/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // This file originates from the openFABMAP project: // [http://code.google.com/p/openfabmap/] // // For published work which uses all or part of OpenFABMAP, please cite: // [http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6224843] // // Original Algorithm by Mark Cummins and Paul Newman: // [http://ijr.sagepub.com/content/27/6/647.short] // [http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5613942] // [http://ijr.sagepub.com/content/30/9/1100.abstract] // // License Agreement // // Copyright (C) 2012 Arren Glover [aj.glover@qut.edu.au] and // Will Maddern [w.maddern@qut.edu.au], all rights reserved. // // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencv2/contrib/openfabmap.hpp" /* Calculate the sum of two log likelihoods */ namespace cv { namespace of2 { static double logsumexp(double a, double b) { return a > b ? log(1 + exp(b - a)) + a : log(1 + exp(a - b)) + b; } FabMap::FabMap(const Mat& _clTree, double _PzGe, double _PzGNe, int _flags, int _numSamples) : clTree(_clTree), PzGe(_PzGe), PzGNe(_PzGNe), flags( _flags), numSamples(_numSamples) { CV_Assert(flags & MEAN_FIELD || flags & SAMPLED); CV_Assert(flags & NAIVE_BAYES || flags & CHOW_LIU); if (flags & NAIVE_BAYES) { PzGL = &FabMap::PzqGL; } else { PzGL = &FabMap::PzqGzpqL; } //check for a valid Chow-Liu tree CV_Assert(clTree.type() == CV_64FC1); cv::checkRange(clTree.row(0), false, NULL, 0, clTree.cols); cv::checkRange(clTree.row(1), false, NULL, DBL_MIN, 1); cv::checkRange(clTree.row(2), false, NULL, DBL_MIN, 1); cv::checkRange(clTree.row(3), false, NULL, DBL_MIN, 1); // TODO: Add default values for member variables Pnew = 0.9; sFactor = 0.99; mBias = 0.5; } FabMap::~FabMap() { } const std::vector& FabMap::getTrainingImgDescriptors() const { return trainingImgDescriptors; } const std::vector& FabMap::getTestImgDescriptors() const { return testImgDescriptors; } void FabMap::addTraining(const Mat& queryImgDescriptor) { CV_Assert(!queryImgDescriptor.empty()); vector queryImgDescriptors; for (int i = 0; i < queryImgDescriptor.rows; i++) { queryImgDescriptors.push_back(queryImgDescriptor.row(i)); } addTraining(queryImgDescriptors); } void FabMap::addTraining(const vector& queryImgDescriptors) { for (size_t i = 0; i < queryImgDescriptors.size(); i++) { CV_Assert(!queryImgDescriptors[i].empty()); CV_Assert(queryImgDescriptors[i].rows == 1); CV_Assert(queryImgDescriptors[i].cols == clTree.cols); CV_Assert(queryImgDescriptors[i].type() == CV_32F); trainingImgDescriptors.push_back(queryImgDescriptors[i]); } } void FabMap::add(const cv::Mat& queryImgDescriptor) { CV_Assert(!queryImgDescriptor.empty()); vector queryImgDescriptors; for (int i = 0; i < queryImgDescriptor.rows; i++) { queryImgDescriptors.push_back(queryImgDescriptor.row(i)); } add(queryImgDescriptors); } void FabMap::add(const std::vector& queryImgDescriptors) { for (size_t i = 0; i < queryImgDescriptors.size(); i++) { CV_Assert(!queryImgDescriptors[i].empty()); CV_Assert(queryImgDescriptors[i].rows == 1); CV_Assert(queryImgDescriptors[i].cols == clTree.cols); CV_Assert(queryImgDescriptors[i].type() == CV_32F); testImgDescriptors.push_back(queryImgDescriptors[i]); } } void FabMap::compare(const Mat& queryImgDescriptor, vector& matches, bool addQuery, const Mat& mask) { CV_Assert(!queryImgDescriptor.empty()); vector queryImgDescriptors; for (int i = 0; i < queryImgDescriptor.rows; i++) { queryImgDescriptors.push_back(queryImgDescriptor.row(i)); } compare(queryImgDescriptors,matches,addQuery,mask); } void FabMap::compare(const Mat& queryImgDescriptor, const Mat& testImgDescriptor, vector& matches, const Mat& mask) { CV_Assert(!queryImgDescriptor.empty()); vector queryImgDescriptors; for (int i = 0; i < queryImgDescriptor.rows; i++) { queryImgDescriptors.push_back(queryImgDescriptor.row(i)); } CV_Assert(!testImgDescriptor.empty()); vector _testImgDescriptors; for (int i = 0; i < testImgDescriptor.rows; i++) { _testImgDescriptors.push_back(testImgDescriptor.row(i)); } compare(queryImgDescriptors,_testImgDescriptors,matches,mask); } void FabMap::compare(const Mat& queryImgDescriptor, const vector& _testImgDescriptors, vector& matches, const Mat& mask) { CV_Assert(!queryImgDescriptor.empty()); vector queryImgDescriptors; for (int i = 0; i < queryImgDescriptor.rows; i++) { queryImgDescriptors.push_back(queryImgDescriptor.row(i)); } compare(queryImgDescriptors,_testImgDescriptors,matches,mask); } void FabMap::compare(const vector& queryImgDescriptors, vector& matches, bool addQuery, const Mat& /*mask*/) { // TODO: add first query if empty (is this necessary) for (size_t i = 0; i < queryImgDescriptors.size(); i++) { CV_Assert(!queryImgDescriptors[i].empty()); CV_Assert(queryImgDescriptors[i].rows == 1); CV_Assert(queryImgDescriptors[i].cols == clTree.cols); CV_Assert(queryImgDescriptors[i].type() == CV_32F); // TODO: add mask compareImgDescriptor(queryImgDescriptors[i], (int)i, testImgDescriptors, matches); if (addQuery) add(queryImgDescriptors[i]); } } void FabMap::compare(const vector& queryImgDescriptors, const vector& _testImgDescriptors, vector& matches, const Mat& /*mask*/) { if (_testImgDescriptors[0].data != this->testImgDescriptors[0].data) { CV_Assert(!(flags & MOTION_MODEL)); for (size_t i = 0; i < _testImgDescriptors.size(); i++) { CV_Assert(!_testImgDescriptors[i].empty()); CV_Assert(_testImgDescriptors[i].rows == 1); CV_Assert(_testImgDescriptors[i].cols == clTree.cols); CV_Assert(_testImgDescriptors[i].type() == CV_32F); } } for (size_t i = 0; i < queryImgDescriptors.size(); i++) { CV_Assert(!queryImgDescriptors[i].empty()); CV_Assert(queryImgDescriptors[i].rows == 1); CV_Assert(queryImgDescriptors[i].cols == clTree.cols); CV_Assert(queryImgDescriptors[i].type() == CV_32F); // TODO: add mask compareImgDescriptor(queryImgDescriptors[i], (int)i, _testImgDescriptors, matches); } } void FabMap::compareImgDescriptor(const Mat& queryImgDescriptor, int queryIndex, const vector& _testImgDescriptors, vector& matches) { vector queryMatches; queryMatches.push_back(IMatch(queryIndex,-1, getNewPlaceLikelihood(queryImgDescriptor),0)); getLikelihoods(queryImgDescriptor,_testImgDescriptors,queryMatches); normaliseDistribution(queryMatches); for (size_t j = 1; j < queryMatches.size(); j++) { queryMatches[j].queryIdx = queryIndex; } matches.insert(matches.end(), queryMatches.begin(), queryMatches.end()); } void FabMap::getLikelihoods(const Mat& /*queryImgDescriptor*/, const vector& /*testImgDescriptors*/, vector& /*matches*/) { } double FabMap::getNewPlaceLikelihood(const Mat& queryImgDescriptor) { if (flags & MEAN_FIELD) { double logP = 0; bool zq, zpq; if(flags & NAIVE_BAYES) { for (int q = 0; q < clTree.cols; q++) { zq = queryImgDescriptor.at(0,q) > 0; logP += log(Pzq(q, false) * PzqGeq(zq, false) + Pzq(q, true) * PzqGeq(zq, true)); } } else { for (int q = 0; q < clTree.cols; q++) { zq = queryImgDescriptor.at(0,q) > 0; zpq = queryImgDescriptor.at(0,pq(q)) > 0; double alpha, beta, p; alpha = Pzq(q, zq) * PzqGeq(!zq, false) * PzqGzpq(q, !zq, zpq); beta = Pzq(q, !zq) * PzqGeq(zq, false) * PzqGzpq(q, zq, zpq); p = Pzq(q, false) * beta / (alpha + beta); alpha = Pzq(q, zq) * PzqGeq(!zq, true) * PzqGzpq(q, !zq, zpq); beta = Pzq(q, !zq) * PzqGeq(zq, true) * PzqGzpq(q, zq, zpq); p += Pzq(q, true) * beta / (alpha + beta); logP += log(p); } } return logP; } if (flags & SAMPLED) { CV_Assert(!trainingImgDescriptors.empty()); CV_Assert(numSamples > 0); vector sampledImgDescriptors; // TODO: this method can result in the same sample being added // multiple times. Is this desired? for (int i = 0; i < numSamples; i++) { int index = rand() % trainingImgDescriptors.size(); sampledImgDescriptors.push_back(trainingImgDescriptors[index]); } vector matches; getLikelihoods(queryImgDescriptor,sampledImgDescriptors,matches); double averageLogLikelihood = -DBL_MAX + matches.front().likelihood + 1; for (int i = 0; i < numSamples; i++) { averageLogLikelihood = logsumexp(matches[i].likelihood, averageLogLikelihood); } return averageLogLikelihood - log((double)numSamples); } return 0; } void FabMap::normaliseDistribution(vector& matches) { CV_Assert(!matches.empty()); if (flags & MOTION_MODEL) { matches[0].match = matches[0].likelihood + log(Pnew); if (priorMatches.size() > 2) { matches[1].match = matches[1].likelihood; matches[1].match += log( (2 * (1-mBias) * priorMatches[1].match + priorMatches[1].match + 2 * mBias * priorMatches[2].match) / 3); for (size_t i = 2; i < priorMatches.size()-1; i++) { matches[i].match = matches[i].likelihood; matches[i].match += log( (2 * (1-mBias) * priorMatches[i-1].match + priorMatches[i].match + 2 * mBias * priorMatches[i+1].match)/3); } matches[priorMatches.size()-1].match = matches[priorMatches.size()-1].likelihood; matches[priorMatches.size()-1].match += log( (2 * (1-mBias) * priorMatches[priorMatches.size()-2].match + priorMatches[priorMatches.size()-1].match + 2 * mBias * priorMatches[priorMatches.size()-1].match)/3); for(size_t i = priorMatches.size(); i < matches.size(); i++) { matches[i].match = matches[i].likelihood; } } else { for(size_t i = 1; i < matches.size(); i++) { matches[i].match = matches[i].likelihood; } } double logsum = -DBL_MAX + matches.front().match + 1; //calculate the normalising constant for (size_t i = 0; i < matches.size(); i++) { logsum = logsumexp(logsum, matches[i].match); } //normalise for (size_t i = 0; i < matches.size(); i++) { matches[i].match = exp(matches[i].match - logsum); } //smooth final probabilities for (size_t i = 0; i < matches.size(); i++) { matches[i].match = sFactor*matches[i].match + (1 - sFactor)/matches.size(); } //update our location priors priorMatches = matches; } else { double logsum = -DBL_MAX + matches.front().likelihood + 1; for (size_t i = 0; i < matches.size(); i++) { logsum = logsumexp(logsum, matches[i].likelihood); } for (size_t i = 0; i < matches.size(); i++) { matches[i].match = exp(matches[i].likelihood - logsum); } for (size_t i = 0; i < matches.size(); i++) { matches[i].match = sFactor*matches[i].match + (1 - sFactor)/matches.size(); } } } int FabMap::pq(int q) { return (int)clTree.at(0,q); } double FabMap::Pzq(int q, bool zq) { return (zq) ? clTree.at(1,q) : 1 - clTree.at(1,q); } double