2010-05-11 17:44:00 +00:00
|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// Intel License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "precomp.hpp"
|
|
|
|
#include "_modelest.h"
|
|
|
|
#include <algorithm>
|
|
|
|
#include <iterator>
|
|
|
|
#include <limits>
|
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
|
|
|
|
|
|
|
|
CvModelEstimator2::CvModelEstimator2(int _modelPoints, CvSize _modelSize, int _maxBasicSolutions)
|
|
|
|
{
|
|
|
|
modelPoints = _modelPoints;
|
|
|
|
modelSize = _modelSize;
|
|
|
|
maxBasicSolutions = _maxBasicSolutions;
|
|
|
|
checkPartialSubsets = true;
|
|
|
|
rng = cvRNG(-1);
|
|
|
|
}
|
|
|
|
|
|
|
|
CvModelEstimator2::~CvModelEstimator2()
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
void CvModelEstimator2::setSeed( int64 seed )
|
|
|
|
{
|
|
|
|
rng = cvRNG(seed);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int CvModelEstimator2::findInliers( const CvMat* m1, const CvMat* m2,
|
|
|
|
const CvMat* model, CvMat* _err,
|
|
|
|
CvMat* _mask, double threshold )
|
|
|
|
{
|
|
|
|
int i, count = _err->rows*_err->cols, goodCount = 0;
|
|
|
|
const float* err = _err->data.fl;
|
|
|
|
uchar* mask = _mask->data.ptr;
|
|
|
|
|
|
|
|
computeReprojError( m1, m2, model, _err );
|
|
|
|
threshold *= threshold;
|
|
|
|
for( i = 0; i < count; i++ )
|
|
|
|
goodCount += mask[i] = err[i] <= threshold;
|
|
|
|
return goodCount;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
CV_IMPL int
|
|
|
|
cvRANSACUpdateNumIters( double p, double ep,
|
|
|
|
int model_points, int max_iters )
|
|
|
|
{
|
|
|
|
if( model_points <= 0 )
|
|
|
|
CV_Error( CV_StsOutOfRange, "the number of model points should be positive" );
|
|
|
|
|
|
|
|
p = MAX(p, 0.);
|
|
|
|
p = MIN(p, 1.);
|
|
|
|
ep = MAX(ep, 0.);
|
|
|
|
ep = MIN(ep, 1.);
|
|
|
|
|
|
|
|
// avoid inf's & nan's
|
|
|
|
double num = MAX(1. - p, DBL_MIN);
|
|
|
|
double denom = 1. - pow(1. - ep,model_points);
|
|
|
|
if( denom < DBL_MIN )
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
num = log(num);
|
|
|
|
denom = log(denom);
|
|
|
|
|
|
|
|
return denom >= 0 || -num >= max_iters*(-denom) ?
|
|
|
|
max_iters : cvRound(num/denom);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool CvModelEstimator2::runRANSAC( const CvMat* m1, const CvMat* m2, CvMat* model,
|
|
|
|
CvMat* mask0, double reprojThreshold,
|
|
|
|
double confidence, int maxIters )
|
|
|
|
{
|
|
|
|
bool result = false;
|
|
|
|
cv::Ptr<CvMat> mask = cvCloneMat(mask0);
|
|
|
|
cv::Ptr<CvMat> models, err, tmask;
|
|
|
|
cv::Ptr<CvMat> ms1, ms2;
|
|
|
|
|
|
|
|
int iter, niters = maxIters;
|
|
|
|
int count = m1->rows*m1->cols, maxGoodCount = 0;
|
|
|
|
CV_Assert( CV_ARE_SIZES_EQ(m1, m2) && CV_ARE_SIZES_EQ(m1, mask) );
|
|
|
|
|
|
|
|
if( count < modelPoints )
|
|
|
|
return false;
|
|
|
|
|
|
|
|
models = cvCreateMat( modelSize.height*maxBasicSolutions, modelSize.width, CV_64FC1 );
|
|
|
|
err = cvCreateMat( 1, count, CV_32FC1 );
|
|
|
|
tmask = cvCreateMat( 1, count, CV_8UC1 );
|
|
|
|
|
|
|
|
if( count > modelPoints )
|
|
|
|
{
|
|
|
|
ms1 = cvCreateMat( 1, modelPoints, m1->type );
|
|
|
|
ms2 = cvCreateMat( 1, modelPoints, m2->type );
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
