330 lines
14 KiB
C++
330 lines
14 KiB
C++
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
#ifndef __OPENCV_CUDAOBJDETECT_HPP__
|
||
|
#define __OPENCV_CUDAOBJDETECT_HPP__
|
||
|
|
||
|
#ifndef __cplusplus
|
||
|
# error cudaobjdetect.hpp header must be compiled as C++
|
||
|
#endif
|
||
|
|
||
|
#include "opencv2/core/cuda.hpp"
|
||
|
|
||
|
/**
|
||
|
@addtogroup cuda
|
||
|
@{
|
||
|
@defgroup cuda_objdetect Object Detection
|
||
|
@}
|
||
|
*/
|
||
|
|
||
|
namespace cv { namespace cuda {
|
||
|
|
||
|
//! @addtogroup cuda_objdetect
|
||
|
//! @{
|
||
|
|
||
|
//
|
||
|
// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector
|
||
|
//
|
||
|
|
||
|
struct CV_EXPORTS HOGConfidence
|
||
|
{
|
||
|
double scale;
|
||
|
std::vector<Point> locations;
|
||
|
std::vector<double> confidences;
|
||
|
std::vector<double> part_scores[4];
|
||
|
};
|
||
|
|
||
|
/** @brief The class implements Histogram of Oriented Gradients (@cite Dalal2005) object detector.
|
||
|
|
||
|
Interfaces of all methods are kept similar to the CPU HOG descriptor and detector analogues as much
|
||
|
as possible.
|
||
|
|
||
|
@note
|
||
|
- An example applying the HOG descriptor for people detection can be found at
|
||
|
opencv_source_code/samples/cpp/peopledetect.cpp
|
||
|
- A CUDA example applying the HOG descriptor for people detection can be found at
|
||
|
opencv_source_code/samples/gpu/hog.cpp
|
||
|
- (Python) An example applying the HOG descriptor for people detection can be found at
|
||
|
opencv_source_code/samples/python2/peopledetect.py
|
||
|
*/
|
||
|
struct CV_EXPORTS HOGDescriptor
|
||
|
{
|
||
|
enum { DEFAULT_WIN_SIGMA = -1 };
|
||
|
enum { DEFAULT_NLEVELS = 64 };
|
||
|
enum { DESCR_FORMAT_ROW_BY_ROW, DESCR_FORMAT_COL_BY_COL };
|
||
|
|
||
|
/** @brief Creates the HOG descriptor and detector.
|
||
|
|
||
|
@param win_size Detection window size. Align to block size and block stride.
|
||
|
@param block_size Block size in pixels. Align to cell size. Only (16,16) is supported for now.
|
||
|
@param block_stride Block stride. It must be a multiple of cell size.
|
||
|
@param cell_size Cell size. Only (8, 8) is supported for now.
|
||
|
@param nbins Number of bins. Only 9 bins per cell are supported for now.
|
||
|
@param win_sigma Gaussian smoothing window parameter.
|
||
|
@param threshold_L2hys L2-Hys normalization method shrinkage.
|
||
|
@param gamma_correction Flag to specify whether the gamma correction preprocessing is required or
|
||
|
not.
|
||
|
@param nlevels Maximum number of detection window increases.
|
||
|
*/
|
||
|
HOGDescriptor(Size win_size=Size(64, 128), Size block_size=Size(16, 16),
|
||
|
Size block_stride=Size(8, 8), Size cell_size=Size(8, 8),
|
||
|
int nbins=9, double win_sigma=DEFAULT_WIN_SIGMA,
|
||
|
double threshold_L2hys=0.2, bool gamma_correction=true,
|
||
|
int nlevels=DEFAULT_NLEVELS);
|
||
|
|
||
|
/** @brief Returns the number of coefficients required for the classification.
|
||
|
*/
|
||
|
size_t getDescriptorSize() const;
|
||
|
/** @brief Returns the block histogram size.
|
||
|
*/
|
||
|
size_t getBlockHistogramSize() const;
|
||
|
|
||
|
/** @brief Sets coefficients for the linear SVM classifier.
|
||
|
*/
|
||
|
void setSVMDetector(const std::vector<float>& detector);
|
||
|
|
||
|
/** @brief Returns coefficients of the classifier trained for people detection (for default window size).
|
||
|
*/
|
||
|
static std::vector<float> getDefaultPeopleDetector();
|
||
|
/** @brief Returns coefficients of the classifier trained for people detection (for 48x96 windows).
|
||
|
*/
|
||
|
static std::vector<float> getPeopleDetector48x96();
|
||
|
/** @brief Returns coefficients of the classifier trained for people detection (for 64x128 windows).
|
||
|
*/
|
||
|
static std::vector<float> getPeopleDetector64x128();
|
||
|
|
||
|
/** @brief Performs object detection without a multi-scale window.
|
||
|
|
||
|
@param img Source image. CV_8UC1 and CV_8UC4 types are supported for now.
|
||
|
@param found_locations Left-top corner points of detected objects boundaries.