FabMap::PzqGzpq(int q, bool zq, bool zpq) { if (zpq) { return (zq) ? clTree.at(2,q) : 1 - clTree.at(2,q); } else { return (zq) ? clTree.at(3,q) : 1 - clTree.at(3,q); } } double FabMap::PzqGeq(bool zq, bool eq) { if (eq) { return (zq) ? PzGe : 1 - PzGe; } else { return (zq) ? PzGNe : 1 - PzGNe; } } double FabMap::PeqGL(int q, bool Lzq, bool eq) { double alpha, beta; alpha = PzqGeq(Lzq, true) * Pzq(q, true); beta = PzqGeq(Lzq, false) * Pzq(q, false); if (eq) { return alpha / (alpha + beta); } else { return 1 - (alpha / (alpha + beta)); } } double FabMap::PzqGL(int q, bool zq, bool /*zpq*/, bool Lzq) { return PeqGL(q, Lzq, false) * PzqGeq(zq, false) + PeqGL(q, Lzq, true) * PzqGeq(zq, true); } double FabMap::PzqGzpqL(int q, bool zq, bool zpq, bool Lzq) { double p; double alpha, beta; alpha = Pzq(q, zq) * PzqGeq(!zq, false) * PzqGzpq(q, !zq, zpq); beta = Pzq(q, !zq) * PzqGeq( zq, false) * PzqGzpq(q, zq, zpq); p = PeqGL(q, Lzq, false) * beta / (alpha + beta); alpha = Pzq(q, zq) * PzqGeq(!zq, true) * PzqGzpq(q, !zq, zpq); beta = Pzq(q, !zq) * PzqGeq( zq, true) * PzqGzpq(q, zq, zpq); p += PeqGL(q, Lzq, true) * beta / (alpha + beta); return p; } FabMap1::FabMap1(const Mat& _clTree, double _PzGe, double _PzGNe, int _flags, int _numSamples) : FabMap(_clTree, _PzGe, _PzGNe, _flags, _numSamples) { } FabMap1::~FabMap1() { } void FabMap1::getLikelihoods(const Mat& queryImgDescriptor, const vector& testImgDescriptors, vector& matches) { for (size_t i = 0; i < testImgDescriptors.size(); i++) { bool zq, zpq, Lzq; double logP = 0; for (int q = 0; q < clTree.cols; q++) { zq = queryImgDescriptor.at(0,q) > 0; zpq = queryImgDescriptor.at(0,pq(q)) > 0; Lzq = testImgDescriptors[i].at(0,q) > 0; logP += log((this->*PzGL)(q, zq, zpq, Lzq)); } matches.push_back(IMatch(0,(int)i,logP,0)); } } FabMapLUT::FabMapLUT(const Mat& _clTree, double _PzGe, double _PzGNe, int _flags, int _numSamples, int _precision) : FabMap(_clTree, _PzGe, _PzGNe, _flags, _numSamples), precision(_precision) { int nWords = clTree.cols; double precFactor = (double)pow(10.0, precision); table = new int[nWords][8]; for (int q = 0; q < nWords; q++) { for (unsigned char i = 0; i < 8; i++) { bool Lzq = (bool) ((i >> 2) & 0x01); bool zq = (bool) ((i >> 1) & 0x01); bool zpq = (bool) (i & 1); table[q][i] = -(int)(log((this->*PzGL)(q, zq, zpq, Lzq)) * precFactor); } } } FabMapLUT::~FabMapLUT() { delete[] table; } void FabMapLUT::getLikelihoods(const Mat& queryImgDescriptor, const vector& testImgDescriptors, vector& matches) { double precFactor = (double)pow(10.0, -precision); for (size_t i = 0; i < testImgDescriptors.size(); i++) { unsigned long long int logP = 0; for (int q = 0; q < clTree.cols; q++) { logP += table[q][(queryImgDescriptor.at(0,pq(q)) > 0) + ((queryImgDescriptor.at(0, q) > 0) << 1) + ((testImgDescriptors[i].at(0,q) > 0) << 2)]; } matches.push_back(IMatch(0,(int)i,-precFactor*(double)logP,0)); } } FabMapFBO::FabMapFBO(const Mat& _clTree, double _PzGe, double _PzGNe, int _flags, int _numSamples, double _rejectionThreshold, double _PsGd, int _bisectionStart, int _bisectionIts) : FabMap(_clTree, _PzGe, _PzGNe, _flags, _numSamples), PsGd(_PsGd), rejectionThreshold(_rejectionThreshold), bisectionStart(_bisectionStart), bisectionIts(_bisectionIts) { } FabMapFBO::~FabMapFBO() { } void FabMapFBO::getLikelihoods(const Mat& queryImgDescriptor, const vector& testImgDescriptors, vector& matches) { std::multiset