780 lines
26 KiB
C++
780 lines
26 KiB
C++
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
// This file originates from the openFABMAP project:
|
||
|
// [http://code.google.com/p/openfabmap/]
|
||
|
//
|
||
|
// For published work which uses all or part of OpenFABMAP, please cite:
|
||
|
// [http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6224843]
|
||
|
//
|
||
|
// Original Algorithm by Mark Cummins and Paul Newman:
|
||
|
// [http://ijr.sagepub.com/content/27/6/647.short]
|
||
|
// [http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5613942]
|
||
|
// [http://ijr.sagepub.com/content/30/9/1100.abstract]
|
||
|
//
|
||
|
// License Agreement
|
||
|
//
|
||
|
// Copyright (C) 2012 Arren Glover [aj.glover@qut.edu.au] and
|
||
|
// Will Maddern [w.maddern@qut.edu.au], all rights reserved.
|
||
|
//
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
#include "precomp.hpp"
|
||
|
#include "opencv2/contrib/openfabmap.hpp"
|
||
|
|
||
|
|
||
|
/*
|
||
|
Calculate the sum of two log likelihoods
|
||
|
*/
|
||
|
namespace cv {
|
||
|
|
||
|
namespace of2 {
|
||
|
|
||
|
static double logsumexp(double a, double b) {
|
||
|
return a > b ? log(1 + exp(b - a)) + a : log(1 + exp(a - b)) + b;
|
||
|
}
|
||
|
|
||
|
FabMap::FabMap(const Mat& _clTree, double _PzGe,
|
||
|
double _PzGNe, int _flags, int _numSamples) :
|
||
|
clTree(_clTree), PzGe(_PzGe), PzGNe(_PzGNe), flags(
|
||
|
_flags), numSamples(_numSamples) {
|
||
|
|
||
|
CV_Assert(flags & MEAN_FIELD || flags & SAMPLED);
|
||
|
CV_Assert(flags & NAIVE_BAYES || flags & CHOW_LIU);
|
||
|
if (flags & NAIVE_BAYES) {
|
||
|
PzGL = &FabMap::PzqGL;
|
||
|
} else {
|
||
|
PzGL = &FabMap::PzqGzpqL;
|
||
|
}
|
||
|
|
||
|
//check for a valid Chow-Liu tree
|
||
|
CV_Assert(clTree.type() == CV_64FC1);
|
||
|
cv::checkRange(clTree.row(0), false, NULL, 0, clTree.cols);
|
||
|
cv::checkRange(clTree.row(1), false, NULL, DBL_MIN, 1);
|
||
|
cv::checkRange(clTree.row(2), false, NULL, DBL_MIN, 1);
|
||
|
cv::checkRange(clTree.row(3), false, NULL, DBL_MIN, 1);
|
||
|
|
||
|
// TODO: Add default values for member variables
|
||
|
Pnew = 0.9;
|
||
|
sFactor = 0.99;
|
||
|
mBias = 0.5;
|
||
|
}
|
||
|
|
||
|
FabMap::~FabMap() {
|
||
|
}
|
||
|
|
||
|
const std::vector<cv::Mat>& FabMap::getTrainingImgDescriptors() const {
|
||
|
return trainingImgDescriptors;
|
||
|
}
|
||
|
|
||
|
const std::vector<cv::Mat>& FabMap::getTestImgDescriptors() const {
|
||
|
return testImgDescriptors;
|
||
|
}
|
||
|
|
||
|
void FabMap::addTraining(const Mat& queryImgDescriptor) {
|
||
|
CV_Assert(!queryImgDescriptor.empty());
|
||
|
vector<Mat> queryImgDescriptors;
|
||
|
for (int i = 0; i < queryImgDescriptor.rows; i++) {
|
||
|
queryImgDescriptors.push_back(queryImgDescriptor.row(i));
|
||
|
}
|
||
|
addTraining(queryImgDescriptors);
|
||
|
}
|
||
|
|
||
|
void FabMap::addTraining(const vector<Mat>& queryImgDescriptors) {
|
||
|
for (size_t i = 0; i < queryImgDescriptors.size(); i++) {
|
||
|
CV_Assert(!queryImgDescriptors[i].empty());
|
||
|
CV_Assert(queryImgDescriptors[i].rows == 1);
|
||
|
CV_Assert(queryImgDescriptors[i].cols == clTree.cols);
|
||
|
CV_Assert(queryImgDescriptors[i].type() == CV_32F);
|
||
|