niters = 1;
|
|
|
|
ms1 = cvCloneMat(m1);
|
|
|
|
ms2 = cvCloneMat(m2);
|
|
|
|
}
|
|
|
|
|
|
|
|
for( iter = 0; iter < niters; iter++ )
|
|
|
|
{
|
|
|
|
int i, goodCount, nmodels;
|
|
|
|
if( count > modelPoints )
|
|
|
|
{
|
|
|
|
bool found = getSubset( m1, m2, ms1, ms2, 300 );
|
|
|
|
if( !found )
|
|
|
|
{
|
|
|
|
if( iter == 0 )
|
|
|
|
return false;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
nmodels = runKernel( ms1, ms2, models );
|
|
|
|
if( nmodels <= 0 )
|
|
|
|
continue;
|
|
|
|
for( i = 0; i < nmodels; i++ )
|
|
|
|
{
|
|
|
|
CvMat model_i;
|
|
|
|
cvGetRows( models, &model_i, i*modelSize.height, (i+1)*modelSize.height );
|
|
|
|
goodCount = findInliers( m1, m2, &model_i, err, tmask, reprojThreshold );
|
|
|
|
|
|
|
|
if( goodCount > MAX(maxGoodCount, modelPoints-1) )
|
|
|
|
{
|
|
|
|
std::swap(tmask, mask);
|
|
|
|
cvCopy( &model_i, model );
|
|
|
|
maxGoodCount = goodCount;
|
|
|
|
niters = cvRANSACUpdateNumIters( confidence,
|
|
|
|
(double)(count - goodCount)/count, modelPoints, niters );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if( maxGoodCount > 0 )
|
|
|
|
{
|
|
|
|
if( mask != mask0 )
|
|
|
|
cvCopy( mask, mask0 );
|
|
|
|
result = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static CV_IMPLEMENT_QSORT( icvSortDistances, int, CV_LT )
|
|
|
|
|
|
|
|
bool CvModelEstimator2::runLMeDS( const CvMat* m1, const CvMat* m2, CvMat* model,
|
|
|
|
CvMat* mask, double confidence, int maxIters )
|
|
|
|
{
|
|
|
|
const double outlierRatio = 0.45;
|
|
|
|
bool result = false;
|
|
|
|
cv::Ptr<CvMat> models;
|
|
|
|
cv::Ptr<CvMat> ms1, ms2;
|
|
|
|
cv::Ptr<CvMat> err;
|
|
|
|
|
|
|
|
int iter, niters = maxIters;
|
|
|
|
int count = m1->rows*m1->cols;
|
|
|
|
double minMedian = DBL_MAX, sigma;
|
|
|
|
|
|
|
|
CV_Assert( CV_ARE_SIZES_EQ(m1, m2) && CV_ARE_SIZES_EQ(m1, mask) );
|
|
|
|
|
|
|
|
if( count < modelPoints )
|
|
|
|
return false;
|
|
|
|
|
|
|
|
models = cvCreateMat( modelSize.height*maxBasicSolutions, modelSize.width, CV_64FC1 );
|
|
|
|
err = cvCreateMat( 1, count, CV_32FC1 );
|
|
|
|
|
|
|
|
if( count > modelPoints )
|
|
|
|
{
|
|
|
|
ms1 = cvCreateMat( 1, modelPoints, m1->type );
|
|
|
|
ms2 = cvCreateMat( 1, modelPoints, m2->type );
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
niters = 1;
|
|
|
|
ms1 = cvCloneMat(m1);
|
|
|
|
ms2 = cvCloneMat(m2);
|
|
|
|
}
|
|
|
|
|
|
|
|
niters = cvRound(log(1-confidence)/log(1-pow(1-outlierRatio,(double)modelPoints)));
|
|
|
|
niters = MIN( MAX(niters, 3), maxIters );
|
|
|
|
|
|
|
|
for( iter = 0; iter < niters; iter++ )
|
|
|
|
{
|
|
|
|
int i, nmodels;
|
|
|
|
if( count > modelPoints )
|
|
|
|
{
|
|
|
|
bool found = getSubset( m1, m2, ms1, ms2, 300 );
|
|
|
|
if( !found )
|
|
|
|
{
|
|
|
|
if( iter == 0 )
|
|
|
|
return false;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
nmodels = runKernel( ms1, ms2, models );
|
|
|
|
if( nmodels <= 0 )
|
|
|
|
continue;
|
|
|
|
for( i = 0; i < nmodels; i++ )
|
|
|
|
{
|
|
|
|
CvMat model_i;
|
|
|
|
cvGetRows( models, &model_i, i*modelSize.height, (i+1)*modelSize.height );
|
|
|
|
computeReprojError( m1, m2, &model_i, err );
|
|
|
|
icvSortDistances( err->data.i, count, 0 );
|
|
|
|
|
|
|
|
double median = count % 2 != 0 ?
