opencv/modules/contrib/src/openfabmap.cpp

780 lines
26 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
// This file originates from the openFABMAP project:
// [http://code.google.com/p/openfabmap/]
//
// For published work which uses all or part of OpenFABMAP, please cite:
// [http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6224843]
//
// Original Algorithm by Mark Cummins and Paul Newman:
// [http://ijr.sagepub.com/content/27/6/647.short]
// [http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5613942]
// [http://ijr.sagepub.com/content/30/9/1100.abstract]
//
// License Agreement
//
// Copyright (C) 2012 Arren Glover [aj.glover@qut.edu.au] and
// Will Maddern [w.maddern@qut.edu.au], all rights reserved.
//
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencv2/contrib/openfabmap.hpp"
/*
Calculate the sum of two log likelihoods
*/
namespace cv {
namespace of2 {
static double logsumexp(double a, double b) {
return a > b ? log(1 + exp(b - a)) + a : log(1 + exp(a - b)) + b;
}
FabMap::FabMap(const Mat& _clTree, double _PzGe,
double _PzGNe, int _flags, int _numSamples) :
clTree(_clTree), PzGe(_PzGe), PzGNe(_PzGNe), flags(
_flags), numSamples(_numSamples) {
CV_Assert(flags & MEAN_FIELD || flags & SAMPLED);
CV_Assert(flags & NAIVE_BAYES || flags & CHOW_LIU);
if (flags & NAIVE_BAYES) {
PzGL = &FabMap::PzqGL;
} else {
PzGL = &FabMap::PzqGzpqL;
}
//check for a valid Chow-Liu tree
CV_Assert(clTree.type() == CV_64FC1);
cv::checkRange(clTree.row(0), false, NULL, 0, clTree.cols);
cv::checkRange(clTree.row(1), false, NULL, DBL_MIN, 1);
cv::checkRange(clTree.row(2), false, NULL, DBL_MIN, 1);
cv::checkRange(clTree.row(3), false, NULL, DBL_MIN, 1);
// TODO: Add default values for member variables
Pnew = 0.9;
sFactor = 0.99;
mBias = 0.5;
}
FabMap::~FabMap() {
}
const std::vector<cv::Mat>& FabMap::getTrainingImgDescriptors() const {
return trainingImgDescriptors;
}
const std::vector<cv::Mat>& FabMap::getTestImgDescriptors() const {
return testImgDescriptors;
}
void FabMap::addTraining(const Mat& queryImgDescriptor) {
CV_Assert(!queryImgDescriptor.empty());
vector<Mat> queryImgDescriptors;
for (int i = 0; i < queryImgDescriptor.rows; i++) {
queryImgDescriptors.push_back(queryImgDescriptor.row(i));
}
addTraining(queryImgDescriptors);
}
void FabMap::addTraining(const vector<Mat>& queryImgDescriptors) {
for (size_t i = 0; i < queryImgDescriptors.size(); i++) {
CV_Assert(!queryImgDescriptors[i].empty());
CV_Assert(queryImgDescriptors[i].rows == 1);
CV_Assert(queryImgDescriptors[i].cols == clTree.cols);
CV_Assert(queryImgDescriptors[i].type() == CV_32F);
trainingImgDescriptors.push_back(queryImgDescriptors[i]);
}
}
void FabMap::add(const cv::Mat& queryImgDescriptor) {
CV_Assert(!queryImgDescriptor.empty());
vector<Mat> queryImgDescriptors;
for (int i = 0; i < queryImgDescriptor.rows; i++) {
queryImgDescriptors.push_back(queryImgDescriptor.row(i));
}
add(queryImgDescriptors);
}
void FabMap::add(const std::vector<cv::Mat>& queryImgDescriptors) {