trainingImgDescriptors.push_back(queryImgDescriptors[i]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void FabMap::add(const cv::Mat& queryImgDescriptor) {
|
||
|
CV_Assert(!queryImgDescriptor.empty());
|
||
|
vector<Mat> queryImgDescriptors;
|
||
|
for (int i = 0; i < queryImgDescriptor.rows; i++) {
|
||
|
queryImgDescriptors.push_back(queryImgDescriptor.row(i));
|
||
|
}
|
||
|
add(queryImgDescriptors);
|
||
|
}
|
||
|
|
||
|
void FabMap::add(const std::vector<cv::Mat>& queryImgDescriptors) {
|
||
|
for (size_t i = 0; i < queryImgDescriptors.size(); i++) {
|
||
|
CV_Assert(!queryImgDescriptors[i].empty());
|
||
|
CV_Assert(queryImgDescriptors[i].rows == 1);
|
||
|
CV_Assert(queryImgDescriptors[i].cols == clTree.cols);
|
||
|
CV_Assert(queryImgDescriptors[i].type() == CV_32F);
|
||
|
testImgDescriptors.push_back(queryImgDescriptors[i]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void FabMap::compare(const Mat& queryImgDescriptor,
|
||
|
vector<IMatch>& matches, bool addQuery,
|
||
|
const Mat& mask) {
|
||
|
CV_Assert(!queryImgDescriptor.empty());
|
||
|
vector<Mat> queryImgDescriptors;
|
||
|
for (int i = 0; i < queryImgDescriptor.rows; i++) {
|
||
|
queryImgDescriptors.push_back(queryImgDescriptor.row(i));
|
||
|
}
|
||
|
compare(queryImgDescriptors,matches,addQuery,mask);
|
||
|
}
|
||
|
|
||
|
void FabMap::compare(const Mat& queryImgDescriptor,
|
||
|
const Mat& testImgDescriptor, vector<IMatch>& matches,
|
||
|
const Mat& mask) {
|
||
|
CV_Assert(!queryImgDescriptor.empty());
|
||
|
vector<Mat> queryImgDescriptors;
|
||
|
for (int i = 0; i < queryImgDescriptor.rows; i++) {
|
||
|
queryImgDescriptors.push_back(queryImgDescriptor.row(i));
|
||
|
}
|
||
|
|
||
|
CV_Assert(!testImgDescriptor.empty());
|
||
|
vector<Mat> _testImgDescriptors;
|
||
|
for (int i = 0; i < testImgDescriptor.rows; i++) {
|
||
|
_testImgDescriptors.push_back(testImgDescriptor.row(i));
|
||
|
}
|
||
|
compare(queryImgDescriptors,_testImgDescriptors,matches,mask);
|
||
|
|
||
|
}
|
||
|
|
||
|
void FabMap::compare(const Mat& queryImgDescriptor,
|
||
|
const vector<Mat>& _testImgDescriptors,
|
||
|
vector<IMatch>& matches, const Mat& mask) {
|
||
|
CV_Assert(!queryImgDescriptor.empty());
|
||
|
vector<Mat> queryImgDescriptors;
|
||
|
for (int i = 0; i < queryImgDescriptor.rows; i++) {
|
||
|
queryImgDescriptors.push_back(queryImgDescriptor.row(i));
|
||
|
}
|
||
|
compare(queryImgDescriptors,_testImgDescriptors,matches,mask);
|
||
|
}
|
||
|
|
||
|
void FabMap::compare(const vector<Mat>& queryImgDescriptors,
|
||
|
vector<IMatch>& matches, bool addQuery, const Mat& /*mask*/) {
|
||
|
|
||
|
// TODO: add first query if empty (is this necessary)
|
||
|
|
||
|
for (size_t i = 0; i < queryImgDescriptors.size(); i++) {
|
||
|
CV_Assert(!queryImgDescriptors[i].empty());
|
||
|
CV_Assert(queryImgDescriptors[i].rows == 1);
|
||
|
CV_Assert(queryImgDescriptors[i].cols == clTree.cols);
|
||
|
CV_Assert(queryImgDescriptors[i].type() == CV_32F);
|
||
|
|
||
|
// TODO: add mask
|
||
|
|
||
|
compareImgDescriptor(queryImgDescriptors[i],
|
||
|
(int)i, testImgDescriptors, matches);
|
||
|
if (addQuery)
|
||
|
add(queryImgDescriptors[i]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void FabMap::compare(const vector<Mat>& queryImgDescriptors,
