opencv/modules/features2d/src/descriptors.cpp

365 lines
14 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace std;
namespace cv
{
/****************************************************************************************\
* DescriptorExtractor *
\****************************************************************************************/
/*
* DescriptorExtractor
*/
struct RoiPredicate
{
RoiPredicate(float _minX, float _minY, float _maxX, float _maxY)
: minX(_minX), minY(_minY), maxX(_maxX), maxY(_maxY)
{}
bool operator()( const KeyPoint& keyPt) const
{
Point2f pt = keyPt.pt;
return (pt.x < minX) || (pt.x >= maxX) || (pt.y < minY) || (pt.y >= maxY);
}
float minX, minY, maxX, maxY;
};
DescriptorExtractor::~DescriptorExtractor()
{}
void DescriptorExtractor::compute( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const
{
if( image.empty() || keypoints.empty() )
return;
// Check keypoints are in image. Do filter bad points here?
//for( size_t i = 0; i < keypoints.size(); i++ )
// CV_Assert( Rect(0,0, image.cols, image.rows).contains(keypoints[i].pt) );
computeImpl( image, keypoints, descriptors );
}
void DescriptorExtractor::compute( const vector<Mat>& imageCollection, vector<vector<KeyPoint> >& pointCollection, vector<Mat>& descCollection ) const
{
CV_Assert( imageCollection.size() == pointCollection.size() );
descCollection.resize( imageCollection.size() );
for( size_t i = 0; i < imageCollection.size(); i++ )
compute( imageCollection[i], pointCollection[i], descCollection[i] );
}
void DescriptorExtractor::read( const FileNode& )
{}
void DescriptorExtractor::write( FileStorage& ) const
{}
void DescriptorExtractor::removeBorderKeypoints( vector<KeyPoint>& keypoints,
Size imageSize, int borderSize )
{
if( borderSize > 0)
{
keypoints.erase( remove_if(keypoints.begin(), keypoints.end(),
RoiPredicate((float)borderSize, (float)borderSize,
(float)(imageSize.width - borderSize),
(float)(imageSize.height - borderSize))),
keypoints.end() );
}
}
Ptr<DescriptorExtractor> DescriptorExtractor::create(const string& descriptorExtractorType)
{
DescriptorExtractor* de = 0;
int pos = 0;
if (!descriptorExtractorType.compare("SIFT"))
{
de = new SiftDescriptorExtractor();
}
else if (!descriptorExtractorType.compare("SURF"))
{
de = new SurfDescriptorExtractor();
}
else if (!descriptorExtractorType.compare("BRIEF"))
{
de = new BriefDescriptorExtractor();
}
else if ( (pos=descriptorExtractorType.find("Opponent")) == 0)
{
pos += string("Opponent").size();
de = new OpponentColorDescriptorExtractor( DescriptorExtractor::create(descriptorExtractorType.substr(pos)) );
}
return de;
}
/****************************************************************************************\
* SiftDescriptorExtractor *
\****************************************************************************************/
SiftDescriptorExtractor::SiftDescriptorExtractor(const SIFT::DescriptorParams& descriptorParams,
const SIFT::CommonParams& commonParams)
: sift( descriptorParams.magnification, descriptorParams.isNormalize, descriptorParams.recalculateAngles,
commonParams.nOctaves, commonParams.nOctaveLayers, commonParams.firstOctave, commonParams.angleMode )
{}
SiftDescriptorExtractor::SiftDescriptorExtractor( double magnification, bool isNormalize, bool recalculateAngles,
int nOctaves, int nOctaveLayers, int firstOctave, int angleMode )
: sift( magnification, isNormalize, recalculateAngles, nOctaves, nOctaveLayers, firstOctave, angleMode )
{}
void SiftDescriptorExtractor::computeImpl( const Mat& image,
vector<KeyPoint>& keypoints,
Mat& descriptors) const
{
bool useProvidedKeypoints = true;
2010-09-23 12:53:36 +02:00
Mat grayImage = image;
if( image.type() != CV_8U ) cvtColor( image, grayImage, CV_BGR2GRAY );
sift(grayImage, Mat(), keypoints, descriptors, useProvidedKeypoints);
