opencv/samples/gpu/softcascade.cpp

110 lines
3.1 KiB
C++
Raw Normal View History

#include <opencv2/core/utility.hpp>
#include <opencv2/gpu.hpp>
#include <opencv2/softcascade.hpp>
#include <opencv2/highgui.hpp>
2012-11-14 20:11:18 +04:00
#include <iostream>
typedef cv::softcascade::Detection Detection;
2012-11-14 20:11:18 +04:00
int main(int argc, char** argv)
{
const std::string keys =
"{help h usage ? | | print this message }"
"{cascade c | | path to configuration xml }"
"{frames f | | path to configuration xml }"
"{min_scale |0.4f | path to configuration xml }"
"{max_scale |5.0f | path to configuration xml }"
"{total_scales |55 | path to configuration xml }"
"{device d |0 | path to configuration xml }"
;
cv::CommandLineParser parser(argc, argv, keys);
parser.about("Soft cascade training application.");
if (parser.has("help"))
{
parser.printMessage();
return 0;
}
if (!parser.check())
{
parser.printErrors();
return 1;
}
cv::gpu::setDevice(parser.get<int>("device"));
std::string cascadePath = parser.get<std::string>("cascade");
cv::FileStorage fs(cascadePath, cv::FileStorage::READ);
if(!fs.isOpened())
{
std::cout << "Soft Cascade file " << cascadePath << " can't be opened." << std::endl << std::flush;
return 1;
}
std::cout << "Read cascade from file " << cascadePath << std::endl;
float minScale = parser.get<float>("min_scale");
float maxScale = parser.get<float>("max_scale");
int scales = parser.get<int>("total_scales");
using cv::softcascade::SCascade;
2012-11-14 20:11:18 +04:00
SCascade cascade(minScale, maxScale, scales);
if (!cascade.load(fs.getFirstTopLevelNode()))
{
std::cout << "Soft Cascade can't be parsed." << std::endl << std::flush;
return 1;
}
std::string frames = parser.get<std::string>("frames");
cv::VideoCapture capture(frames);
if(!capture.isOpened())
{
std::cout << "Frame source " << frames << " can't be opened." << std::endl << std::flush;
return 1;
}
cv::gpu::GpuMat objects(1, sizeof(Detection) * 10000, CV_8UC1);
2012-11-14 20:11:18 +04:00
cv::gpu::printShortCudaDeviceInfo(parser.get<int>("device"));
for (;;)
{
cv::Mat frame;
if (!capture.read(frame))
{
std::cout << "Nothing to read. " << std::endl << std::flush;
return 0;
}
2012-12-13 17:18:25 +04:00
cv::gpu::GpuMat dframe(frame), roi(frame.rows, frame.cols, CV_8UC1);
2012-11-14 20:11:18 +04:00
roi.setTo(cv::Scalar::all(1));
2012-12-13 13:49:32 +04:00
cascade.detect(dframe, roi, objects);
2012-11-14 20:11:18 +04:00
cv::Mat dt(objects);
Detection* dts = ((Detection*)dt.data) + 1;
int* count = dt.ptr<int>(0);
std::cout << *count << std::endl;
cv::Mat result;
frame.copyTo(result);
for (int i = 0; i < *count; ++i)
{
Detection d = dts[i];
cv::rectangle(result, cv::Rect(d.x, d.y, d.w, d.h), cv::Scalar(255, 0, 0, 255), 1);
}
std::cout << "working..." << std::endl;
cv::imshow("Soft Cascade demo", result);
if (27 == cv::waitKey(10))
break;
2012-11-14 20:11:18 +04:00
}
return 0;
2012-12-13 13:49:32 +04:00
}