2015-01-14 10:55:44 +01:00
|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#ifndef __OPENCV_CUDAOBJDETECT_HPP__
|
|
|
|
#define __OPENCV_CUDAOBJDETECT_HPP__
|
|
|
|
|
|
|
|
#ifndef __cplusplus
|
|
|
|
# error cudaobjdetect.hpp header must be compiled as C++
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include "opencv2/core/cuda.hpp"
|
|
|
|
|
|
|
|
/**
|
|
|
|
@addtogroup cuda
|
|
|
|
@{
|
2015-01-15 08:34:43 +01:00
|
|
|
@defgroup cudaobjdetect Object Detection
|
2015-01-14 10:55:44 +01:00
|
|
|
@}
|
|
|
|
*/
|
|
|
|
|
|
|
|
namespace cv { namespace cuda {
|
|
|
|
|
2015-01-15 08:34:43 +01:00
|
|
|
//! @addtogroup cudaobjdetect
|
2015-01-14 10:55:44 +01:00
|
|
|
//! @{
|
|
|
|
|
|
|
|
//
|
|
|
|
// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector
|
|
|
|
//
|
|
|
|
|
|
|
|
/** @brief The class implements Histogram of Oriented Gradients (@cite Dalal2005) object detector.
|
|
|
|
|
|
|
|
@note
|
2015-01-14 16:18:51 +01:00
|
|
|
- An example applying the HOG descriptor for people detection can be found at
|
2015-01-14 10:55:44 +01:00
|
|
|
opencv_source_code/samples/cpp/peopledetect.cpp
|
|
|
|
- A CUDA example applying the HOG descriptor for people detection can be found at
|
|
|
|
opencv_source_code/samples/gpu/hog.cpp
|
|
|
|
- (Python) An example applying the HOG descriptor for people detection can be found at
|
|
|
|
opencv_source_code/samples/python2/peopledetect.py
|
|
|
|
*/
|
2015-01-14 17:48:58 +01:00
|
|
|
class CV_EXPORTS HOG : public Algorithm
|
2015-01-14 10:55:44 +01:00
|
|
|
{
|
2015-01-14 16:18:51 +01:00
|
|
|
public:
|
|
|
|
enum
|
|
|
|
{
|
|
|
|
DESCR_FORMAT_ROW_BY_ROW,
|
|
|
|
DESCR_FORMAT_COL_BY_COL
|
|
|
|
};
|
2015-01-14 10:55:44 +01:00
|
|
|
|
|
|
|
/** @brief Creates the HOG descriptor and detector.
|
|
|
|
|
|
|
|
@param win_size Detection window size. Align to block size and block stride.
|
|
|
|
@param block_size Block size in pixels. Align to cell size. Only (16,16) is supported for now.
|
|
|
|
@param block_stride Block stride. It must be a multiple of cell size.
|
|
|
|
@param cell_size Cell size. Only (8, 8) is supported for now.
|
|
|
|
@param nbins Number of bins. Only 9 bins per cell are supported for now.
|
|
|
|
*/
|
2015-01-14 16:18:51 +01:00
|
|
|
static Ptr<HOG> create(Size win_size = Size(64, 128),
|
|
|
|
Size block_size = Size(16, 16),
|
|
|
|
Size block_stride = Size(8, 8),
|
|
|
|
Size cell_size = Size(8, 8),
|
|
|
|
int nbins = 9);
|
|
|
|
|
|
|
|
//! Gaussian smoothing window parameter.
|
|
|
|
virtual void setWinSigma(double win_sigma) = 0;
|
|
|
|
virtual double getWinSigma() const = 0;
|
|
|
|
|
|
|
|
//! L2-Hys normalization method shrinkage.
|
|
|
|
virtual void setL2HysThreshold(double threshold_L2hys) = 0;
|
|
|
|
virtual double getL2HysThreshold() const = 0;
|
|
|
|
|
|
|
|
//! Flag to specify whether the gamma correction preprocessing is required or not.
