFeatures &features)
{
Mat gray_image;
CV_Assert(image.depth() == CV_8U);
cvtColor(image, gray_image, CV_BGR2GRAY);
detector_->detect(gray_image, features.keypoints);
extractor_->compute(gray_image, features.keypoints, features.descriptors);
}
void GpuSurfFeaturesFinder::find(const Mat &image, ImageFeatures &features)
{
CV_Assert(image.depth() == CV_8U);
ensureSizeIsEnough(image.size(), image.type(), image_);
image_.upload(image);
ensureSizeIsEnough(image.size(), CV_8UC1, gray_image_);
cvtColor(image_, gray_image_, CV_BGR2GRAY);
surf_.nOctaves = num_octaves_;
surf_.nOctaveLayers = num_layers_;
surf_(gray_image_, GpuMat(), keypoints_);
surf_.nOctaves = num_octaves_descr_;
surf_.nOctaveLayers = num_layers_descr_;
surf_.upright = true;
surf_(gray_image_, GpuMat(), keypoints_, descriptors_, true);
surf_.downloadKeypoints(keypoints_, features.keypoints);
descriptors_.download(features.descriptors);
}
void GpuSurfFeaturesFinder::releaseMemory()
{
surf_.releaseMemory();
image_.release();
gray_image_.release();
keypoints_.release();
descriptors_.release();
}
} // anonymous namespace
SurfFeaturesFinder::SurfFeaturesFinder(bool try_use_gpu, double hess_thresh, int num_octaves, int num_layers,
int num_octaves_descr, int num_layers_descr)
{
if (try_use_gpu && getCudaEnabledDeviceCount() > 0)
impl_ = new GpuSurfFeaturesFinder(hess_thresh, num_octaves, num_layers, num_octaves_descr, num_layers_descr);
else
impl_ = new CpuSurfFeaturesFinder(hess_thresh, num_octaves, num_layers, num_octaves_descr, num_layers_descr);
}
void SurfFeaturesFinder::find(const Mat &image, ImageFeatures &features)
{
(*impl_)(image, features);
}
void SurfFeaturesFinder::releaseMemory()
{
impl_->releaseMemory();
}
//////////////////////////////////////////////////////////////////////////////
MatchesInfo::MatchesInfo() : src_img_idx(-1), dst_img_idx(-1), num_inliers(0), confidence(0) {}
MatchesInfo::MatchesInfo(const MatchesInfo &other) { *this = other; }
const MatchesInfo& MatchesInfo::operator =(const MatchesInfo &other)
{
src_img_idx = other.src_img_idx;
dst_img_idx = other.dst_img_idx;
matches = other.matches;
inliers_mask = other.inliers_mask;
num_inliers = other.num_inliers;
H = other.H.clone();
confidence = other.confidence;
return *this;
}
//////////////////////////////////////////////////////////////////////////////
struct DistIdxPair
{
bool operator<(const DistIdxPair &other) const { return dist < other.dist; }
double dist;
int idx;
};
struct MatchPairsBody
{
MatchPairsBody(const MatchPairsBody& other)
: matcher(other.matcher), features(other.features),
pairwise_matches(other.pairwise_matches), near_pairs(other.near_pairs) {}
MatchPairsBody(FeaturesMatcher &matcher, const vector<ImageFeatures> &features,
vector<MatchesInfo> &pairwise_matches, vector<pair<int,int> > &near_pairs)
: matcher(matcher), features(features),
pairwise_matches(pairwise_matches), near_pairs(near_pairs) {}
void operator ()(const BlockedRange &r) const
{
const int num_images = static_cast<int>(features.size());
for (int i = r.begin(); i < r.end(); ++i)
{
int from = near_pairs[i].first;
int to = near_pairs[i].second;
int pair_idx = from*num_images + to;
matcher(features[from], features[to], pairwise_matches[pair_idx]);
pairwise_matches[pair_idx].src_img_idx = from;
pairwise_matches[pair_idx].dst_img_idx = to;
size_t dual_pair_idx = to*num_images + from;
pairwise_matches[dual_pair_idx] = pairwise_matches[pair_idx];
pairwise_matches[dual_pair_idx].src_img_idx = to;
pairwise_matches[dual_pair_idx].dst_img_idx = from;
if (!pairwise_matches[pair_idx].H.empty())
pairwise_matches[dual_pair_idx].H = pairwise_matches[pair_idx].H.inv();
for (size_t j = 0; j < pairwise_matches[dual_pair_idx].matches.size(); ++j)
swap(pairwise_matches[dual_pair_idx].matches[j].queryIdx,
pairwise_matches[dual_pair_idx].matches[j].trainIdx);