}
void SiftDescriptorExtractor::read (const FileNode &fn)
{
double magnification = fn["magnification"];
bool isNormalize = (int)fn["isNormalize"] != 0;
bool recalculateAngles = (int)fn["recalculateAngles"] != 0;
int nOctaves = fn["nOctaves"];
int nOctaveLayers = fn["nOctaveLayers"];
int firstOctave = fn["firstOctave"];
int angleMode = fn["angleMode"];
sift = SIFT( magnification, isNormalize, recalculateAngles, nOctaves, nOctaveLayers, firstOctave, angleMode );
}
void SiftDescriptorExtractor::write (FileStorage &fs) const
{
// fs << "algorithm" << getAlgorithmName ();
SIFT::CommonParams commParams = sift.getCommonParams ();
SIFT::DescriptorParams descriptorParams = sift.getDescriptorParams ();
fs << "magnification" << descriptorParams.magnification;
fs << "isNormalize" << descriptorParams.isNormalize;
fs << "recalculateAngles" << descriptorParams.recalculateAngles;
fs << "nOctaves" << commParams.nOctaves;
fs << "nOctaveLayers" << commParams.nOctaveLayers;
fs << "firstOctave" << commParams.firstOctave;
fs << "angleMode" << commParams.angleMode;
}
int SiftDescriptorExtractor::descriptorSize() const
{
return sift.descriptorSize();
}
int SiftDescriptorExtractor::descriptorType() const
{
return CV_32FC1;
}
/****************************************************************************************\
* SurfDescriptorExtractor *
\****************************************************************************************/
SurfDescriptorExtractor::SurfDescriptorExtractor( int nOctaves,
int nOctaveLayers, bool extended )
: surf( 0.0, nOctaves, nOctaveLayers, extended )
{}
void SurfDescriptorExtractor::computeImpl( const Mat& image,
vector<KeyPoint>& keypoints,
Mat& descriptors) const
{
// Compute descriptors for given keypoints
vector<float> _descriptors;
Mat mask;
bool useProvidedKeypoints = true;
2010-09-23 12:53:36 +02:00
Mat grayImage = image;
if( image.type() != CV_8U ) cvtColor( image, grayImage, CV_BGR2GRAY );
surf(grayImage, mask, keypoints, _descriptors, useProvidedKeypoints);
descriptors.create((int)keypoints.size(), (int)surf.descriptorSize(), CV_32FC1);
assert( (int)_descriptors.size() == descriptors.rows * descriptors.cols );
std::copy(_descriptors.begin(), _descriptors.end(), descriptors.begin<float>());
}
void SurfDescriptorExtractor::read( const FileNode &fn )
{
int nOctaves = fn["nOctaves"];
int nOctaveLayers = fn["nOctaveLayers"];
bool extended = (int)fn["extended"] != 0;
surf = SURF( 0.0, nOctaves, nOctaveLayers, extended );
}
void SurfDescriptorExtractor::write( FileStorage &fs ) const
{
// fs << "algorithm" << getAlgorithmName ();
fs << "nOctaves" << surf.nOctaves;
fs << "nOctaveLayers" << surf.nOctaveLayers;
fs << "extended" << surf.extended;
}
int SurfDescriptorExtractor::descriptorSize() const
{
return surf.descriptorSize();
}
int SurfDescriptorExtractor::descriptorType() const
{
return CV_32FC1;
}
2010-09-23 12:53:36 +02:00
/****************************************************************************************\
* OpponentColorDescriptorExtractor *
\****************************************************************************************/
OpponentColorDescriptorExtractor::OpponentColorDescriptorExtractor( const Ptr<DescriptorExtractor>& _descriptorExtractor ) :
descriptorExtractor(_descriptorExtractor)
{
CV_Assert( !descriptorExtractor.empty() );
}
2010-09-23 12:53:36 +02:00
void convertBGRImageToOpponentColorSpace( const Mat& bgrImage, vector<Mat>& opponentChannels )
{
if( bgrImage.type() != CV_8UC3 )
CV_Error( CV_StsBadArg, "input image must be an BGR image of type CV_8UC3" );
// Split image into RGB to allow conversion to Opponent Color Space.
vector<Mat> bgrChannels(3);
split( bgrImage, bgrChannels );
// Prepare opponent color space storage matrices.