|
|
|
|
virtual void setGammaCorrection(bool gamma_correction) = 0;
|
|
|
|
virtual bool getGammaCorrection() const = 0;
|
|
|
|
|
|
|
|
//! Maximum number of detection window increases.
|
|
|
|
virtual void setNumLevels(int nlevels) = 0;
|
|
|
|
virtual int getNumLevels() const = 0;
|
|
|
|
|
|
|
|
//! Threshold for the distance between features and SVM classifying plane.
|
|
|
|
//! Usually it is 0 and should be specfied in the detector coefficients (as the last free
|
|
|
|
//! coefficient). But if the free coefficient is omitted (which is allowed), you can specify it
|
|
|
|
//! manually here.
|
|
|
|
virtual void setHitThreshold(double hit_threshold) = 0;
|
|
|
|
virtual double getHitThreshold() const = 0;
|
|
|
|
|
|
|
|
//! Window stride. It must be a multiple of block stride.
|
|
|
|
virtual void setWinStride(Size win_stride) = 0;
|
|
|
|
virtual Size getWinStride() const = 0;
|
|
|
|
|
|
|
|
//! Coefficient of the detection window increase.
|
|
|
|
virtual void setScaleFactor(double scale0) = 0;
|
|
|
|
virtual double getScaleFactor() const = 0;
|
|
|
|
|
|
|
|
//! Coefficient to regulate the similarity threshold. When detected, some
|
|
|
|
//! objects can be covered by many rectangles. 0 means not to perform grouping.
|
|
|
|
//! See groupRectangles.
|
|
|
|
virtual void setGroupThreshold(int group_threshold) = 0;
|
|
|
|
virtual int getGroupThreshold() const = 0;
|
|
|
|
|
|
|
|
//! Descriptor storage format:
|
|
|
|
//! - **DESCR_FORMAT_ROW_BY_ROW** - Row-major order.
|
|
|
|
//! - **DESCR_FORMAT_COL_BY_COL** - Column-major order.
|
|
|
|
virtual void setDescriptorFormat(int descr_format) = 0;
|
|
|
|
virtual int getDescriptorFormat() const = 0;
|
2015-01-14 10:55:44 +01:00
|
|
|
|
|
|
|
/** @brief Returns the number of coefficients required for the classification.
|
|
|
|
*/
|
2015-01-14 16:18:51 +01:00
|
|
|
virtual size_t getDescriptorSize() const = 0;
|
|
|
|
|
2015-01-14 10:55:44 +01:00
|
|
|
/** @brief Returns the block histogram size.
|
2015-01-14 16:18:51 +01:00
|
|
|
*/
|
|
|
|
virtual size_t getBlockHistogramSize() const = 0;
|
2015-01-14 10:55:44 +01:00
|
|
|
|
|
|
|
/** @brief Sets coefficients for the linear SVM classifier.
|
2015-01-14 16:18:51 +01:00
|
|
|
*/
|
|
|
|
virtual void setSVMDetector(InputArray detector) = 0;
|
|
|
|
|
|
|
|
/** @brief Returns coefficients of the classifier trained for people detection.
|
|
|
|
*/
|
|
|
|
virtual Mat getDefaultPeopleDetector() const = 0;
|
2015-01-14 10:55:44 +01:00
|
|
|
|
|
|
|
/** @brief Performs object detection without a multi-scale window.
|
|
|
|
|
|
|
|
@param img Source image. CV_8UC1 and CV_8UC4 types are supported for now.
|
|
|
|
@param found_locations Left-top corner points of detected objects boundaries.
|
2015-01-14 16:18:51 +01:00
|
|
|
@param confidences Optional output array for confidences.
|
2015-01-14 10:55:44 +01:00
|
|
|
*/
|
2015-01-14 16:18:51 +01:00
|
|
|
virtual void detect(InputArray img,
|
|
|
|
std::vector<Point>& found_locations,
|
|
|
|
std::vector<double>* confidences = NULL) = 0;
|
2015-01-14 10:55:44 +01:00
|
|
|
|
|
|
|
/** @brief Performs object detection with a multi-scale window.