LOG(".");
}
}
FeaturesMatcher &matcher;
const vector<ImageFeatures> &features;
vector<MatchesInfo> &pairwise_matches;
vector<pair<int,int> > &near_pairs;
private:
void operator =(const MatchPairsBody&);
};
void FeaturesMatcher::operator ()(const vector<ImageFeatures> &features, vector<MatchesInfo> &pairwise_matches)
{
const int num_images = static_cast<int>(features.size());
vector<pair<int,int> > near_pairs;
for (int i = 0; i < num_images - 1; ++i)
for (int j = i + 1; j < num_images; ++j)
near_pairs.push_back(make_pair(i, j));
pairwise_matches.resize(num_images * num_images);
MatchPairsBody body(*this, features, pairwise_matches, near_pairs);
if (is_thread_safe_)
parallel_for(BlockedRange(0, static_cast<int>(near_pairs.size())), body);
else
body(BlockedRange(0, static_cast<int>(near_pairs.size())));
LOGLN("");
}
//////////////////////////////////////////////////////////////////////////////
namespace
{
typedef set<pair<int,int> > MatchesSet;
// These two classes are aimed to find features matches only, not to
// estimate homography
class CpuMatcher : public FeaturesMatcher
{
public:
CpuMatcher(float match_conf) : FeaturesMatcher(true), match_conf_(match_conf) {}
void match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo& matches_info);
private:
float match_conf_;
};
class GpuMatcher : public FeaturesMatcher
{
public:
GpuMatcher(float match_conf) : match_conf_(match_conf) {}
void match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo& matches_info);
void releaseMemory();
private:
float match_conf_;
GpuMat descriptors1_, descriptors2_;
GpuMat train_idx_, distance_, all_dist_;
vector< vector<DMatch> > pair_matches;
};
void CpuMatcher::match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo& matches_info)
{
matches_info.matches.clear();
FlannBasedMatcher matcher;
vector< vector<DMatch> > pair_matches;
MatchesSet matches;
// Find 1->2 matches
matcher.knnMatch(features1.descriptors, features2.descriptors, pair_matches, 2);
for (size_t i = 0; i < pair_matches.size(); ++i)
{
if (pair_matches[i].size() < 2)
continue;
const DMatch& m0 = pair_matches[i][0];
const DMatch& m1 = pair_matches[i][1];
if (m0.distance < (1.f - match_conf_) * m1.distance)
{
matches_info.matches.push_back(m0);
matches.insert(make_pair(m0.queryIdx, m0.trainIdx));
}
}
// Find 2->1 matches
pair_matches.clear();
matcher.knnMatch(features2.descriptors, features1.descriptors, pair_matches, 2);
for (size_t i = 0; i < pair_matches.size(); ++i)
{
if (pair_matches[i].size() < 2)
continue;
const DMatch& m0 = pair_matches[i][0];
const DMatch& m1 = pair_matches[i][1];
if (m0.distance < (1.f - match_conf_) * m1.distance)
if (matches.find(make_pair(m0.trainIdx, m0.queryIdx)) == matches.end())
matches_info.matches.push_back(DMatch(m0.trainIdx, m0.queryIdx, m0.distance));
}
}
void GpuMatcher::match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo& matches_info)
{
matches_info.matches.clear();
ensureSizeIsEnough(features1.descriptors.size(), features1.descriptors.type(), descriptors1_);
ensureSizeIsEnough(features2.descriptors.size(), features2.descriptors.type(), descriptors2_);
descriptors1_.upload(features1.descriptors);
descriptors2_.upload(features2.descriptors);
BruteForceMatcher_GPU< L2<float> > matcher;
MatchesSet matches;
// Find 1->2 matches
pair_matches.clear();
matcher.knnMatch(descriptors1_, descriptors2_, train_idx_, distance_, all_dist_, 2);
matcher.knnMatchDownload(train_idx_, distance_, pair_matches);
for (size_t i = 0; i < pair_matches.size(); ++i)
{
if (pair_matches[i].size() < 2)
continue;
const DMatch& m0 = pair_matches[i][0];
const DMatch& m1 = pair_matches[i][1];
if (m0.distance < (1.f - match_conf_) * m1.distance)
{
matches_info.matches.push_back(m0);
matches.insert(make_pair(m0.queryIdx, m0.trainIdx));
}
}
// Find 2->1 matches
pair_matches.clear();