|
||
|
const vector<Mat>& _testImgDescriptors,
|
||
|
vector<IMatch>& matches, const Mat& /*mask*/) {
|
||
|
if (_testImgDescriptors[0].data != this->testImgDescriptors[0].data) {
|
||
|
CV_Assert(!(flags & MOTION_MODEL));
|
||
|
for (size_t i = 0; i < _testImgDescriptors.size(); i++) {
|
||
|
CV_Assert(!_testImgDescriptors[i].empty());
|
||
|
CV_Assert(_testImgDescriptors[i].rows == 1);
|
||
|
CV_Assert(_testImgDescriptors[i].cols == clTree.cols);
|
||
|
CV_Assert(_testImgDescriptors[i].type() == CV_32F);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (size_t i = 0; i < queryImgDescriptors.size(); i++) {
|
||
|
CV_Assert(!queryImgDescriptors[i].empty());
|
||
|
CV_Assert(queryImgDescriptors[i].rows == 1);
|
||
|
CV_Assert(queryImgDescriptors[i].cols == clTree.cols);
|
||
|
CV_Assert(queryImgDescriptors[i].type() == CV_32F);
|
||
|
|
||
|
// TODO: add mask
|
||
|
|
||
|
compareImgDescriptor(queryImgDescriptors[i],
|
||
|
(int)i, _testImgDescriptors, matches);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void FabMap::compareImgDescriptor(const Mat& queryImgDescriptor,
|
||
|
int queryIndex, const vector<Mat>& _testImgDescriptors,
|
||
|
vector<IMatch>& matches) {
|
||
|
|
||
|
vector<IMatch> queryMatches;
|
||
|
queryMatches.push_back(IMatch(queryIndex,-1,
|
||
|
getNewPlaceLikelihood(queryImgDescriptor),0));
|
||
|
getLikelihoods(queryImgDescriptor,_testImgDescriptors,queryMatches);
|
||
|
normaliseDistribution(queryMatches);
|
||
|
for (size_t j = 1; j < queryMatches.size(); j++) {
|
||
|
queryMatches[j].queryIdx = queryIndex;
|
||
|
}
|
||
|
matches.insert(matches.end(), queryMatches.begin(), queryMatches.end());
|
||
|
}
|
||
|
|
||
|
void FabMap::getLikelihoods(const Mat& /*queryImgDescriptor*/,
|
||
|
const vector<Mat>& /*testImgDescriptors*/, vector<IMatch>& /*matches*/) {
|
||
|
|
||
|
}
|
||
|
|
||
|
double FabMap::getNewPlaceLikelihood(const Mat& queryImgDescriptor) {
|
||
|
if (flags & MEAN_FIELD) {
|
||
|
double logP = 0;
|
||
|
bool zq, zpq;
|
||
|
if(flags & NAIVE_BAYES) {
|
||
|
for (int q = 0; q < clTree.cols; q++) {
|
||
|
zq = queryImgDescriptor.at<float>(0,q) > 0;
|
||
|
|
||
|
logP += log(Pzq(q, false) * PzqGeq(zq, false) +
|
||
|
Pzq(q, true) * PzqGeq(zq, true));
|
||
|
}
|
||
|
} else {
|
||
|
for (int q = 0; q < clTree.cols; q++) {
|
||
|
zq = queryImgDescriptor.at<float>(0,q) > 0;
|
||
|
zpq = queryImgDescriptor.at<float>(0,pq(q)) > 0;
|
||
|
|
||
|
double alpha, beta, p;
|
||
|
alpha = Pzq(q, zq) * PzqGeq(!zq, false) * PzqGzpq(q, !zq, zpq);
|
||
|
beta = Pzq(q, !zq) * PzqGeq(zq, false) * PzqGzpq(q, zq, zpq);
|
||
|
p = Pzq(q, false) * beta / (alpha + beta);
|
||
|
|
||
|
alpha = Pzq(q, zq) * PzqGeq(!zq, true) * PzqGzpq(q, !zq, zpq);
|
||
|
beta = Pzq(q, !zq) * PzqGeq(zq, true) * PzqGzpq(q, zq, zpq);
|
||
|
p += Pzq(q, true) * beta / (alpha + beta);
|
||
|
|
||
|
logP += log(p);
|
||
|
}
|
||
|
}
|
||
|
return logP;
|
||
|
}
|
||
|
|
||
|
if (flags & SAMPLED) {
|
||
|
CV_Assert(!trainingImgDescriptors.empty());
|
||
|
CV_Assert(numSamples > 0);
|
||
|
|
||
|
vector<Mat> sampledImgDescriptors;
|
||
|
|
||
|
// TODO: this method can result in the same sample being added
|
||
|
// multiple times. Is this desired?