for (size_t i = 0; i < queryImgDescriptors.size(); i++) {
CV_Assert(!queryImgDescriptors[i].empty());
CV_Assert(queryImgDescriptors[i].rows == 1);
CV_Assert(queryImgDescriptors[i].cols == clTree.cols);
CV_Assert(queryImgDescriptors[i].type() == CV_32F);
testImgDescriptors.push_back(queryImgDescriptors[i]);
}
}
void FabMap::compare(const Mat& queryImgDescriptor,
vector<IMatch>& matches, bool addQuery,
const Mat& mask) {
CV_Assert(!queryImgDescriptor.empty());
vector<Mat> queryImgDescriptors;
for (int i = 0; i < queryImgDescriptor.rows; i++) {
queryImgDescriptors.push_back(queryImgDescriptor.row(i));
}
compare(queryImgDescriptors,matches,addQuery,mask);
}
void FabMap::compare(const Mat& queryImgDescriptor,
const Mat& testImgDescriptor, vector<IMatch>& matches,
const Mat& mask) {
CV_Assert(!queryImgDescriptor.empty());
vector<Mat> queryImgDescriptors;
for (int i = 0; i < queryImgDescriptor.rows; i++) {
queryImgDescriptors.push_back(queryImgDescriptor.row(i));
}
CV_Assert(!testImgDescriptor.empty());
vector<Mat> _testImgDescriptors;
for (int i = 0; i < testImgDescriptor.rows; i++) {
_testImgDescriptors.push_back(testImgDescriptor.row(i));
}
compare(queryImgDescriptors,_testImgDescriptors,matches,mask);
}
void FabMap::compare(const Mat& queryImgDescriptor,
const vector<Mat>& _testImgDescriptors,
vector<IMatch>& matches, const Mat& mask) {
CV_Assert(!queryImgDescriptor.empty());
vector<Mat> queryImgDescriptors;
for (int i = 0; i < queryImgDescriptor.rows; i++) {
queryImgDescriptors.push_back(queryImgDescriptor.row(i));
}
compare(queryImgDescriptors,_testImgDescriptors,matches,mask);
}
void FabMap::compare(const vector<Mat>& queryImgDescriptors,
vector<IMatch>& matches, bool addQuery, const Mat& /*mask*/) {
// TODO: add first query if empty (is this necessary)
for (size_t i = 0; i < queryImgDescriptors.size(); i++) {
CV_Assert(!queryImgDescriptors[i].empty());
CV_Assert(queryImgDescriptors[i].rows == 1);
CV_Assert(queryImgDescriptors[i].cols == clTree.cols);
CV_Assert(queryImgDescriptors[i].type() == CV_32F);
// TODO: add mask
compareImgDescriptor(queryImgDescriptors[i],
(int)i, testImgDescriptors, matches);
if (addQuery)
add(queryImgDescriptors[i]);
}
}
void FabMap::compare(const vector<Mat>& queryImgDescriptors,
const vector<Mat>& _testImgDescriptors,
vector<IMatch>& matches, const Mat& /*mask*/) {
if (_testImgDescriptors[0].data != this->testImgDescriptors[0].data) {
CV_Assert(!(flags & MOTION_MODEL));
for (size_t i = 0; i < _testImgDescriptors.size(); i++) {
CV_Assert(!_testImgDescriptors[i].empty());
CV_Assert(_testImgDescriptors[i].rows == 1);
CV_Assert(_testImgDescriptors[i].cols == clTree.cols);
CV_Assert(_testImgDescriptors[i].type() == CV_32F);
}
}
for (size_t i = 0; i < queryImgDescriptors.size(); i++) {
CV_Assert(!queryImgDescriptors[i].empty());
CV_Assert(queryImgDescriptors[i].rows == 1);
CV_Assert(queryImgDescriptors[i].cols == clTree.cols);
CV_Assert(queryImgDescriptors[i].type() == CV_32F);
// TODO: add mask
compareImgDescriptor(queryImgDescriptors[i],