|
|
|
|
|
|
|
|
@param img Source image. See cuda::HOGDescriptor::detect for type limitations.
|
|
|
|
@param found_locations Detected objects boundaries.
|
2015-01-14 16:18:51 +01:00
|
|
|
@param confidences Optional output array for confidences.
|
2015-01-14 10:55:44 +01:00
|
|
|
*/
|
2015-01-14 16:18:51 +01:00
|
|
|
virtual void detectMultiScale(InputArray img,
|
|
|
|
std::vector<Rect>& found_locations,
|
|
|
|
std::vector<double>* confidences = NULL) = 0;
|
2015-01-14 10:55:44 +01:00
|
|
|
|
|
|
|
/** @brief Returns block descriptors computed for the whole image.
|
|
|
|
|
|
|
|
@param img Source image. See cuda::HOGDescriptor::detect for type limitations.
|
|
|
|
@param descriptors 2D array of descriptors.
|
2015-01-14 16:18:51 +01:00
|
|
|
@param stream CUDA stream.
|
2015-01-14 10:55:44 +01:00
|
|
|
*/
|
2015-01-14 16:18:51 +01:00
|
|
|
virtual void compute(InputArray img,
|
|
|
|
OutputArray descriptors,
|
|
|
|
Stream& stream = Stream::Null()) = 0;
|
2015-01-14 10:55:44 +01:00
|
|
|
};
|
|
|
|
|
|
|
|
//
|
|
|
|
// CascadeClassifier
|
|
|
|
//
|
|
|
|
|
|
|
|
/** @brief Cascade classifier class used for object detection. Supports HAAR and LBP cascades. :
|
|
|
|
|
|
|
|
@note
|
|
|
|
- A cascade classifier example can be found at
|
|
|
|
opencv_source_code/samples/gpu/cascadeclassifier.cpp
|
|
|
|
- A Nvidea API specific cascade classifier example can be found at
|
|
|
|
opencv_source_code/samples/gpu/cascadeclassifier_nvidia_api.cpp
|
|
|
|
*/
|
2015-01-14 17:48:58 +01:00
|
|
|
class CV_EXPORTS CascadeClassifier : public Algorithm
|
2015-01-14 10:55:44 +01:00
|
|
|
{
|
|
|
|
public:
|
|
|
|
/** @brief Loads the classifier from a file. Cascade type is detected automatically by constructor parameter.
|
|
|
|
|
|
|
|
@param filename Name of the file from which the classifier is loaded. Only the old haar classifier
|
|
|
|
(trained by the haar training application) and NVIDIA's nvbin are supported for HAAR and only new
|
2015-02-27 14:20:27 +01:00
|
|
|
type of OpenCV XML cascade supported for LBP. The working haar models can be found at opencv_folder/data/haarcascades_cuda/
|
2015-01-14 10:55:44 +01:00
|
|
|
*/
|
2015-01-14 17:48:58 +01:00
|
|
|
static Ptr<CascadeClassifier> create(const String& filename);
|
|
|
|
/** @overload
|
|
|
|
*/
|
|
|
|
static Ptr<CascadeClassifier> create(const FileStorage& file);
|
2015-01-14 10:55:44 +01:00
|
|
|
|
2015-01-14 17:48:58 +01:00
|
|
|
//! Maximum possible object size. Objects larger than that are ignored. Used for
|
|
|
|
//! second signature and supported only for LBP cascades.
|
|
|
|
virtual void setMaxObjectSize(Size maxObjectSize) = 0;
|
|
|
|
virtual Size getMaxObjectSize() const = 0;
|
2015-01-14 10:55:44 +01:00
|
|
|
|
2015-01-14 17:48:58 +01:00
|
|
|
//! Minimum possible object size. Objects smaller than that are ignored.
|
|
|
|
virtual void setMinObjectSize(Size minSize) = 0;
|
|
|
|
virtual Size getMinObjectSize() const = 0;
|
|
|
|
|
|
|
|
//! Parameter specifying how much the image size is reduced at each image scale.