|
||
|
|
||
|
for (int i = 0; i < numSamples; i++) {
|
||
|
int index = rand() % trainingImgDescriptors.size();
|
||
|
sampledImgDescriptors.push_back(trainingImgDescriptors[index]);
|
||
|
}
|
||
|
|
||
|
vector<IMatch> matches;
|
||
|
getLikelihoods(queryImgDescriptor,sampledImgDescriptors,matches);
|
||
|
|
||
|
double averageLogLikelihood = -DBL_MAX + matches.front().likelihood + 1;
|
||
|
for (int i = 0; i < numSamples; i++) {
|
||
|
averageLogLikelihood =
|
||
|
logsumexp(matches[i].likelihood, averageLogLikelihood);
|
||
|
}
|
||
|
|
||
|
return averageLogLikelihood - log((double)numSamples);
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void FabMap::normaliseDistribution(vector<IMatch>& matches) {
|
||
|
CV_Assert(!matches.empty());
|
||
|
|
||
|
if (flags & MOTION_MODEL) {
|
||
|
|
||
|
matches[0].match = matches[0].likelihood + log(Pnew);
|
||
|
|
||
|
if (priorMatches.size() > 2) {
|
||
|
matches[1].match = matches[1].likelihood;
|
||
|
matches[1].match += log(
|
||
|
(2 * (1-mBias) * priorMatches[1].match +
|
||
|
priorMatches[1].match +
|
||
|
2 * mBias * priorMatches[2].match) / 3);
|
||
|
for (size_t i = 2; i < priorMatches.size()-1; i++) {
|
||
|
matches[i].match = matches[i].likelihood;
|
||
|
matches[i].match += log(
|
||
|
(2 * (1-mBias) * priorMatches[i-1].match +
|
||
|
priorMatches[i].match +
|
||
|
2 * mBias * priorMatches[i+1].match)/3);
|
||
|
}
|
||
|
matches[priorMatches.size()-1].match =
|
||
|
matches[priorMatches.size()-1].likelihood;
|
||
|
matches[priorMatches.size()-1].match += log(
|
||
|
(2 * (1-mBias) * priorMatches[priorMatches.size()-2].match +
|
||
|
priorMatches[priorMatches.size()-1].match +
|
||
|
2 * mBias * priorMatches[priorMatches.size()-1].match)/3);
|
||
|
|
||
|
for(size_t i = priorMatches.size(); i < matches.size(); i++) {
|
||
|
matches[i].match = matches[i].likelihood;
|
||
|
}
|
||
|
} else {
|
||
|
for(size_t i = 1; i < matches.size(); i++) {
|
||
|
matches[i].match = matches[i].likelihood;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
double logsum = -DBL_MAX + matches.front().match + 1;
|
||
|
|
||
|
//calculate the normalising constant
|
||
|
for (size_t i = 0; i < matches.size(); i++) {
|
||
|
logsum = logsumexp(logsum, matches[i].match);
|
||
|
}
|
||
|
|
||
|
//normalise
|
||
|
for (size_t i = 0; i < matches.size(); i++) {
|
||
|
matches[i].match = exp(matches[i].match - logsum);
|
||
|
}
|
||
|
|
||
|
//smooth final probabilities
|
||
|
for (size_t i = 0; i < matches.size(); i++) {
|
||
|
matches[i].match = sFactor*matches[i].match +
|
||
|
(1 - sFactor)/matches.size();
|
||
|
}
|
||
|
|
||
|
//update our location priors
|
||
|
priorMatches = matches;
|
||
|
|
||
|
} else {
|
||
|
|
||
|
double logsum = -DBL_MAX + matches.front().likelihood + 1;
|
||
|
|
||
|
for (size_t i = 0; i < matches.size(); i++) {
|
||
|
logsum = logsumexp(logsum, matches[i].likelihood);
|
||
|
}
|
||
|
for (size_t i = 0; i < matches.size(); i++) {
|
||
|
matches[i].match = exp(matches[i].likelihood - logsum);
|
||
|
}
|
||
|
for (size_t i = 0; i < matches.size(); i++) {
|
||
|
matches[i].match = sFactor*matches[i].match +
|
||
|
(1 - sFactor)/matches.size();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int FabMap::pq(int q) {
|
||
|
return (int)clTree.at<double>(0,q);
|
||
|
}
|
||
|
|
||
|
double FabMap::Pzq(int q, bool zq) {
|
||
|
return (zq) ? clTree.at<double>(1,q) : 1 - clTree.at<double>(1,q);