opponentChannels.resize( 3 );
opponentChannels[0] = cv::Mat(bgrImage.size(), CV_8UC1); // R-G RED-GREEN
opponentChannels[1] = cv::Mat(bgrImage.size(), CV_8UC1); // R+G-2B YELLOW-BLUE
opponentChannels[2] = cv::Mat(bgrImage.size(), CV_8UC1); // R+G+B
// Calculate the channels of the opponent color space
{
// (R - G) / sqrt(2)
MatConstIterator_<char> rIt = bgrChannels[2].begin<char>();
MatConstIterator_<char> gIt = bgrChannels[1].begin<char>();
MatIterator_<char> dstIt = opponentChannels[0].begin<char>();
2010-10-11 17:46:12 +02:00
float factor = 1.f / sqrt(2.f);
2010-09-23 12:53:36 +02:00
for( ; dstIt != opponentChannels[0].end<char>(); ++rIt, ++gIt, ++dstIt )
{
int value = static_cast<int>( static_cast<float>(static_cast<int>(*gIt)-static_cast<int>(*rIt)) * factor );
if( value < 0 ) value = 0;
if( value > 255 ) value = 255;
(*dstIt) = static_cast<unsigned char>(value);
}
}
{
// (R + G - 2B)/sqrt(6)
MatConstIterator_<char> rIt = bgrChannels[2].begin<char>();
MatConstIterator_<char> gIt = bgrChannels[1].begin<char>();
MatConstIterator_<char> bIt = bgrChannels[0].begin<char>();
MatIterator_<char> dstIt = opponentChannels[1].begin<char>();
2010-10-11 17:46:12 +02:00
float factor = 1.f / sqrt(6.f);
2010-09-23 12:53:36 +02:00
for( ; dstIt != opponentChannels[1].end<char>(); ++rIt, ++gIt, ++bIt, ++dstIt )
{
int value = static_cast<int>( static_cast<float>(static_cast<int>(*rIt) + static_cast<int>(*gIt) - 2*static_cast<int>(*bIt)) *
factor );
if( value < 0 ) value = 0;
if( value > 255 ) value = 255;
(*dstIt) = static_cast<unsigned char>(value);
}
}
{
// (R + G + B)/sqrt(3)
MatConstIterator_<char> rIt = bgrChannels[2].begin<char>();
MatConstIterator_<char> gIt = bgrChannels[1].begin<char>();
MatConstIterator_<char> bIt = bgrChannels[0].begin<char>();
MatIterator_<char> dstIt = opponentChannels[2].begin<char>();
2010-10-11 17:46:12 +02:00
float factor = 1.f / sqrt(3.f);
2010-09-23 12:53:36 +02:00
for( ; dstIt != opponentChannels[2].end<char>(); ++rIt, ++gIt, ++bIt, ++dstIt )
{
int value = static_cast<int>( static_cast<float>(static_cast<int>(*rIt) + static_cast<int>(*gIt) + static_cast<int>(*bIt)) *
factor );
if( value < 0 ) value = 0;
if( value > 255 ) value = 255;
(*dstIt) = static_cast<unsigned char>(value);
}
}
}
void OpponentColorDescriptorExtractor::computeImpl( const Mat& bgrImage, vector<KeyPoint>& keypoints, Mat& descriptors ) const
2010-09-23 12:53:36 +02:00
{
vector<Mat> opponentChannels;
convertBGRImageToOpponentColorSpace( bgrImage, opponentChannels );
// Compute descriptors three times, once for each Opponent channel
// and concatenate into a single color surf descriptor
int descriptorSize = descriptorExtractor->descriptorSize();
descriptors.create( static_cast<int>(keypoints.size()), 3*descriptorSize, descriptorExtractor->descriptorType() );
2010-09-23 12:53:36 +02:00
for( int i = 0; i < 3/*channel count*/; i++ )
{
CV_Assert( opponentChannels[i].type() == CV_8UC1 );
Mat opponentDescriptors = descriptors.colRange( i*descriptorSize, (i+1)*descriptorSize );
descriptorExtractor->compute( opponentChannels[i], keypoints, opponentDescriptors );
2010-09-23 12:53:36 +02:00
}
}
void OpponentColorDescriptorExtractor::read( const FileNode& fn )
{
descriptorExtractor->read(fn);
2010-09-23 12:53:36 +02:00
}
void OpponentColorDescriptorExtractor::write( FileStorage& fs ) const
{
descriptorExtractor->write(fs);
}
int OpponentColorDescriptorExtractor::descriptorSize() const
{
return 3*descriptorExtractor->descriptorSize();
2010-09-23 12:53:36 +02:00
}
int OpponentColorDescriptorExtractor::descriptorType() const
{
return descriptorExtractor->descriptorType();
}
}