|
|
|
|
err->data.fl[count/2] : (err->data.fl[count/2-1] + err->data.fl[count/2])*0.5;
|
|
|
|
|
|
|
|
if( median < minMedian )
|
|
|
|
{
|
|
|
|
minMedian = median;
|
|
|
|
cvCopy( &model_i, model );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if( minMedian < DBL_MAX )
|
|
|
|
{
|
|
|
|
sigma = 2.5*1.4826*(1 + 5./(count - modelPoints))*sqrt(minMedian);
|
2010-11-06 14:56:01 +00:00
|
|
|
sigma = MAX( sigma, 0.001 );
|
2010-05-11 17:44:00 +00:00
|
|
|
|
|
|
|
count = findInliers( m1, m2, model, err, mask, sigma );
|
|
|
|
result = count >= modelPoints;
|
|
|
|
}
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool CvModelEstimator2::getSubset( const CvMat* m1, const CvMat* m2,
|
|
|
|
CvMat* ms1, CvMat* ms2, int maxAttempts )
|
|
|
|
{
|
2011-02-18 10:29:57 +00:00
|
|
|
cv::AutoBuffer<int> _idx(modelPoints);
|
|
|
|
int* idx = _idx;
|
2010-05-11 17:44:00 +00:00
|
|
|
int i = 0, j, k, idx_i, iters = 0;
|
|
|
|
int type = CV_MAT_TYPE(m1->type), elemSize = CV_ELEM_SIZE(type);
|
|
|
|
const int *m1ptr = m1->data.i, *m2ptr = m2->data.i;
|
|
|
|
int *ms1ptr = ms1->data.i, *ms2ptr = ms2->data.i;
|
|
|
|
int count = m1->cols*m1->rows;
|
|
|
|
|
|
|
|
assert( CV_IS_MAT_CONT(m1->type & m2->type) && (elemSize % sizeof(int) == 0) );
|
|
|
|
elemSize /= sizeof(int);
|
|
|
|
|
|
|
|
for(; iters < maxAttempts; iters++)
|
|
|
|
{
|
|
|
|
for( i = 0; i < modelPoints && iters < maxAttempts; )
|
|
|
|
{
|
|
|
|
idx[i] = idx_i = cvRandInt(&rng) % count;
|
|
|
|
for( j = 0; j < i; j++ )
|
|
|
|
if( idx_i == idx[j] )
|
|
|
|
break;
|
|
|
|
if( j < i )
|
|
|
|
continue;
|
|
|
|
for( k = 0; k < elemSize; k++ )
|
|
|
|
{
|
|
|
|
ms1ptr[i*elemSize + k] = m1ptr[idx_i*elemSize + k];
|
|
|
|
ms2ptr[i*elemSize + k] = m2ptr[idx_i*elemSize + k];
|
|
|
|
}
|
|
|
|
if( checkPartialSubsets && (!checkSubset( ms1, i+1 ) || !checkSubset( ms2, i+1 )))
|
|
|
|
{
|
|
|
|
iters++;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
i++;
|
|
|
|
}
|
|
|
|
if( !checkPartialSubsets && i == modelPoints &&
|
|
|
|
(!checkSubset( ms1, i ) || !checkSubset( ms2, i )))
|
|
|
|
continue;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return i == modelPoints && iters < maxAttempts;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool CvModelEstimator2::checkSubset( const CvMat* m, int count )
|
|
|
|
{
|
|
|
|
int j, k, i, i0, i1;
|
|
|
|
CvPoint2D64f* ptr = (CvPoint2D64f*)m->data.ptr;
|
|
|
|
|
|
|
|
assert( CV_MAT_TYPE(m->type) == CV_64FC2 );
|
|
|
|
|
|
|
|
if( checkPartialSubsets )
|
|
|
|
i0 = i1 = count - 1;
|
|
|
|
else
|
|
|
|
i0 = 0, i1 = count - 1;
|
|
|
|
|
|
|
|
for( i = i0; i <= i1; i++ )
|
|
|
|
{
|
|
|
|
// check that the i-th selected point does not belong