|
||
|
}
|
||
|
|
||
|
double FabMap::PzqGzpq(int q, bool zq, bool zpq) {
|
||
|
if (zpq) {
|
||
|
return (zq) ? clTree.at<double>(2,q) : 1 - clTree.at<double>(2,q);
|
||
|
} else {
|
||
|
return (zq) ? clTree.at<double>(3,q) : 1 - clTree.at<double>(3,q);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
double FabMap::PzqGeq(bool zq, bool eq) {
|
||
|
if (eq) {
|
||
|
return (zq) ? PzGe : 1 - PzGe;
|
||
|
} else {
|
||
|
return (zq) ? PzGNe : 1 - PzGNe;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
double FabMap::PeqGL(int q, bool Lzq, bool eq) {
|
||
|
double alpha, beta;
|
||
|
alpha = PzqGeq(Lzq, true) * Pzq(q, true);
|
||
|
beta = PzqGeq(Lzq, false) * Pzq(q, false);
|
||
|
|
||
|
if (eq) {
|
||
|
return alpha / (alpha + beta);
|
||
|
} else {
|
||
|
return 1 - (alpha / (alpha + beta));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
double FabMap::PzqGL(int q, bool zq, bool /*zpq*/, bool Lzq) {
|
||
|
return PeqGL(q, Lzq, false) * PzqGeq(zq, false) +
|
||
|
PeqGL(q, Lzq, true) * PzqGeq(zq, true);
|
||
|
}
|
||
|
|
||
|
|
||
|
double FabMap::PzqGzpqL(int q, bool zq, bool zpq, bool Lzq) {
|
||
|
double p;
|
||
|
double alpha, beta;
|
||
|
|
||
|
alpha = Pzq(q, zq) * PzqGeq(!zq, false) * PzqGzpq(q, !zq, zpq);
|
||
|
beta = Pzq(q, !zq) * PzqGeq( zq, false) * PzqGzpq(q, zq, zpq);
|
||
|
p = PeqGL(q, Lzq, false) * beta / (alpha + beta);
|
||
|
|
||
|
alpha = Pzq(q, zq) * PzqGeq(!zq, true) * PzqGzpq(q, !zq, zpq);
|
||
|
beta = Pzq(q, !zq) * PzqGeq( zq, true) * PzqGzpq(q, zq, zpq);
|
||
|
p += PeqGL(q, Lzq, true) * beta / (alpha + beta);
|
||
|
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
|
||
|
FabMap1::FabMap1(const Mat& _clTree, double _PzGe, double _PzGNe, int _flags,
|
||
|
int _numSamples) : FabMap(_clTree, _PzGe, _PzGNe, _flags,
|
||
|
_numSamples) {
|
||
|
}
|
||
|
|
||
|
FabMap1::~FabMap1() {
|
||
|
}
|
||
|
|
||
|
void FabMap1::getLikelihoods(const Mat& queryImgDescriptor,
|
||
|
const vector<Mat>& testImgDescriptors, vector<IMatch>& matches) {
|
||
|
|
||
|
for (size_t i = 0; i < testImgDescriptors.size(); i++) {
|
||
|
bool zq, zpq, Lzq;
|
||
|
double logP = 0;
|
||
|
for (int q = 0; q < clTree.cols; q++) {
|
||
|
|
||
|
zq = queryImgDescriptor.at<float>(0,q) > 0;
|
||
|
zpq = queryImgDescriptor.at<float>(0,pq(q)) > 0;
|
||
|
Lzq = testImgDescriptors[i].at<float>(0,q) > 0;
|
||
|
|
||
|
logP += log((this->*PzGL)(q, zq, zpq, Lzq));
|
||
|
|
||
|
}
|
||
|
matches.push_back(IMatch(0,(int)i,logP,0));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
FabMapLUT::FabMapLUT(const Mat& _clTree, double _PzGe, double _PzGNe,
|
||
|
int _flags, int _numSamples, int _precision) :
|
||
|
FabMap(_clTree, _PzGe, _PzGNe, _flags, _numSamples), precision(_precision) {
|
||
|
|
||
|
int nWords = clTree.cols;
|
||
|
double precFactor = (double)pow(10.0, precision);
|
||
|
|
||
|
table = new int[nWords][8];
|
||
|
|
||
|
for (int q = 0; q < nWords; q++) {
|
||
|
for (unsigned char i = 0; i < 8; i++) {
|
||
|
|
||
|
bool Lzq = (bool) ((i >> 2) & 0x01);
|
||
|
bool zq = (bool) ((i >> 1) & 0x01);
|
||
|
bool zpq = (bool) (i & 1);
|
||
|
|
||
|
table[q][i] = -(int)(log((this->*PzGL)(q, zq, zpq, Lzq))
|
||
|
* precFactor);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
FabMapLUT::~FabMapLUT() {
|
||
|
delete[] table;
|
||
|
}
|
||
|
|
||
|
void FabMapLUT::getLikelihoods(const Mat& queryImgDescriptor,
|
||
|