wordData; setWordStatistics(queryImgDescriptor, wordData); vector matchIndices; vector queryMatches; for (size_t i = 0; i < testImgDescriptors.size(); i++) { queryMatches.push_back(IMatch(0,(int)i,0,0)); matchIndices.push_back((int)i); } double currBest = -DBL_MAX; double bailedOut = DBL_MAX; for (std::multiset::iterator wordIter = wordData.begin(); wordIter != wordData.end(); wordIter++) { bool zq = queryImgDescriptor.at(0,wordIter->q) > 0; bool zpq = queryImgDescriptor.at(0,pq(wordIter->q)) > 0; currBest = -DBL_MAX; for (size_t i = 0; i < matchIndices.size(); i++) { bool Lzq = testImgDescriptors[matchIndices[i]].at(0,wordIter->q) > 0; queryMatches[matchIndices[i]].likelihood += log((this->*PzGL)(wordIter->q,zq,zpq,Lzq)); currBest = std::max(queryMatches[matchIndices[i]].likelihood, currBest); } if (matchIndices.size() == 1) continue; double delta = std::max(limitbisection(wordIter->V, wordIter->M), -log(rejectionThreshold)); vector::iterator matchIter = matchIndices.begin(); while (matchIter != matchIndices.end()) { if (currBest - queryMatches[*matchIter].likelihood > delta) { queryMatches[*matchIter].likelihood = bailedOut; matchIter = matchIndices.erase(matchIter); } else { matchIter++; } } } for (size_t i = 0; i < queryMatches.size(); i++) { if (queryMatches[i].likelihood == bailedOut) { queryMatches[i].likelihood = currBest + log(rejectionThreshold); } } matches.insert(matches.end(), queryMatches.begin(), queryMatches.end()); } void FabMapFBO::setWordStatistics(const Mat& queryImgDescriptor, std::multiset& wordData) { //words are sorted according to information = -ln(P(zq|zpq)) //in non-log format this is lowest probability first for (int q = 0; q < clTree.cols; q++) { wordData.insert(WordStats(q,PzqGzpq(q, queryImgDescriptor.at(0,q) > 0, queryImgDescriptor.at(0,pq(q)) > 0))); } double d = 0, V = 0, M = 0; bool zq, zpq; for (std::multiset::reverse_iterator wordIter = wordData.rbegin(); wordIter != wordData.rend(); wordIter++) { zq = queryImgDescriptor.at(0,wordIter->q) > 0; zpq = queryImgDescriptor.at(0,pq(wordIter->q)) > 0; d = log((this->*PzGL)(wordIter->q, zq, zpq, true)) - log((this->*PzGL)(wordIter->q, zq, zpq, false)); V += pow(d, 2.0) * 2 * (Pzq(wordIter->q, true) - pow(Pzq(wordIter->q, true), 2.0)); M = std::max(M, fabs(d)); wordIter->V = V; wordIter->M = M; } } double FabMapFBO::limitbisection(double v, double m) { double midpoint, left_val, mid_val; double left = 0, right = bisectionStart; left_val = bennettInequality(v, m, left) - PsGd; for(int i = 0; i < bisectionIts; i++) { midpoint = (left + right)*0.5; mid_val = bennettInequality(v, m, midpoint)- PsGd; if(left_val * mid_val > 0) { left = midpoint; left_val = mid_val; } else { right = midpoint; } } return (right + left) * 0.5; } double FabMapFBO::bennettInequality(double v, double m, double delta) { double DMonV = delta * m / v; double f_delta = log(DMonV + sqrt(pow(DMonV, 2.0) + 1)); return exp((v / pow(m, 2.0))*(cosh(f_delta) - 1 - DMonV * f_delta)); } bool FabMapFBO::compInfo(const WordStats& first, const WordStats& second) { return first.info < second.info; } FabMap2::FabMap2(const Mat& _clTree, double _PzGe, double _PzGNe, int _flags) : FabMap(_clTree, _PzGe, _PzGNe, _flags) { CV_Assert(flags & SAMPLED); children.resize(clTree.cols); for (int q = 0; q < clTree.cols; q++) { d1.push_back(log((this->*PzGL)(q, false, false, true) / (this->*PzGL)(q, false, false, false))); d2.push_back(log((this->*PzGL)(q, false, true, true) / (this->*PzGL)(q, false, true, false)) - d1[q]); d3.push_back(log((this->*PzGL)(q, true, false, true) / (this->*PzGL)(q, true, false, false))- d1[q]); d4.push_back(log((this->*PzGL)(q, true, true, true) / (this->*PzGL)(q, true, true, false))- d1[q]); children[pq(q)].push_back(q); } } FabMap2::~FabMap2() { } void FabMap2::addTraining(const vector& queryImgDescriptors) { for (size_t i = 0; i < queryImgDescriptors.size(); i++) { CV_Assert(!queryImgDescriptors[i].empty()); CV_Assert(queryImgDescriptors[i].rows == 1); CV_Assert(queryImgDescriptors[i].cols == clTree.cols); CV_Assert(queryImgDescriptors[i].type() == CV_32F); trainingImgDescriptors.push_back(queryImgDescriptors[i]); addToIndex(queryImgDescriptors[i], trainingDefaults, trainingInvertedMap); } } void FabMap2::add(const vector& queryImgDescriptors) { for (size_t i = 0; i < queryImgDescriptors.size(); i++) { CV_Assert(!queryImgDescriptors[i].empty()); CV_Assert(queryImgDescriptors[i].rows == 1); CV_Assert(queryImgDescriptors[i].cols == clTree.cols); CV_Assert(queryImgDescriptors[i].type() == CV_32F); testImgDescriptors.push_back(queryImgDescriptors[i]); addToIndex(queryImgDescriptors[i], testDefaults, testInvertedMap); } } void FabMap2::getLikelihoods(const Mat& queryImgDescriptor, const vector& testImgDescriptors, vector& matches) { if (&testImgDescriptors== &(this->testImgDescriptors)) { getIndexLikelihoods(queryImgDescriptor, testDefaults, testInvertedMap, matches); } else { CV_Assert(!(flags & MOTION_MODEL)); vector defaults; std::map > invertedMap; for (size_t i = 0; i < testImgDescriptors.size(); i++) { addToIndex(testImgDescriptors[i],defaults,invertedMap); } getIndexLikelihoods(queryImgDescriptor, defaults, invertedMap, matches); } } double FabMap2::getNewPlaceLikelihood(const Mat& queryImgDescriptor) { CV_Assert(!trainingImgDescriptors.empty()); vector matches; getIndexLikelihoods(queryImgDescriptor, trainingDefaults, trainingInvertedMap, matches); double averageLogLikelihood = -DBL_MAX + matches.front().likelihood + 1; for (size_t i = 0; i < matches.size(); i++) { averageLogLikelihood = logsumexp(matches[i].likelihood, averageLogLikelihood); } return averageLogLikelihood - log((double)trainingDefaults.size()); } void FabMap2::addToIndex(const Mat& queryImgDescriptor, vector& defaults, std::map >& invertedMap) { defaults.push_back(0); for (int q = 0; q < clTree.cols; q++) { if (queryImgDescriptor.at(0,q) > 0) { defaults.back() += d1[q]; invertedMap[q].push_back((int)defaults.size()-1); } } } void FabMap2::getIndexLikelihoods(const Mat& queryImgDescriptor, std::vector& defaults, std::map >& invertedMap, std::vector& matches) { vector::iterator LwithI, child; std::vector likelihoods = defaults; for (int q = 0; q < clTree.cols; q++) { if (queryImgDescriptor.at(0,q) > 0) { for (LwithI = invertedMap[q].begin(); LwithI != invertedMap[q].end(); LwithI++) { if (queryImgDescriptor.at(0,pq(q)) > 0) { likelihoods[*LwithI] += d4[q]; } else { likelihoods[*LwithI] += d3[q]; } } for (child = children[q].begin(); child != children[q].end(); child++) { if (queryImgDescriptor.at(0,*child) == 0) { for (LwithI = invertedMap[*child].begin(); LwithI != invertedMap[*child].end(); LwithI++) { likelihoods[*LwithI] += d2[*child]; } } } } } for (size_t i = 0; i < likelihoods.size(); i++) { matches.push_back(IMatch(0,(int)i,likelihoods[i],0)); } } } }