(int)i, _testImgDescriptors, matches);
}
}
void FabMap::compareImgDescriptor(const Mat& queryImgDescriptor,
int queryIndex, const vector<Mat>& _testImgDescriptors,
vector<IMatch>& matches) {
vector<IMatch> queryMatches;
queryMatches.push_back(IMatch(queryIndex,-1,
getNewPlaceLikelihood(queryImgDescriptor),0));
getLikelihoods(queryImgDescriptor,_testImgDescriptors,queryMatches);
normaliseDistribution(queryMatches);
for (size_t j = 1; j < queryMatches.size(); j++) {
queryMatches[j].queryIdx = queryIndex;
}
matches.insert(matches.end(), queryMatches.begin(), queryMatches.end());
}
void FabMap::getLikelihoods(const Mat& /*queryImgDescriptor*/,
const vector<Mat>& /*testImgDescriptors*/, vector<IMatch>& /*matches*/) {
}
double FabMap::getNewPlaceLikelihood(const Mat& queryImgDescriptor) {
if (flags & MEAN_FIELD) {
double logP = 0;
bool zq, zpq;
if(flags & NAIVE_BAYES) {
for (int q = 0; q < clTree.cols; q++) {
zq = queryImgDescriptor.at<float>(0,q) > 0;
logP += log(Pzq(q, false) * PzqGeq(zq, false) +
Pzq(q, true) * PzqGeq(zq, true));
}
} else {
for (int q = 0; q < clTree.cols; q++) {
zq = queryImgDescriptor.at<float>(0,q) > 0;
zpq = queryImgDescriptor.at<float>(0,pq(q)) > 0;
double alpha, beta, p;
alpha = Pzq(q, zq) * PzqGeq(!zq, false) * PzqGzpq(q, !zq, zpq);
beta = Pzq(q, !zq) * PzqGeq(zq, false) * PzqGzpq(q, zq, zpq);
p = Pzq(q, false) * beta / (alpha + beta);
alpha = Pzq(q, zq) * PzqGeq(!zq, true) * PzqGzpq(q, !zq, zpq);
beta = Pzq(q, !zq) * PzqGeq(zq, true) * PzqGzpq(q, zq, zpq);
p += Pzq(q, true) * beta / (alpha + beta);
logP += log(p);
}
}
return logP;
}
if (flags & SAMPLED) {
CV_Assert(!trainingImgDescriptors.empty());
CV_Assert(numSamples > 0);
vector<Mat> sampledImgDescriptors;
// TODO: this method can result in the same sample being added
// multiple times. Is this desired?
for (int i = 0; i < numSamples; i++) {
int index = rand() % trainingImgDescriptors.size();
sampledImgDescriptors.push_back(trainingImgDescriptors[index]);
}
vector<IMatch> matches;
getLikelihoods(queryImgDescriptor,sampledImgDescriptors,matches);
double averageLogLikelihood = -DBL_MAX + matches.front().likelihood + 1;
for (int i = 0; i < numSamples; i++) {
averageLogLikelihood =
logsumexp(matches[i].likelihood, averageLogLikelihood);
}
return averageLogLikelihood - log((double)numSamples);
}
return 0;
}
void FabMap::normaliseDistribution(vector<IMatch>& matches) {
CV_Assert(!matches.empty());
if (flags & MOTION_MODEL) {
matches[0].match = matches[0].likelihood + log(Pnew);
if (priorMatches.size() > 2) {
matches[1].match = matches[1].likelihood;
matches[1].match += log(
(2 * (1-mBias) * priorMatches[1].match +
priorMatches[1].match +
2 * mBias * priorMatches[2].match) / 3);
for (size_t i = 2; i < priorMatches.size()-1; i++) {
matches[i].match = matches[i].likelihood;
matches[i].match += log(
(2 * (1-mBias) * priorMatches[i-1].match +
priorMatches[i].match +
2 * mBias * priorMatches[i+1].match)/3);
}
matches[priorMatches.size()-1].match =
matches[priorMatches.size()-1].likelihood;
matches[priorMatches.size()-1].match += log(