const vector<Mat>& testImgDescriptors, vector<IMatch>& matches) {
|
||
|
|
||
|
double precFactor = (double)pow(10.0, -precision);
|
||
|
|
||
|
for (size_t i = 0; i < testImgDescriptors.size(); i++) {
|
||
|
unsigned long long int logP = 0;
|
||
|
for (int q = 0; q < clTree.cols; q++) {
|
||
|
logP += table[q][(queryImgDescriptor.at<float>(0,pq(q)) > 0) +
|
||
|
((queryImgDescriptor.at<float>(0, q) > 0) << 1) +
|
||
|
((testImgDescriptors[i].at<float>(0,q) > 0) << 2)];
|
||
|
}
|
||
|
matches.push_back(IMatch(0,(int)i,-precFactor*(double)logP,0));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
FabMapFBO::FabMapFBO(const Mat& _clTree, double _PzGe, double _PzGNe,
|
||
|
int _flags, int _numSamples, double _rejectionThreshold,
|
||
|
double _PsGd, int _bisectionStart, int _bisectionIts) :
|
||
|
FabMap(_clTree, _PzGe, _PzGNe, _flags, _numSamples), PsGd(_PsGd),
|
||
|
rejectionThreshold(_rejectionThreshold), bisectionStart(_bisectionStart),
|
||
|
bisectionIts(_bisectionIts) {
|
||
|
}
|
||
|
|
||
|
|
||
|
FabMapFBO::~FabMapFBO() {
|
||
|
}
|
||
|
|
||
|
void FabMapFBO::getLikelihoods(const Mat& queryImgDescriptor,
|
||
|
const vector<Mat>& testImgDescriptors, vector<IMatch>& matches) {
|
||
|
|
||
|
std::multiset<WordStats> wordData;
|
||
|
setWordStatistics(queryImgDescriptor, wordData);
|
||
|
|
||
|
vector<int> matchIndices;
|
||
|
vector<IMatch> queryMatches;
|
||
|
|
||
|
for (size_t i = 0; i < testImgDescriptors.size(); i++) {
|
||
|
queryMatches.push_back(IMatch(0,(int)i,0,0));
|
||
|
matchIndices.push_back((int)i);
|
||
|
}
|
||
|
|
||
|
double currBest = -DBL_MAX;
|
||
|
double bailedOut = DBL_MAX;
|
||
|
|
||
|
for (std::multiset<WordStats>::iterator wordIter = wordData.begin();
|
||
|
wordIter != wordData.end(); wordIter++) {
|
||
|
bool zq = queryImgDescriptor.at<float>(0,wordIter->q) > 0;
|
||
|
bool zpq = queryImgDescriptor.at<float>(0,pq(wordIter->q)) > 0;
|
||
|
|
||
|
currBest = -DBL_MAX;
|
||
|
|
||
|
for (size_t i = 0; i < matchIndices.size(); i++) {
|
||
|
bool Lzq =
|
||
|
testImgDescriptors[matchIndices[i]].at<float>(0,wordIter->q) > 0;
|
||
|
queryMatches[matchIndices[i]].likelihood +=
|
||
|
log((this->*PzGL)(wordIter->q,zq,zpq,Lzq));
|
||
|
currBest =
|
||
|
std::max(queryMatches[matchIndices[i]].likelihood, currBest);
|
||
|
}
|
||
|
|
||
|
if (matchIndices.size() == 1)
|
||
|
continue;
|
||
|
|
||
|
double delta = std::max(limitbisection(wordIter->V, wordIter->M),
|
||
|
-log(rejectionThreshold));
|
||
|
|
||
|
vector<int>::iterator matchIter = matchIndices.begin();
|
||
|
while (matchIter != matchIndices.end()) {
|
||
|
if (currBest - queryMatches[*matchIter].likelihood > delta) {
|
||
|
queryMatches[*matchIter].likelihood = bailedOut;
|
||
|
matchIter = matchIndices.erase(matchIter);
|
||
|
} else {
|
||
|
matchIter++;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (size_t i = 0; i < queryMatches.size(); i++) {
|
||
|
if (queryMatches[i].likelihood == bailedOut) {
|
||
|
queryMatches[i].likelihood = currBest + log(rejectionThreshold);
|
||
|
}
|
||
|
}
|
||
|
matches.insert(matches.end(), queryMatches.begin(), queryMatches.end());
|
||
|
|
||
|
}
|
||
|
|
||
|
void FabMapFBO::setWordStatistics(const Mat& queryImgDescriptor,
|
||
|
std::multiset<WordStats>& wordData) {
|
||
|
//words are sorted according to information = -ln(P(zq|zpq))
|
||
|
//in non-log format this is lowest probability first
|
||
|