|
||
|
@param hit_threshold Threshold for the distance between features and SVM classifying plane.
|
||
|
Usually it is 0 and should be specfied in the detector coefficients (as the last free
|
||
|
coefficient). But if the free coefficient is omitted (which is allowed), you can specify it
|
||
|
manually here.
|
||
|
@param win_stride Window stride. It must be a multiple of block stride.
|
||
|
@param padding Mock parameter to keep the CPU interface compatibility. It must be (0,0).
|
||
|
*/
|
||
|
void detect(const GpuMat& img, std::vector<Point>& found_locations,
|
||
|
double hit_threshold=0, Size win_stride=Size(),
|
||
|
Size padding=Size());
|
||
|
|
||
|
/** @brief Performs object detection with a multi-scale window.
|
||
|
|
||
|
@param img Source image. See cuda::HOGDescriptor::detect for type limitations.
|
||
|
@param found_locations Detected objects boundaries.
|
||
|
@param hit_threshold Threshold for the distance between features and SVM classifying plane. See
|
||
|
cuda::HOGDescriptor::detect for details.
|
||
|
@param win_stride Window stride. It must be a multiple of block stride.
|
||
|
@param padding Mock parameter to keep the CPU interface compatibility. It must be (0,0).
|
||
|
@param scale0 Coefficient of the detection window increase.
|
||
|
@param group_threshold Coefficient to regulate the similarity threshold. When detected, some
|
||
|
objects can be covered by many rectangles. 0 means not to perform grouping. See groupRectangles .
|
||
|
*/
|
||
|
void detectMultiScale(const GpuMat& img, std::vector<Rect>& found_locations,
|
||
|
double hit_threshold=0, Size win_stride=Size(),
|
||
|
Size padding=Size(), double scale0=1.05,
|
||
|
int group_threshold=2);
|
||
|
|
||
|
void computeConfidence(const GpuMat& img, std::vector<Point>& hits, double hit_threshold,
|
||
|
Size win_stride, Size padding, std::vector<Point>& locations, std::vector<double>& confidences);
|
||
|
|
||
|
void computeConfidenceMultiScale(const GpuMat& img, std::vector<Rect>& found_locations,
|
||
|
double hit_threshold, Size win_stride, Size padding,
|
||
|
std::vector<HOGConfidence> &conf_out, int group_threshold);
|
||
|
|
||
|
/** @brief Returns block descriptors computed for the whole image.
|
||
|
|
||
|
@param img Source image. See cuda::HOGDescriptor::detect for type limitations.
|
||
|
@param win_stride Window stride. It must be a multiple of block stride.
|
||
|
@param descriptors 2D array of descriptors.
|
||
|
@param descr_format Descriptor storage format:
|
||
|
- **DESCR_FORMAT_ROW_BY_ROW** - Row-major order.
|
||
|
- **DESCR_FORMAT_COL_BY_COL** - Column-major order.
|
||
|
|
||
|
The function is mainly used to learn the classifier.
|
||
|
*/
|
||
|
void getDescriptors(const GpuMat& img, Size win_stride,
|
||
|
GpuMat& descriptors,
|
||
|
int descr_format=DESCR_FORMAT_COL_BY_COL);
|
||
|
|
||
|
Size win_size;
|
||
|
Size block_size;
|
||
|
Size block_stride;
|
||
|
Size cell_size;
|
||
|
int nbins;
|
||
|
double win_sigma;
|
||
|
double threshold_L2hys;
|
||
|
bool gamma_correction;
|
||
|
int nlevels;
|
||
|
|
||
|
protected:
|
||
|
void computeBlockHistograms(const GpuMat& img);
|
||
|
void computeGradient(const GpuMat& img, GpuMat& grad, GpuMat& qangle);
|
||
|
|
||
|
double getWinSigma() const;
|
||
|
bool checkDetectorSize() const;
|
||
|
|
||
|
static int numPartsWithin(int size, int part_size, int stride);
|
||
|
static Size numPartsWithin(Size size, Size part_size, Size stride);
|
||
|
|
||
|
// Coefficients of the separating plane
|
||
|
float free_coef;
|
||
|
GpuMat detector;
|
||
|
|
||
|
// Results of the last classification step
|
||
|
GpuMat labels, labels_buf;
|
||
|
Mat labels_host;
|
||
|
|
||
|
// Results of the last histogram evaluation step
|
||
|
GpuMat block_hists, block_hists_buf;
|
||
|
|
||
|
// Gradients conputation results
|
||
|
GpuMat grad, qangle, grad_buf, qangle_buf;
|
||
|
|
||
|
// returns subbuffer with required size, reallocates buffer if nessesary.
