opencv/samples/gpu/multi.cpp

79 lines
2.0 KiB
C++
Raw Normal View History

2012-10-17 03:18:30 +04:00
/* This sample demonstrates the way you can perform independed tasks
on the different GPUs */
// Disable some warnings which are caused with CUDA headers
#if defined(_MSC_VER)
#pragma warning(disable: 4201 4408 4100)
#endif
#include <iostream>
#include "opencv2/core/core.hpp"
#include "opencv2/gpu/gpu.hpp"
using namespace std;
using namespace cv;
using namespace cv::gpu;
2012-10-17 03:18:30 +04:00
struct Worker: public ParallelLoopBody
2012-10-17 03:18:30 +04:00
{
virtual void operator() (const Range& range) const
{
for (int device_id = range.start; device_id != range.end; ++device_id)
{
setDevice(device_id);
2012-10-17 03:18:30 +04:00
Mat src(1000, 1000, CV_32F);
Mat dst;
2012-10-17 03:18:30 +04:00
RNG rng(0);
rng.fill(src, RNG::UNIFORM, 0, 1);
2012-10-17 03:18:30 +04:00
// CPU works
transpose(src, dst);
2012-10-17 03:18:30 +04:00
// GPU works
GpuMat d_src(src);
GpuMat d_dst;
transpose(d_src, d_dst);
2012-10-17 03:18:30 +04:00
// Check results
bool passed = norm(dst - Mat(d_dst), NORM_INF) < 1e-3;
std::cout << "GPU #" << device_id << " (" << DeviceInfo().name() << "): "
<< (passed ? "passed" : "FAILED") << endl;
2012-10-17 03:18:30 +04:00
// Deallocate data here, otherwise deallocation will be performed
// after context is extracted from the stack
d_src.release();
d_dst.release();
}
}
};
2012-10-17 03:18:30 +04:00
int main()
{
int num_devices = getCudaEnabledDeviceCount();
if (num_devices < 2)
{
std::cout << "Two or more GPUs are required\n";
return -1;
}
for (int i = 0; i < num_devices; ++i)
{
cv::gpu::printShortCudaDeviceInfo(i);
DeviceInfo dev_info(i);
if (!dev_info.isCompatible())
{
std::cout << "GPU module isn't built for GPU #" << i << " ("
<< dev_info.name() << ", CC " << dev_info.majorVersion()
<< dev_info.minorVersion() << "\n";
return -1;
}
}
// Execute calculation in several threads, 1 GPU per thread
parallel_for_(cv::Range(0, num_devices, Worker());
2012-10-17 03:18:30 +04:00
return 0;
}