for (int q = 0; q < clTree.cols; q++) {
|
||
|
wordData.insert(WordStats(q,PzqGzpq(q,
|
||
|
queryImgDescriptor.at<float>(0,q) > 0,
|
||
|
queryImgDescriptor.at<float>(0,pq(q)) > 0)));
|
||
|
}
|
||
|
|
||
|
double d = 0, V = 0, M = 0;
|
||
|
bool zq, zpq;
|
||
|
|
||
|
for (std::multiset<WordStats>::reverse_iterator wordIter =
|
||
|
wordData.rbegin();
|
||
|
wordIter != wordData.rend(); wordIter++) {
|
||
|
|
||
|
zq = queryImgDescriptor.at<float>(0,wordIter->q) > 0;
|
||
|
zpq = queryImgDescriptor.at<float>(0,pq(wordIter->q)) > 0;
|
||
|
|
||
|
d = log((this->*PzGL)(wordIter->q, zq, zpq, true)) -
|
||
|
log((this->*PzGL)(wordIter->q, zq, zpq, false));
|
||
|
|
||
|
V += pow(d, 2.0) * 2 *
|
||
|
(Pzq(wordIter->q, true) - pow(Pzq(wordIter->q, true), 2.0));
|
||
|
M = std::max(M, fabs(d));
|
||
|
|
||
|
wordIter->V = V;
|
||
|
wordIter->M = M;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
double FabMapFBO::limitbisection(double v, double m) {
|
||
|
double midpoint, left_val, mid_val;
|
||
|
double left = 0, right = bisectionStart;
|
||
|
|
||
|
left_val = bennettInequality(v, m, left) - PsGd;
|
||
|
|
||
|
for(int i = 0; i < bisectionIts; i++) {
|
||
|
|
||
|
midpoint = (left + right)*0.5;
|
||
|
mid_val = bennettInequality(v, m, midpoint)- PsGd;
|
||
|
|
||
|
if(left_val * mid_val > 0) {
|
||
|
left = midpoint;
|
||
|
left_val = mid_val;
|
||
|
} else {
|
||
|
right = midpoint;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return (right + left) * 0.5;
|
||
|
}
|
||
|
|
||
|
double FabMapFBO::bennettInequality(double v, double m, double delta) {
|
||
|
double DMonV = delta * m / v;
|
||
|
double f_delta = log(DMonV + sqrt(pow(DMonV, 2.0) + 1));
|
||
|
return exp((v / pow(m, 2.0))*(cosh(f_delta) - 1 - DMonV * f_delta));
|
||
|
}
|
||
|
|
||
|
bool FabMapFBO::compInfo(const WordStats& first, const WordStats& second) {
|
||
|
return first.info < second.info;
|
||
|
}
|
||
|
|
||
|
FabMap2::FabMap2(const Mat& _clTree, double _PzGe, double _PzGNe,
|
||
|
int _flags) :
|
||
|
FabMap(_clTree, _PzGe, _PzGNe, _flags) {
|
||
|
CV_Assert(flags & SAMPLED);
|
||
|
|
||
|
children.resize(clTree.cols);
|
||
|
|
||
|
for (int q = 0; q < clTree.cols; q++) {
|
||
|
d1.push_back(log((this->*PzGL)(q, false, false, true) /
|
||
|
(this->*PzGL)(q, false, false, false)));
|
||
|
d2.push_back(log((this->*PzGL)(q, false, true, true) /
|
||
|
(this->*PzGL)(q, false, true, false)) - d1[q]);
|
||
|
d3.push_back(log((this->*PzGL)(q, true, false, true) /
|
||
|
(this->*PzGL)(q, true, false, false))- d1[q]);
|
||
|
d4.push_back(log((this->*PzGL)(q, true, true, true) /
|
||
|
(this->*PzGL)(q, true, true, false))- d1[q]);
|
||
|
children[pq(q)].push_back(q);
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
FabMap2::~FabMap2() {
|
||
|
}
|
||
|
|
||
|
|
||
|
void FabMap2::addTraining(const vector<Mat>& queryImgDescriptors) {
|
||
|
for (size_t i = 0; i < queryImgDescriptors.size(); i++) {
|
||
|
CV_Assert(!queryImgDescriptors[i].empty());
|
||
|
CV_Assert(queryImgDescriptors[i].rows == 1);
|
||
|
CV_Assert(queryImgDescriptors[i].cols == clTree.cols);
|
||
|
CV_Assert(queryImgDescriptors[i].type() == CV_32F);
|
||
|
trainingImgDescriptors.push_back(queryImgDescriptors[i]);
|
||
|
addToIndex(queryImgDescriptors[i], trainingDefaults, trainingInvertedMap);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void FabMap2::add(const vector<Mat>& queryImgDescriptors) {
|
||
|