(2 * (1-mBias) * priorMatches[priorMatches.size()-2].match +
priorMatches[priorMatches.size()-1].match +
2 * mBias * priorMatches[priorMatches.size()-1].match)/3);
for(size_t i = priorMatches.size(); i < matches.size(); i++) {
matches[i].match = matches[i].likelihood;
}
} else {
for(size_t i = 1; i < matches.size(); i++) {
matches[i].match = matches[i].likelihood;
}
}
double logsum = -DBL_MAX + matches.front().match + 1;
//calculate the normalising constant
for (size_t i = 0; i < matches.size(); i++) {
logsum = logsumexp(logsum, matches[i].match);
}
//normalise
for (size_t i = 0; i < matches.size(); i++) {
matches[i].match = exp(matches[i].match - logsum);
}
//smooth final probabilities
for (size_t i = 0; i < matches.size(); i++) {
matches[i].match = sFactor*matches[i].match +
(1 - sFactor)/matches.size();
}
//update our location priors
priorMatches = matches;
} else {
double logsum = -DBL_MAX + matches.front().likelihood + 1;
for (size_t i = 0; i < matches.size(); i++) {
logsum = logsumexp(logsum, matches[i].likelihood);
}
for (size_t i = 0; i < matches.size(); i++) {
matches[i].match = exp(matches[i].likelihood - logsum);
}
for (size_t i = 0; i < matches.size(); i++) {
matches[i].match = sFactor*matches[i].match +
(1 - sFactor)/matches.size();
}
}
}
int FabMap::pq(int q) {
return (int)clTree.at<double>(0,q);
}
double FabMap::Pzq(int q, bool zq) {
return (zq) ? clTree.at<double>(1,q) : 1 - clTree.at<double>(1,q);
}
double FabMap::PzqGzpq(int q, bool zq, bool zpq) {
if (zpq) {
return (zq) ? clTree.at<double>(2,q) : 1 - clTree.at<double>(2,q);
} else {
return (zq) ? clTree.at<double>(3,q) : 1 - clTree.at<double>(3,q);
}
}
double FabMap::PzqGeq(bool zq, bool eq) {
if (eq) {
return (zq) ? PzGe : 1 - PzGe;
} else {
return (zq) ? PzGNe : 1 - PzGNe;
}
}
double FabMap::PeqGL(int q, bool Lzq, bool eq) {
double alpha, beta;
alpha = PzqGeq(Lzq, true) * Pzq(q, true);
beta = PzqGeq(Lzq, false) * Pzq(q, false);
if (eq) {
return alpha / (alpha + beta);
} else {
return 1 - (alpha / (alpha + beta));
}
}
double FabMap::PzqGL(int q, bool zq, bool /*zpq*/, bool Lzq) {
return PeqGL(q, Lzq, false) * PzqGeq(zq, false) +
PeqGL(q, Lzq, true) * PzqGeq(zq, true);
}
double FabMap::PzqGzpqL(int q, bool zq, bool zpq, bool Lzq) {
double p;
double alpha, beta;
alpha = Pzq(q, zq) * PzqGeq(!zq, false) * PzqGzpq(q, !zq, zpq);
beta = Pzq(q, !zq) * PzqGeq( zq, false) * PzqGzpq(q, zq, zpq);
p = PeqGL(q, Lzq, false) * beta / (alpha + beta);
alpha = Pzq(q, zq) * PzqGeq(!zq, true) * PzqGzpq(q, !zq, zpq);
beta = Pzq(q, !zq) * PzqGeq( zq, true) * PzqGzpq(q, zq, zpq);
p += PeqGL(q, Lzq, true) * beta / (alpha + beta);
return p;
}
FabMap1::FabMap1(const Mat& _clTree, double _PzGe, double _PzGNe, int _flags,
int _numSamples) : FabMap(_clTree, _PzGe, _PzGNe, _flags,
_numSamples) {
}
FabMap1::~FabMap1() {
}
void FabMap1::getLikelihoods(const Mat& queryImgDescriptor,
const vector<Mat>& testImgDescriptors, vector<IMatch>& matches) {
for (size_t i = 0; i < testImgDescriptors.size(); i++) {