|
|
|
|
virtual void setScaleFactor(double scaleFactor) = 0;
|
|
|
|
virtual double getScaleFactor() const = 0;
|
|
|
|
|
|
|
|
//! Parameter specifying how many neighbors each candidate rectangle should have
|
|
|
|
//! to retain it.
|
|
|
|
virtual void setMinNeighbors(int minNeighbors) = 0;
|
|
|
|
virtual int getMinNeighbors() const = 0;
|
|
|
|
|
|
|
|
virtual void setFindLargestObject(bool findLargestObject) = 0;
|
|
|
|
virtual bool getFindLargestObject() = 0;
|
|
|
|
|
|
|
|
virtual void setMaxNumObjects(int maxNumObjects) = 0;
|
|
|
|
virtual int getMaxNumObjects() const = 0;
|
|
|
|
|
|
|
|
virtual Size getClassifierSize() const = 0;
|
2015-01-14 10:55:44 +01:00
|
|
|
|
|
|
|
/** @brief Detects objects of different sizes in the input image.
|
|
|
|
|
|
|
|
@param image Matrix of type CV_8U containing an image where objects should be detected.
|
2015-01-14 17:48:58 +01:00
|
|
|
@param objects Buffer to store detected objects (rectangles).
|
2015-01-15 08:34:43 +01:00
|
|
|
@param stream CUDA stream.
|
2015-01-14 17:48:58 +01:00
|
|
|
|
|
|
|
To get final array of detected objects use CascadeClassifier::convert method.
|
|
|
|
|
2015-01-14 10:55:44 +01:00
|
|
|
@code
|
2015-01-14 17:48:58 +01:00
|
|
|
Ptr<cuda::CascadeClassifier> cascade_gpu = cuda::CascadeClassifier::create(...);
|
2015-01-14 10:55:44 +01:00
|
|
|
|
|
|
|
Mat image_cpu = imread(...)
|
|
|
|
GpuMat image_gpu(image_cpu);
|
|
|
|
|
|
|
|
GpuMat objbuf;
|
2015-01-14 17:48:58 +01:00
|
|
|
cascade_gpu->detectMultiScale(image_gpu, objbuf);
|
2015-01-14 10:55:44 +01:00
|
|
|
|
2015-01-14 17:48:58 +01:00
|
|
|
std::vector<Rect> faces;
|
|
|
|
cascade_gpu->convert(objbuf, faces);
|
2015-01-14 10:55:44 +01:00
|
|
|
|
|
|
|
for(int i = 0; i < detections_num; ++i)
|
|
|
|
cv::rectangle(image_cpu, faces[i], Scalar(255));
|
|
|
|
|
|
|
|
imshow("Faces", image_cpu);
|
|
|
|
@endcode
|
2015-01-14 17:48:58 +01:00
|
|
|
|
2015-01-14 10:55:44 +01:00
|
|
|
@sa CascadeClassifier::detectMultiScale
|
|
|
|
*/
|
2015-01-14 17:48:58 +01:00
|
|
|
virtual void detectMultiScale(InputArray image,
|
|
|
|
OutputArray objects,
|
|
|
|
Stream& stream = Stream::Null()) = 0;
|
2015-01-14 10:55:44 +01:00
|
|
|
|
2015-01-14 17:48:58 +01:00
|
|
|
/** @brief Converts objects array from internal representation to standard vector.
|
2015-01-14 10:55:44 +01:00
|
|
|
|
2015-01-14 17:48:58 +01:00
|
|
|
@param gpu_objects Objects array in internal representation.
|
|
|
|
@param objects Resulting array.
|
|
|
|
*/
|
|
|
|
virtual void convert(OutputArray gpu_objects,
|
|
|
|
std::vector<Rect>& objects) = 0;
|
2015-01-14 10:55:44 +01:00
|
|
|
};
|
|
|
|
|
|
|
|
//! @}
|
|
|
|
|
|
|
|
}} // namespace cv { namespace cuda {
|
|
|
|
|
|
|
|
#endif /* __OPENCV_CUDAOBJDETECT_HPP__ */
|