opencv/samples/python/numpy_array.py

66 lines
2.0 KiB
Python
Raw Normal View History

#!/usr/bin/python
import urllib2
import sys
2011-07-12 14:56:03 +02:00
import cv2.cv as cv
import numpy
# SRGB-linear conversions using NumPy - see http://en.wikipedia.org/wiki/SRGB
def srgb2lin(x):
a = 0.055
return numpy.where(x <= 0.04045,
x * (1.0 / 12.92),
numpy.power((x + a) * (1.0 / (1 + a)), 2.4))
def lin2srgb(x):
a = 0.055
return numpy.where(x <= 0.0031308,
x * 12.92,
(1 + a) * numpy.power(x, 1 / 2.4) - a)
if __name__ == "__main__":
if len(sys.argv) > 1:
img0 = cv.LoadImageM( sys.argv[1], cv.CV_LOAD_IMAGE_COLOR)
else:
url = 'https://code.ros.org/svn/opencv/trunk/opencv/samples/c/lena.jpg'
filedata = urllib2.urlopen(url).read()
imagefiledata = cv.CreateMatHeader(1, len(filedata), cv.CV_8UC1)
cv.SetData(imagefiledata, filedata, len(filedata))
img0 = cv.DecodeImageM(imagefiledata, cv.CV_LOAD_IMAGE_COLOR)
cv.NamedWindow("original", 1)
cv.ShowImage("original", img0)
# Image was originally bytes in range 0-255. Turn it into an array of floats in range 0.0 - 1.0
n = numpy.asarray(img0) / 255.0
# Use NumPy to do some transformations on the image
# Negate the image by subtracting it from 1.0
cv.NamedWindow("negative")
cv.ShowImage("negative", cv.fromarray(1.0 - n))
# Assume the image was sRGB, and compute the linear version.
cv.NamedWindow("linear")
cv.ShowImage("linear", cv.fromarray(srgb2lin(n)))
# Look at a subwindow
cv.NamedWindow("subwindow")
cv.ShowImage("subwindow", cv.fromarray(n[200:300,200:400]))
# Compute the grayscale image
cv.NamedWindow("monochrome")
ln = srgb2lin(n)
red = ln[:,:,0]
grn = ln[:,:,1]
blu = ln[:,:,2]
linear_mono = 0.3 * red + 0.59 * grn + 0.11 * blu
cv.ShowImage("monochrome", cv.fromarray(lin2srgb(linear_mono)))
# Apply a blur to the NumPy array using OpenCV
cv.NamedWindow("gaussian")
cv.Smooth(n, n, cv.CV_GAUSSIAN, 15, 15)
cv.ShowImage("gaussian", cv.fromarray(n))
cv.WaitKey(0)