bool zq, zpq, Lzq;
double logP = 0;
for (int q = 0; q < clTree.cols; q++) {
zq = queryImgDescriptor.at<float>(0,q) > 0;
zpq = queryImgDescriptor.at<float>(0,pq(q)) > 0;
Lzq = testImgDescriptors[i].at<float>(0,q) > 0;
logP += log((this->*PzGL)(q, zq, zpq, Lzq));
}
matches.push_back(IMatch(0,(int)i,logP,0));
}
}
FabMapLUT::FabMapLUT(const Mat& _clTree, double _PzGe, double _PzGNe,
int _flags, int _numSamples, int _precision) :
FabMap(_clTree, _PzGe, _PzGNe, _flags, _numSamples), precision(_precision) {
int nWords = clTree.cols;
double precFactor = (double)pow(10.0, precision);
table = new int[nWords][8];
for (int q = 0; q < nWords; q++) {
for (unsigned char i = 0; i < 8; i++) {
bool Lzq = (bool) ((i >> 2) & 0x01);
bool zq = (bool) ((i >> 1) & 0x01);
bool zpq = (bool) (i & 1);
table[q][i] = -(int)(log((this->*PzGL)(q, zq, zpq, Lzq))
* precFactor);
}
}
}
FabMapLUT::~FabMapLUT() {
delete[] table;
}
void FabMapLUT::getLikelihoods(const Mat& queryImgDescriptor,
const vector<Mat>& testImgDescriptors, vector<IMatch>& matches) {
double precFactor = (double)pow(10.0, -precision);
for (size_t i = 0; i < testImgDescriptors.size(); i++) {
unsigned long long int logP = 0;
for (int q = 0; q < clTree.cols; q++) {
logP += table[q][(queryImgDescriptor.at<float>(0,pq(q)) > 0) +
((queryImgDescriptor.at<float>(0, q) > 0) << 1) +
((testImgDescriptors[i].at<float>(0,q) > 0) << 2)];
}
matches.push_back(IMatch(0,(int)i,-precFactor*(double)logP,0));
}
}
FabMapFBO::FabMapFBO(const Mat& _clTree, double _PzGe, double _PzGNe,
int _flags, int _numSamples, double _rejectionThreshold,
double _PsGd, int _bisectionStart, int _bisectionIts) :
FabMap(_clTree, _PzGe, _PzGNe, _flags, _numSamples), PsGd(_PsGd),
rejectionThreshold(_rejectionThreshold), bisectionStart(_bisectionStart),
bisectionIts(_bisectionIts) {
}
FabMapFBO::~FabMapFBO() {
}
void FabMapFBO::getLikelihoods(const Mat& queryImgDescriptor,
const vector<Mat>& testImgDescriptors, vector<IMatch>& matches) {
std::multiset<WordStats> wordData;
setWordStatistics(queryImgDescriptor, wordData);
vector<int> matchIndices;
vector<IMatch> queryMatches;
for (size_t i = 0; i < testImgDescriptors.size(); i++) {
queryMatches.push_back(IMatch(0,(int)i,0,0));
matchIndices.push_back((int)i);
}
double currBest = -DBL_MAX;
double bailedOut = DBL_MAX;
for (std::multiset<WordStats>::iterator wordIter = wordData.begin();
wordIter != wordData.end(); wordIter++) {
bool zq = queryImgDescriptor.at<float>(0,wordIter->q) > 0;
bool zpq = queryImgDescriptor.at<float>(0,pq(wordIter->q)) > 0;
currBest = -DBL_MAX;
for (size_t i = 0; i < matchIndices.size(); i++) {
bool Lzq =
testImgDescriptors[matchIndices[i]].at<float>(0,wordIter->q) > 0;
queryMatches[matchIndices[i]].likelihood +=
log((this->*PzGL)(wordIter->q,zq,zpq,Lzq));
currBest =
std::max(queryMatches[matchIndices[i]].likelihood, currBest);
}
if (matchIndices.size() == 1)
continue;
double delta = std::max(limitbisection(wordIter->V, wordIter->M),
-log(rejectionThreshold));
vector<int>::iterator matchIter = matchIndices.begin();
