/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "_modelest.h" #include #include #include using namespace std; CvModelEstimator2::CvModelEstimator2(int _modelPoints, CvSize _modelSize, int _maxBasicSolutions) { modelPoints = _modelPoints; modelSize = _modelSize; maxBasicSolutions = _maxBasicSolutions; checkPartialSubsets = true; rng = cvRNG(-1); } CvModelEstimator2::~CvModelEstimator2() { } void CvModelEstimator2::setSeed( int64 seed ) { rng = cvRNG(seed); } int CvModelEstimator2::findInliers( const CvMat* m1, const CvMat* m2, const CvMat* model, CvMat* _err, CvMat* _mask, double threshold ) { int i, count = _err->rows*_err->cols, goodCount = 0; const float* err = _err->data.fl; uchar* mask = _mask->data.ptr; computeReprojError( m1, m2, model, _err ); threshold *= threshold; for( i = 0; i < count; i++ ) goodCount += mask[i] = err[i] <= threshold; return goodCount; } CV_IMPL int cvRANSACUpdateNumIters( double p, double ep, int model_points, int max_iters ) { if( model_points <= 0 ) CV_Error( CV_StsOutOfRange, "the number of model points should be positive" ); p = MAX(p, 0.); p = MIN(p, 1.); ep = MAX(ep, 0.); ep = MIN(ep, 1.); // avoid inf's & nan's double num = MAX(1. - p, DBL_MIN); double denom = 1. - pow(1. - ep,model_points); if( denom < DBL_MIN ) return 0; num = log(num); denom = log(denom); return denom >= 0 || -num >= max_iters*(-denom) ? max_iters : cvRound(num/denom); } bool CvModelEstimator2::runRANSAC( const CvMat* m1, const CvMat* m2, CvMat* model, CvMat* mask0, double reprojThreshold, double confidence, int maxIters ) { bool result = false; cv::Ptr mask = cvCloneMat(mask0); cv::Ptr models, err, tmask; cv::Ptr ms1, ms2; int iter, niters = maxIters; int count = m1->rows*m1->cols, maxGoodCount = 0; CV_Assert( CV_ARE_SIZES_EQ(m1, m2) && CV_ARE_SIZES_EQ(m1, mask) ); if( count < modelPoints ) return false; models = cvCreateMat( modelSize.height*maxBasicSolutions, modelSize.width, CV_64FC1 ); err = cvCreateMat( 1, count, CV_32FC1 ); tmask = cvCreateMat( 1, count, CV_8UC1 ); if( count > modelPoints ) { ms1 = cvCreateMat( 1, modelPoints, m1->type ); ms2 = cvCreateMat( 1, modelPoints, m2->type ); } else { niters = 1; ms1 = cvCloneMat(m1); ms2 = cvCloneMat(m2); } for( iter = 0; iter < niters; iter++ ) { int i, goodCount, nmodels; if( count > modelPoints ) { bool found = getSubset( m1, m2, ms1, ms2, 300 ); if( !found ) { if( iter == 0 ) return false; break; } } nmodels = runKernel( ms1, ms2, models ); if( nmodels <= 0 ) continue; for( i = 0; i < nmodels; i++ ) { CvMat model_i; cvGetRows( models, &model_i, i*modelSize.height, (i+1)*modelSize.height ); goodCount = findInliers( m1, m2, &model_i, err, tmask, reprojThreshold ); if( goodCount > MAX(maxGoodCount, modelPoints-1) ) { std::swap(tmask, mask); cvCopy( &model_i, model ); maxGoodCount = goodCount; niters = cvRANSACUpdateNumIters( confidence, (double)(count - goodCount)/count, modelPoints, niters ); } } } if( maxGoodCount > 0 ) { if( mask != mask0 ) cvCopy( mask, mask0 ); result = true; } return result; } static CV_IMPLEMENT_QSORT( icvSortDistances, int, CV_LT ) bool CvModelEstimator2::runLMeDS( const CvMat* m1, const CvMat* m2, CvMat* model, CvMat* mask, double confidence, int maxIters ) { const double outlierRatio = 0.45; bool result = false; cv::Ptr models; cv::Ptr ms1, ms2; cv::Ptr err; int iter, niters = maxIters; int count = m1->rows*m1->cols; double minMedian = DBL_MAX, sigma; CV_Assert( CV_ARE_SIZES_EQ(m1, m2) && CV_ARE_SIZES_EQ(m1, mask) ); if( count < modelPoints ) return false; models = cvCreateMat( modelSize.height*maxBasicSolutions, modelSize.width, CV_64FC1 ); err = cvCreateMat( 1, count, CV_32FC1 ); if( count > modelPoints ) { ms1 = cvCreateMat( 1, modelPoints, m1->type ); ms2 = cvCreateMat( 1, modelPoints, m2->type ); } else { niters = 1; ms1 = cvCloneMat(m1); ms2 = cvCloneMat(m2); } niters = cvRound(log(1-confidence)/log(1-pow(1-outlierRatio,(double)modelPoints))); niters = MIN( MAX(niters, 3), maxIters ); for( iter = 0; iter < niters; iter++ ) { int i, nmodels; if( count > modelPoints ) { bool found = getSubset( m1, m2, ms1, ms2, 300 ); if( !found ) { if( iter == 0 ) return false; break; } } nmodels = runKernel( ms1, ms2, models ); if( nmodels <= 0 ) continue; for( i = 0; i < nmodels; i++ ) { CvMat model_i; cvGetRows( models, &model_i, i*modelSize.height, (i+1)*modelSize.height ); computeReprojError( m1, m2, &model_i, err ); icvSortDistances( err->data.i, count, 0 ); double median = count % 2 != 0 ? err->data.fl[count/2] : (err->data.fl[count/2-1] + err->data.fl[count/2])*0.5; if( median < minMedian ) { minMedian = median; cvCopy( &model_i, model ); } } } if( minMedian < DBL_MAX ) { sigma = 2.5*1.4826*(1 + 5./(count - modelPoints))*sqrt(minMedian); sigma = MAX( sigma, 0.001 ); count = findInliers( m1, m2, model, err, mask, sigma ); result = count >= modelPoints; } return result; } bool CvModelEstimator2::getSubset( const CvMat* m1, const CvMat* m2, CvMat* ms1, CvMat* ms2, int maxAttempts ) { cv::AutoBuffer _idx(modelPoints); int* idx = _idx; int i = 0, j, k, idx_i, iters = 0; int type = CV_MAT_TYPE(m1->type), elemSize = CV_ELEM_SIZE(type); const int *m1ptr = m1->data.i, *m2ptr = m2->data.i; int *ms1ptr = ms1->data.i, *ms2ptr = ms2->data.i; int count = m1->cols*m1->rows; assert( CV_IS_MAT_CONT(m1->type & m2->type) && (elemSize % sizeof(int) == 0) ); elemSize /= sizeof(int); for(; iters < maxAttempts; iters++) { for( i = 0; i < modelPoints && iters < maxAttempts; ) { idx[i] = idx_i = cvRandInt(&rng) % count; for( j = 0; j < i; j++ ) if( idx_i == idx[j] ) break; if( j < i ) continue; for( k = 0; k < elemSize; k++ ) { ms1ptr[i*elemSize + k] = m1ptr[idx_i*elemSize + k]; ms2ptr[i*elemSize + k] = m2ptr[idx_i*elemSize + k]; } if( checkPartialSubsets && (!checkSubset( ms1, i+1 ) || !checkSubset( ms2, i+1 ))) { iters++; continue; } i++; } if( !checkPartialSubsets && i == modelPoints && (!checkSubset( ms1, i ) || !checkSubset( ms2, i ))) continue; break; } return i == modelPoints && iters < maxAttempts; } bool CvModelEstimator2::checkSubset( const CvMat* m, int count ) { int j, k, i, i0, i1; CvPoint2D64f* ptr = (CvPoint2D64f*)m->data.ptr; assert( CV_MAT_TYPE(m->type) == CV_64FC2 ); if( checkPartialSubsets ) i0 = i1 = count - 1; else i0 = 0, i1 = count - 1; for( i = i0; i <= i1; i++ ) { // check that the i-th selected point does not belong // to a line connecting some previously selected points for( j = 0; j < i; j++ ) { double dx1 = ptr[j].x - ptr[i].x; double dy1 = ptr[j].y - ptr[i].y; for( k = 0; k < j; k++ ) { double dx2 = ptr[k].x - ptr[i].x; double dy2 = ptr[k].y - ptr[i].y; if( fabs(dx2*dy1 - dy2*dx1) <= FLT_EPSILON*(fabs(dx1) + fabs(dy1) + fabs(dx2) + fabs(dy2))) break; } if( k < j ) break; } if( j < i ) break; } return i >= i1; } namespace cv { class Affine3DEstimator : public CvModelEstimator2 { public: Affine3DEstimator() : CvModelEstimator2(4, cvSize(4, 3), 1) {} virtual int runKernel( const CvMat* m1, const CvMat* m2, CvMat* model ); protected: virtual void computeReprojError( const CvMat* m1, const CvMat* m2, const CvMat* model, CvMat* error ); virtual bool checkSubset( const CvMat* ms1, int count ); }; } int cv::Affine3DEstimator::runKernel( const CvMat* m1, const CvMat* m2, CvMat* model ) { const Point3d* from = reinterpret_cast(m1->data.ptr); const Point3d* to = reinterpret_cast(m2->data.ptr); Mat A(12, 12, CV_64F); Mat B(12, 1, CV_64F); A = Scalar(0.0); for(int i = 0; i < modelPoints; ++i) { *B.ptr(3*i) = to[i]; double *aptr = A.ptr(3*i); for(int k = 0; k < 3; ++k) { aptr[3] = 1.0; *reinterpret_cast(aptr) = from[i]; aptr += 16; } } CvMat cvA = A; CvMat cvB = B; CvMat cvX; cvReshape(model, &cvX, 1, 12); cvSolve(&cvA, &cvB, &cvX, CV_SVD ); return 1; } void cv::Affine3DEstimator::computeReprojError( const CvMat* m1, const CvMat* m2, const CvMat* model, CvMat* error ) { int count = m1->rows * m1->cols; const Point3d* from = reinterpret_cast(m1->data.ptr); const Point3d* to = reinterpret_cast(m2->data.ptr); const double* F = model->data.db; float* err = error->data.fl; for(int i = 0; i < count; i++ ) { const Point3d& f = from[i]; const Point3d& t = to[i]; double a = F[0]*f.x + F[1]*f.y + F[ 2]*f.z + F[ 3] - t.x; double b = F[4]*f.x + F[5]*f.y + F[ 6]*f.z + F[ 7] - t.y; double c = F[8]*f.x + F[9]*f.y + F[10]*f.z + F[11] - t.z; err[i] = (float)sqrt(a*a + b*b + c*c); } } bool cv::Affine3DEstimator::checkSubset( const CvMat* ms1, int count ) { CV_Assert( CV_MAT_TYPE(ms1->type) == CV_64FC3 ); int j, k, i = count - 1; const Point3d* ptr = reinterpret_cast(ms1->data.ptr); // check that the i-th selected point does not belong // to a line connecting some previously selected points for(j = 0; j < i; ++j) { Point3d d1 = ptr[j] - ptr[i]; double n1 = norm(d1); for(k = 0; k < j; ++k) { Point3d d2 = ptr[k] - ptr[i]; double n = norm(d2) * n1; if (fabs(d1.dot(d2) / n) > 0.996) break; } if( k < j ) break; } return j == i; } int cv::estimateAffine3D(InputArray _from, InputArray _to, OutputArray _out, OutputArray _inliers, double param1, double param2) { Mat from = _from.getMat(), to = _to.getMat(); int count = from.checkVector(3, CV_32F); CV_Assert( count >= 0 && to.checkVector(3, CV_32F) == count ); _out.create(3, 4, CV_64F); Mat out = _out.getMat(); _inliers.create(count, 1, CV_8U, -1, true); Mat inliers = _inliers.getMat(); inliers = Scalar::all(1); Mat dFrom, dTo; from.convertTo(dFrom, CV_64F); to.convertTo(dTo, CV_64F); CvMat F3x4 = out; CvMat mask = inliers; CvMat m1 = dFrom; CvMat m2 = dTo; const double epsilon = numeric_limits::epsilon(); param1 = param1 <= 0 ? 3 : param1; param2 = (param2 < epsilon) ? 0.99 : (param2 > 1 - epsilon) ? 0.99 : param2; return Affine3DEstimator().runRANSAC(&m1, &m2, &F3x4, &mask, param1, param2 ); }