matcher.knnMatch(descriptors2_, descriptors1_, train_idx_, distance_, all_dist_, 2);
matcher.knnMatchDownload(train_idx_, distance_, pair_matches);
for (size_t i = 0; i < pair_matches.size(); ++i)
{
if (pair_matches[i].size() < 2)
continue;
const DMatch& m0 = pair_matches[i][0];
const DMatch& m1 = pair_matches[i][1];
if (m0.distance < (1.f - match_conf_) * m1.distance)
if (matches.find(make_pair(m0.trainIdx, m0.queryIdx)) == matches.end())
matches_info.matches.push_back(DMatch(m0.trainIdx, m0.queryIdx, m0.distance));
}
}
void GpuMatcher::releaseMemory()
{
descriptors1_.release();
descriptors2_.release();
train_idx_.release();
distance_.release();
all_dist_.release();
vector< vector<DMatch> >().swap(pair_matches);
}
} // anonymous namespace
BestOf2NearestMatcher::BestOf2NearestMatcher(bool try_use_gpu, float match_conf, int num_matches_thresh1, int num_matches_thresh2)
{
if (try_use_gpu && getCudaEnabledDeviceCount() > 0)
impl_ = new GpuMatcher(match_conf);
else
impl_ = new CpuMatcher(match_conf);
is_thread_safe_ = impl_->isThreadSafe();
num_matches_thresh1_ = num_matches_thresh1;
num_matches_thresh2_ = num_matches_thresh2;
}
void BestOf2NearestMatcher::match(const ImageFeatures &features1, const ImageFeatures &features2,
MatchesInfo &matches_info)
{
(*impl_)(features1, features2, matches_info);
//Mat out;
//drawMatches(features1.img, features1.keypoints, features2.img, features2.keypoints, matches_info.matches, out);
//stringstream ss;
//ss << features1.img_idx << features2.img_idx << ".png";
//imwrite(ss.str(), out);
// Check if it makes sense to find homography
if (matches_info.matches.size() < static_cast<size_t>(num_matches_thresh1_))
return;
// Construct point-point correspondences for homography estimation
2011-08-08 15:03:18 +02:00
Mat src_points(1, static_cast<int>(matches_info.matches.size()), CV_32FC2);
Mat dst_points(1, static_cast<int>(matches_info.matches.size()), CV_32FC2);
for (size_t i = 0; i < matches_info.matches.size(); ++i)
{
const DMatch& m = matches_info.matches[i];
Point2f p = features1.keypoints[m.queryIdx].pt;
p.x -= features1.img_size.width * 0.5f;
p.y -= features1.img_size.height * 0.5f;
2011-08-08 15:03:18 +02:00
src_points.at<Point2f>(0, static_cast<int>(i)) = p;
p = features2.keypoints[m.trainIdx].pt;
p.x -= features2.img_size.width * 0.5f;
p.y -= features2.img_size.height * 0.5f;
2011-08-08 15:03:18 +02:00
dst_points.at<Point2f>(0, static_cast<int>(i)) = p;
}
// Find pair-wise motion
matches_info.H = findHomography(src_points, dst_points, matches_info.inliers_mask, CV_RANSAC);
// Find number of inliers
matches_info.num_inliers = 0;
for (size_t i = 0; i < matches_info.inliers_mask.size(); ++i)
if (matches_info.inliers_mask[i])
matches_info.num_inliers++;
matches_info.confidence = matches_info.num_inliers / (8 + 0.3*matches_info.matches.size());
// Check if we should try to refine motion
if (matches_info.num_inliers < num_matches_thresh2_)
return;
// Construct point-point correspondences for inliers only
src_points.create(1, matches_info.num_inliers, CV_32FC2);
dst_points.create(1, matches_info.num_inliers, CV_32FC2);
int inlier_idx = 0;
for (size_t i = 0; i < matches_info.matches.size(); ++i)
{
if (!matches_info.inliers_mask[i])
continue;
const DMatch& m = matches_info.matches[i];
Point2f p = features1.keypoints[m.queryIdx].pt;
p.x -= features1.img_size.width * 0.5f;
p.y -= features1.img_size.height * 0.5f;
src_points.at<Point2f>(0, inlier_idx) = p;
p = features2.keypoints[m.trainIdx].pt;
p.x -= features2.img_size.width * 0.5f;
p.y -= features2.img_size.height * 0.5f;
dst_points.at<Point2f>(0, inlier_idx) = p;
inlier_idx++;
}
// Rerun motion estimation on inliers only
matches_info.H = findHomography(src_points, dst_points, CV_RANSAC);
}
void BestOf2NearestMatcher::releaseMemory()
{
impl_->releaseMemory();
}