|
||
|
static GpuMat getBuffer(const Size& sz, int type, GpuMat& buf);
|
||
|
static GpuMat getBuffer(int rows, int cols, int type, GpuMat& buf);
|
||
|
|
||
|
std::vector<GpuMat> image_scales;
|
||
|
};
|
||
|
|
||
|
//
|
||
|
// CascadeClassifier
|
||
|
//
|
||
|
|
||
|
/** @brief Cascade classifier class used for object detection. Supports HAAR and LBP cascades. :
|
||
|
|
||
|
@note
|
||
|
- A cascade classifier example can be found at
|
||
|
opencv_source_code/samples/gpu/cascadeclassifier.cpp
|
||
|
- A Nvidea API specific cascade classifier example can be found at
|
||
|
opencv_source_code/samples/gpu/cascadeclassifier_nvidia_api.cpp
|
||
|
*/
|
||
|
class CV_EXPORTS CascadeClassifier_CUDA
|
||
|
{
|
||
|
public:
|
||
|
CascadeClassifier_CUDA();
|
||
|
/** @brief Loads the classifier from a file. Cascade type is detected automatically by constructor parameter.
|
||
|
|
||
|
@param filename Name of the file from which the classifier is loaded. Only the old haar classifier
|
||
|
(trained by the haar training application) and NVIDIA's nvbin are supported for HAAR and only new
|
||
|
type of OpenCV XML cascade supported for LBP.
|
||
|
*/
|
||
|
CascadeClassifier_CUDA(const String& filename);
|
||
|
~CascadeClassifier_CUDA();
|
||
|
|
||
|
/** @brief Checks whether the classifier is loaded or not.
|
||
|
*/
|
||
|
bool empty() const;
|
||
|
/** @brief Loads the classifier from a file. The previous content is destroyed.
|
||
|
|
||
|
@param filename Name of the file from which the classifier is loaded. Only the old haar classifier
|
||
|
(trained by the haar training application) and NVIDIA's nvbin are supported for HAAR and only new
|
||
|
type of OpenCV XML cascade supported for LBP.
|
||
|
*/
|
||
|
bool load(const String& filename);
|
||
|
/** @brief Destroys the loaded classifier.
|
||
|
*/
|
||
|
void release();
|
||
|
|
||
|
/** @overload */
|
||
|
int detectMultiScale(const GpuMat& image, GpuMat& objectsBuf, double scaleFactor = 1.2, int minNeighbors = 4, Size minSize = Size());
|
||
|
/** @brief Detects objects of different sizes in the input image.
|
||
|
|
||
|
@param image Matrix of type CV_8U containing an image where objects should be detected.
|
||
|
@param objectsBuf Buffer to store detected objects (rectangles). If it is empty, it is allocated
|
||
|
with the default size. If not empty, the function searches not more than N objects, where
|
||
|
N = sizeof(objectsBufer's data)/sizeof(cv::Rect).
|
||
|
@param maxObjectSize Maximum possible object size. Objects larger than that are ignored. Used for
|
||
|
second signature and supported only for LBP cascades.
|
||
|
@param scaleFactor Parameter specifying how much the image size is reduced at each image scale.
|
||
|
@param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have
|
||
|
to retain it.
|
||
|
@param minSize Minimum possible object size. Objects smaller than that are ignored.
|
||
|
|
||
|
The detected objects are returned as a list of rectangles.
|
||
|
|
||
|
The function returns the number of detected objects, so you can retrieve them as in the following
|
||
|
example:
|
||
|
@code
|
||
|
cuda::CascadeClassifier_CUDA cascade_gpu(...);
|
||
|
|
||
|
Mat image_cpu = imread(...)
|
||
|
GpuMat image_gpu(image_cpu);
|
||
|
|
||
|
GpuMat objbuf;
|
||
|
int detections_number = cascade_gpu.detectMultiScale( image_gpu,
|
||
|
objbuf, 1.2, minNeighbors);
|
||
|
|
||
|
Mat obj_host;
|
||
|
// download only detected number of rectangles
|
||
|
objbuf.colRange(0, detections_number).download(obj_host);
|
||
|
|
||
|
Rect* faces = obj_host.ptr<Rect>();
|
||
|
for(int i = 0; i < detections_num; ++i)
|
||
|
cv::rectangle(image_cpu, faces[i], Scalar(255));
|
||
|
|
||
|
imshow("Faces", image_cpu);
|
||
|
@endcode
|
||
|
@sa CascadeClassifier::detectMultiScale
|
||
|
*/
|
||
|
int detectMultiScale(const GpuMat& image, GpuMat& objectsBuf, Size maxObjectSize, Size minSize = Size(), double scaleFactor = 1.1, int minNeighbors = 4);
|
||
|
|
||
|
bool findLargestObject;
|
||
|
bool visualizeInPlace;
|
||
|
|
||
|
Size getClassifierSize() const;
|
||
|
|
||
|
private:
|
||
|
struct CascadeClassifierImpl;
|
||
|
CascadeClassifierImpl* impl;
|
||
|
struct HaarCascade;
|
||
|
struct LbpCascade;
|
||
|
friend class CascadeClassifier_CUDA_LBP;
|
||
|
};
|
||
|
|
||
|
//! @}
|
||
|
|
||
|
}} // namespace cv { namespace cuda {
|
||
|
|
||
|
#endif /* __OPENCV_CUDAOBJDETECT_HPP__ */
|