while (matchIter != matchIndices.end()) {
if (currBest - queryMatches[*matchIter].likelihood > delta) {
queryMatches[*matchIter].likelihood = bailedOut;
matchIter = matchIndices.erase(matchIter);
} else {
matchIter++;
}
}
}
for (size_t i = 0; i < queryMatches.size(); i++) {
if (queryMatches[i].likelihood == bailedOut) {
queryMatches[i].likelihood = currBest + log(rejectionThreshold);
}
}
matches.insert(matches.end(), queryMatches.begin(), queryMatches.end());
}
void FabMapFBO::setWordStatistics(const Mat& queryImgDescriptor,
std::multiset<WordStats>& wordData) {
//words are sorted according to information = -ln(P(zq|zpq))
//in non-log format this is lowest probability first
for (int q = 0; q < clTree.cols; q++) {
wordData.insert(WordStats(q,PzqGzpq(q,
queryImgDescriptor.at<float>(0,q) > 0,
queryImgDescriptor.at<float>(0,pq(q)) > 0)));
}
double d = 0, V = 0, M = 0;
bool zq, zpq;
for (std::multiset<WordStats>::reverse_iterator wordIter =
wordData.rbegin();
wordIter != wordData.rend(); wordIter++) {
zq = queryImgDescriptor.at<float>(0,wordIter->q) > 0;
zpq = queryImgDescriptor.at<float>(0,pq(wordIter->q)) > 0;
d = log((this->*PzGL)(wordIter->q, zq, zpq, true)) -
log((this->*PzGL)(wordIter->q, zq, zpq, false));
V += pow(d, 2.0) * 2 *
(Pzq(wordIter->q, true) - pow(Pzq(wordIter->q, true), 2.0));
M = std::max(M, fabs(d));
wordIter->V = V;
wordIter->M = M;
}
}
double FabMapFBO::limitbisection(double v, double m) {
double midpoint, left_val, mid_val;
double left = 0, right = bisectionStart;
left_val = bennettInequality(v, m, left) - PsGd;
for(int i = 0; i < bisectionIts; i++) {
midpoint = (left + right)*0.5;
mid_val = bennettInequality(v, m, midpoint)- PsGd;
if(left_val * mid_val > 0) {
left = midpoint;
left_val = mid_val;
} else {
right = midpoint;
}
}
return (right + left) * 0.5;
}
double FabMapFBO::bennettInequality(double v, double m, double delta) {
double DMonV = delta * m / v;
double f_delta = log(DMonV + sqrt(pow(DMonV, 2.0) + 1));
return exp((v / pow(m, 2.0))*(cosh(f_delta) - 1 - DMonV * f_delta));
}
bool FabMapFBO::compInfo(const WordStats& first, const WordStats& second) {
return first.info < second.info;
}
FabMap2::FabMap2(const Mat& _clTree, double _PzGe, double _PzGNe,
int _flags) :
FabMap(_clTree, _PzGe, _PzGNe, _flags) {
CV_Assert(flags & SAMPLED);
children.resize(clTree.cols);
for (int q = 0; q < clTree.cols; q++) {
d1.push_back(log((this->*PzGL)(q, false, false, true) /
(this->*PzGL)(q, false, false, false)));
d2.push_back(log((this->*PzGL)(q, false, true, true) /
(this->*PzGL)(q, false, true, false)) - d1[q]);
d3.push_back(log((this->*PzGL)(q, true, false, true) /
(this->*PzGL)(q, true, false, false))- d1[q]);
d4.push_back(log((this->*PzGL)(q, true, true, true) /
(this->*PzGL)(q, true, true, false))- d1[q]);
children[pq(q)].push_back(q);
}
}
FabMap2::~FabMap2() {
}
void FabMap2::addTraining(const vector<Mat>& queryImgDescriptors) {
for (size_t i = 0; i < queryImgDescriptors.size(); i++) {
CV_Assert(!queryImgDescriptors[i].empty());