|
|
|
|
// to a line connecting some previously selected points
|
|
|
|
for( j = 0; j < i; j++ )
|
|
|
|
{
|
|
|
|
double dx1 = ptr[j].x - ptr[i].x;
|
|
|
|
double dy1 = ptr[j].y - ptr[i].y;
|
|
|
|
for( k = 0; k < j; k++ )
|
|
|
|
{
|
|
|
|
double dx2 = ptr[k].x - ptr[i].x;
|
|
|
|
double dy2 = ptr[k].y - ptr[i].y;
|
|
|
|
if( fabs(dx2*dy1 - dy2*dx1) <= FLT_EPSILON*(fabs(dx1) + fabs(dy1) + fabs(dx2) + fabs(dy2)))
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if( k < j )
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if( j < i )
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return i >= i1;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
namespace cv
|
|
|
|
{
|
|
|
|
|
|
|
|
class Affine3DEstimator : public CvModelEstimator2
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
Affine3DEstimator() : CvModelEstimator2(4, cvSize(4, 3), 1) {}
|
|
|
|
virtual int runKernel( const CvMat* m1, const CvMat* m2, CvMat* model );
|
|
|
|
protected:
|
|
|
|
virtual void computeReprojError( const CvMat* m1, const CvMat* m2, const CvMat* model, CvMat* error );
|
|
|
|
virtual bool checkSubset( const CvMat* ms1, int count );
|
|
|
|
};
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
int cv::Affine3DEstimator::runKernel( const CvMat* m1, const CvMat* m2, CvMat* model )
|
|
|
|
{
|
|
|
|
const Point3d* from = reinterpret_cast<const Point3d*>(m1->data.ptr);
|
|
|
|
const Point3d* to = reinterpret_cast<const Point3d*>(m2->data.ptr);
|
|
|
|
|
|
|
|
Mat A(12, 12, CV_64F);
|
|
|
|
Mat B(12, 1, CV_64F);
|
|
|
|
A = Scalar(0.0);
|
|
|
|
|
|
|
|
for(int i = 0; i < modelPoints; ++i)
|
|
|
|
{
|
|
|
|
*B.ptr<Point3d>(3*i) = to[i];
|
|
|
|
|
|
|
|
double *aptr = A.ptr<double>(3*i);
|
|
|
|
for(int k = 0; k < 3; ++k)
|
|
|
|
{
|
|
|
|
aptr[3] = 1.0;
|
|
|
|
*reinterpret_cast<Point3d*>(aptr) = from[i];
|
|
|
|
aptr += 16;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
CvMat cvA = A;
|
|
|
|
CvMat cvB = B;
|
|
|
|
CvMat cvX;
|
|
|
|
cvReshape(model, &cvX, 1, 12);
|
|
|
|
cvSolve(&cvA, &cvB, &cvX, CV_SVD );
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
void cv::Affine3DEstimator::computeReprojError( const CvMat* m1, const CvMat* m2, const CvMat* model, CvMat* error )
|
|
|
|
{
|
|
|
|
int count = m1->rows * m1->cols;
|
|
|
|
const Point3d* from = reinterpret_cast<const Point3d*>(m1->data.ptr);
|
|
|
|
const Point3d* to = reinterpret_cast<const Point3d*>(m2->data.ptr);
|
|
|
|
const double* F = model->data.db;
|
|
|
|
float* err = error->data.fl;
|
|
|
|
|
|
|
|
for(int i = 0; i < count; i++ )
|
|
|
|
{
|
|
|
|
const Point3d& f = from[i];
|
|
|
|
const Point3d& t = to[i];
|
|
|
|
|
|
|
|
