2012-10-17 03:18:30 +04:00
|
|
|
/* This sample demonstrates the way you can perform independed tasks
|
|
|
|
on the different GPUs */
|
|
|
|
|
|
|
|
// Disable some warnings which are caused with CUDA headers
|
|
|
|
#if defined(_MSC_VER)
|
|
|
|
#pragma warning(disable: 4201 4408 4100)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include <iostream>
|
|
|
|
#include "opencv2/core/core.hpp"
|
|
|
|
#include "opencv2/gpu/gpu.hpp"
|
|
|
|
|
2014-12-30 16:22:56 +03:00
|
|
|
using namespace std;
|
|
|
|
using namespace cv;
|
|
|
|
using namespace cv::gpu;
|
2012-10-17 03:18:30 +04:00
|
|
|
|
2014-12-30 16:22:56 +03:00
|
|
|
struct Worker: public ParallelLoopBody
|
2012-10-17 03:18:30 +04:00
|
|
|
{
|
2014-12-30 16:22:56 +03:00
|
|
|
virtual void operator() (const Range& range) const
|
|
|
|
{
|
|
|
|
for (int device_id = range.start; device_id != range.end; ++device_id)
|
|
|
|
{
|
|
|
|
setDevice(device_id);
|
2012-10-17 03:18:30 +04:00
|
|
|
|
2014-12-30 16:22:56 +03:00
|
|
|
Mat src(1000, 1000, CV_32F);
|
|
|
|
Mat dst;
|
2012-10-17 03:18:30 +04:00
|
|
|
|
2014-12-30 16:22:56 +03:00
|
|
|
RNG rng(0);
|
|
|
|
rng.fill(src, RNG::UNIFORM, 0, 1);
|
2012-10-17 03:18:30 +04:00
|
|
|
|
2014-12-30 16:22:56 +03:00
|
|
|
// CPU works
|
|
|
|
transpose(src, dst);
|
2012-10-17 03:18:30 +04:00
|
|
|
|
2014-12-30 16:22:56 +03:00
|
|
|
// GPU works
|
|
|
|
GpuMat d_src(src);
|
|
|
|
GpuMat d_dst;
|
|
|
|
transpose(d_src, d_dst);
|
2012-10-17 03:18:30 +04:00
|
|
|
|
2014-12-30 16:22:56 +03:00
|
|
|
// Check results
|
|
|
|
bool passed = norm(dst - Mat(d_dst), NORM_INF) < 1e-3;
|
|
|
|
std::cout << "GPU #" << device_id << " (" << DeviceInfo().name() << "): "
|
|
|
|
<< (passed ? "passed" : "FAILED") << endl;
|
2012-10-17 03:18:30 +04:00
|
|
|
|
2014-12-30 16:22:56 +03:00
|
|
|
// Deallocate data here, otherwise deallocation will be performed
|
|
|
|
// after context is extracted from the stack
|
|
|
|
d_src.release();
|
|
|
|
d_dst.release();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
2012-10-17 03:18:30 +04:00
|
|
|
|
|
|
|
int main()
|
|
|
|
{
|
|
|
|
int num_devices = getCudaEnabledDeviceCount();
|
|
|
|
if (num_devices < 2)
|
|
|
|
{
|
|
|
|
std::cout << "Two or more GPUs are required\n";
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
for (int i = 0; i < num_devices; ++i)
|
|
|
|
{
|
|
|
|
cv::gpu::printShortCudaDeviceInfo(i);
|
|
|
|
|
|
|
|
DeviceInfo dev_info(i);
|
|
|
|
if (!dev_info.isCompatible())
|
|
|
|
{
|
|
|
|
std::cout << "GPU module isn't built for GPU #" << i << " ("
|
|
|
|
<< dev_info.name() << ", CC " << dev_info.majorVersion()
|
|
|
|
<< dev_info.minorVersion() << "\n";
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-12-30 16:22:56 +03:00
|
|
|
// Execute calculation in several threads, 1 GPU per thread
|
|
|
|
parallel_for_(cv::Range(0, num_devices, Worker());
|
2012-10-17 03:18:30 +04:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|