CV_Assert(queryImgDescriptors[i].rows == 1);
CV_Assert(queryImgDescriptors[i].cols == clTree.cols);
CV_Assert(queryImgDescriptors[i].type() == CV_32F);
trainingImgDescriptors.push_back(queryImgDescriptors[i]);
addToIndex(queryImgDescriptors[i], trainingDefaults, trainingInvertedMap);
}
}
void FabMap2::add(const vector<Mat>& queryImgDescriptors) {
for (size_t i = 0; i < queryImgDescriptors.size(); i++) {
CV_Assert(!queryImgDescriptors[i].empty());
CV_Assert(queryImgDescriptors[i].rows == 1);
CV_Assert(queryImgDescriptors[i].cols == clTree.cols);
CV_Assert(queryImgDescriptors[i].type() == CV_32F);
testImgDescriptors.push_back(queryImgDescriptors[i]);
addToIndex(queryImgDescriptors[i], testDefaults, testInvertedMap);
}
}
void FabMap2::getLikelihoods(const Mat& queryImgDescriptor,
const vector<Mat>& testImgDescriptors, vector<IMatch>& matches) {
if (&testImgDescriptors== &(this->testImgDescriptors)) {
getIndexLikelihoods(queryImgDescriptor, testDefaults, testInvertedMap,
matches);
} else {
CV_Assert(!(flags & MOTION_MODEL));
vector<double> defaults;
std::map<int, vector<int> > invertedMap;
for (size_t i = 0; i < testImgDescriptors.size(); i++) {
addToIndex(testImgDescriptors[i],defaults,invertedMap);
}
getIndexLikelihoods(queryImgDescriptor, defaults, invertedMap, matches);
}
}
double FabMap2::getNewPlaceLikelihood(const Mat& queryImgDescriptor) {
CV_Assert(!trainingImgDescriptors.empty());
vector<IMatch> matches;
getIndexLikelihoods(queryImgDescriptor, trainingDefaults,
trainingInvertedMap, matches);
double averageLogLikelihood = -DBL_MAX + matches.front().likelihood + 1;
for (size_t i = 0; i < matches.size(); i++) {
averageLogLikelihood =
logsumexp(matches[i].likelihood, averageLogLikelihood);
}
return averageLogLikelihood - log((double)trainingDefaults.size());
}
void FabMap2::addToIndex(const Mat& queryImgDescriptor,
vector<double>& defaults,
std::map<int, vector<int> >& invertedMap) {
defaults.push_back(0);
for (int q = 0; q < clTree.cols; q++) {
if (queryImgDescriptor.at<float>(0,q) > 0) {
defaults.back() += d1[q];
invertedMap[q].push_back((int)defaults.size()-1);
}
}
}
void FabMap2::getIndexLikelihoods(const Mat& queryImgDescriptor,
std::vector<double>& defaults,
std::map<int, vector<int> >& invertedMap,
std::vector<IMatch>& matches) {
vector<int>::iterator LwithI, child;
std::vector<double> likelihoods = defaults;
for (int q = 0; q < clTree.cols; q++) {
if (queryImgDescriptor.at<float>(0,q) > 0) {
for (LwithI = invertedMap[q].begin();
LwithI != invertedMap[q].end(); LwithI++) {
if (queryImgDescriptor.at<float>(0,pq(q)) > 0) {
likelihoods[*LwithI] += d4[q];
} else {
likelihoods[*LwithI] += d3[q];
}
}
for (child = children[q].begin(); child != children[q].end();
child++) {
if (queryImgDescriptor.at<float>(0,*child) == 0) {
for (LwithI = invertedMap[*child].begin();
LwithI != invertedMap[*child].end(); LwithI++) {
likelihoods[*LwithI] += d2[*child];
}
}
}
}
}
for (size_t i = 0; i < likelihoods.size(); i++) {
matches.push_back(IMatch(0,(int)i,likelihoods[i],0));
}
}
}
}