double a = F[0]*f.x + F[1]*f.y + F[ 2]*f.z + F[ 3] - t.x;
|
|
|
|
double b = F[4]*f.x + F[5]*f.y + F[ 6]*f.z + F[ 7] - t.y;
|
|
|
|
double c = F[8]*f.x + F[9]*f.y + F[10]*f.z + F[11] - t.z;
|
|
|
|
|
|
|
|
err[i] = (float)sqrt(a*a + b*b + c*c);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bool cv::Affine3DEstimator::checkSubset( const CvMat* ms1, int count )
|
|
|
|
{
|
|
|
|
CV_Assert( CV_MAT_TYPE(ms1->type) == CV_64FC3 );
|
|
|
|
|
|
|
|
int j, k, i = count - 1;
|
|
|
|
const Point3d* ptr = reinterpret_cast<const Point3d*>(ms1->data.ptr);
|
|
|
|
|
|
|
|
// check that the i-th selected point does not belong
|
|
|
|
// to a line connecting some previously selected points
|
|
|
|
|
|
|
|
for(j = 0; j < i; ++j)
|
|
|
|
{
|
|
|
|
Point3d d1 = ptr[j] - ptr[i];
|
|
|
|
double n1 = norm(d1);
|
|
|
|
|
|
|
|
for(k = 0; k < j; ++k)
|
|
|
|
{
|
|
|
|
Point3d d2 = ptr[k] - ptr[i];
|
|
|
|
double n = norm(d2) * n1;
|
|
|
|
|
|
|
|
if (fabs(d1.dot(d2) / n) > 0.996)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if( k < j )
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return j == i;
|
|
|
|
}
|
|
|
|
|
2011-06-06 14:51:27 +00:00
|
|
|
int cv::estimateAffine3D(InputArray _from, InputArray _to,
|
2011-06-17 19:12:21 +00:00
|
|
|
OutputArray _out, OutputArray _inliers,
|
2011-04-17 13:14:45 +00:00
|
|
|
double param1, double param2)
|
2010-05-11 17:44:00 +00:00
|
|
|
{
|
2011-04-17 13:14:45 +00:00
|
|
|
Mat from = _from.getMat(), to = _to.getMat();
|
|
|
|
int count = from.checkVector(3, CV_32F);
|
2010-05-11 17:44:00 +00:00
|
|
|
|
2011-04-17 13:14:45 +00:00
|
|
|
CV_Assert( count >= 0 && to.checkVector(3, CV_32F) == count );
|
2010-05-11 17:44:00 +00:00
|
|
|
|
2011-04-17 13:14:45 +00:00
|
|
|
_out.create(3, 4, CV_64F);
|
|
|
|
Mat out = _out.getMat();
|
|
|
|
|
2011-06-17 19:12:21 +00:00
|
|
|
_inliers.create(count, 1, CV_8U, -1, true);
|
|
|
|
Mat inliers = _inliers.getMat();
|
|
|
|
inliers = Scalar::all(1);
|
2010-05-11 17:44:00 +00:00
|
|
|
|
2011-04-17 13:14:45 +00:00
|
|
|
Mat dFrom, dTo;
|
|
|
|
from.convertTo(dFrom, CV_64F);
|
|
|
|
to.convertTo(dTo, CV_64F);
|
2010-05-11 17:44:00 +00:00
|
|
|
|
|
|
|
CvMat F3x4 = out;
|
2011-06-17 19:12:21 +00:00
|
|
|
CvMat mask = inliers;
|
2011-04-17 13:14:45 +00:00
|
|
|
CvMat m1 = dFrom;
|
|
|
|
CvMat m2 = dTo;
|
2010-05-11 17:44:00 +00:00
|
|
|
|
|
|
|
const double epsilon = numeric_limits<double>::epsilon();
|
|
|
|
param1 = param1 <= 0 ? 3 : param1;
|
|
|
|
param2 = (param2 < epsilon) ? 0.99 : (param2 > 1 - epsilon) ? 0.99 : param2;
|
|
|
|
|
2011-04-17 13:14:45 +00:00
|
|
|
return Affine3DEstimator().runRANSAC(&m1, &m2, &F3x4, &mask, param1, param2 );
|
2010-05-11 17:44:00 +00:00
|
|
|
}
|