for (size_t i = 0; i < queryImgDescriptors.size(); i++) {
|
||
|
CV_Assert(!queryImgDescriptors[i].empty());
|
||
|
CV_Assert(queryImgDescriptors[i].rows == 1);
|
||
|
CV_Assert(queryImgDescriptors[i].cols == clTree.cols);
|
||
|
CV_Assert(queryImgDescriptors[i].type() == CV_32F);
|
||
|
testImgDescriptors.push_back(queryImgDescriptors[i]);
|
||
|
addToIndex(queryImgDescriptors[i], testDefaults, testInvertedMap);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void FabMap2::getLikelihoods(const Mat& queryImgDescriptor,
|
||
|
const vector<Mat>& testImgDescriptors, vector<IMatch>& matches) {
|
||
|
|
||
|
if (&testImgDescriptors== &(this->testImgDescriptors)) {
|
||
|
getIndexLikelihoods(queryImgDescriptor, testDefaults, testInvertedMap,
|
||
|
matches);
|
||
|
} else {
|
||
|
CV_Assert(!(flags & MOTION_MODEL));
|
||
|
vector<double> defaults;
|
||
|
std::map<int, vector<int> > invertedMap;
|
||
|
for (size_t i = 0; i < testImgDescriptors.size(); i++) {
|
||
|
addToIndex(testImgDescriptors[i],defaults,invertedMap);
|
||
|
}
|
||
|
getIndexLikelihoods(queryImgDescriptor, defaults, invertedMap, matches);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
double FabMap2::getNewPlaceLikelihood(const Mat& queryImgDescriptor) {
|
||
|
|
||
|
CV_Assert(!trainingImgDescriptors.empty());
|
||
|
|
||
|
vector<IMatch> matches;
|
||
|
getIndexLikelihoods(queryImgDescriptor, trainingDefaults,
|
||
|
trainingInvertedMap, matches);
|
||
|
|
||
|
double averageLogLikelihood = -DBL_MAX + matches.front().likelihood + 1;
|
||
|
for (size_t i = 0; i < matches.size(); i++) {
|
||
|
averageLogLikelihood =
|
||
|
logsumexp(matches[i].likelihood, averageLogLikelihood);
|
||
|
}
|
||
|
|
||
|
return averageLogLikelihood - log((double)trainingDefaults.size());
|
||
|
|
||
|
}
|
||
|
|
||
|
void FabMap2::addToIndex(const Mat& queryImgDescriptor,
|
||
|
vector<double>& defaults,
|
||
|
std::map<int, vector<int> >& invertedMap) {
|
||
|
defaults.push_back(0);
|
||
|
for (int q = 0; q < clTree.cols; q++) {
|
||
|
if (queryImgDescriptor.at<float>(0,q) > 0) {
|
||
|
defaults.back() += d1[q];
|
||
|
invertedMap[q].push_back((int)defaults.size()-1);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void FabMap2::getIndexLikelihoods(const Mat& queryImgDescriptor,
|
||
|
std::vector<double>& defaults,
|
||
|
std::map<int, vector<int> >& invertedMap,
|
||
|
std::vector<IMatch>& matches) {
|
||
|
|
||
|
vector<int>::iterator LwithI, child;
|
||
|
|
||
|
std::vector<double> likelihoods = defaults;
|
||
|
|
||
|
for (int q = 0; q < clTree.cols; q++) {
|
||
|
if (queryImgDescriptor.at<float>(0,q) > 0) {
|
||
|
for (LwithI = invertedMap[q].begin();
|
||
|
LwithI != invertedMap[q].end(); LwithI++) {
|
||
|
|
||
|
if (queryImgDescriptor.at<float>(0,pq(q)) > 0) {
|
||
|
likelihoods[*LwithI] += d4[q];
|
||
|
} else {
|
||
|
likelihoods[*LwithI] += d3[q];
|
||
|
}
|
||
|
}
|
||
|
for (child = children[q].begin(); child != children[q].end();
|
||
|
child++) {
|
||
|
|
||
|
if (queryImgDescriptor.at<float>(0,*child) == 0) {
|
||
|
for (LwithI = invertedMap[*child].begin();
|
||
|
LwithI != invertedMap[*child].end(); LwithI++) {
|
||
|
|
||
|
likelihoods[*LwithI] += d2[*child];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (size_t i = 0; i < likelihoods.size(); i++) {
|
||
|
matches.push_back(IMatch(0,(int)i,likelihoods[i],0));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
}
|