79 lines
2.5 KiB
Python
79 lines
2.5 KiB
Python
|
'''
|
||
|
Neural network digit recognition sample.
|
||
|
Usage:
|
||
|
digits.py
|
||
|
|
||
|
Sample loads a dataset of handwritten digits from 'digits.png'.
|
||
|
Then it trains a neural network classifier on it and evaluates
|
||
|
its classification accuracy.
|
||
|
'''
|
||
|
|
||
|
import numpy as np
|
||
|
import cv2
|
||
|
from common import mosaic
|
||
|
|
||
|
def unroll_responses(responses, class_n):
|
||
|
'''[1, 0, 2, ...] -> [[0, 1, 0], [1, 0, 0], [0, 0, 1], ...]'''
|
||
|
sample_n = len(responses)
|
||
|
new_responses = np.zeros((sample_n, class_n), np.float32)
|
||
|
new_responses[np.arange(sample_n), responses] = 1
|
||
|
return new_responses
|
||
|
|
||
|
|
||
|
SZ = 20 # size of each digit is SZ x SZ
|
||
|
CLASS_N = 10
|
||
|
digits_img = cv2.imread('digits.png', 0)
|
||
|
|
||
|
# prepare dataset
|
||
|
h, w = digits_img.shape
|
||
|
digits = [np.hsplit(row, w/SZ) for row in np.vsplit(digits_img, h/SZ)]
|
||
|
digits = np.float32(digits).reshape(-1, SZ*SZ)
|
||
|
N = len(digits)
|
||
|
labels = np.repeat(np.arange(CLASS_N), N/CLASS_N)
|
||
|
|
||
|
# split it onto train and test subsets
|
||
|
shuffle = np.random.permutation(N)
|
||
|
train_n = int(0.9*N)
|
||
|
digits_train, digits_test = np.split(digits[shuffle], [train_n])
|
||
|
labels_train, labels_test = np.split(labels[shuffle], [train_n])
|
||
|
|
||
|
# train model
|
||
|
model = cv2.ANN_MLP()
|
||
|
layer_sizes = np.int32([SZ*SZ, 25, CLASS_N])
|
||
|
model.create(layer_sizes)
|
||
|
params = dict( term_crit = (cv2.TERM_CRITERIA_COUNT, 100, 0.01),
|
||
|
train_method = cv2.ANN_MLP_TRAIN_PARAMS_BACKPROP,
|
||
|
bp_dw_scale = 0.001,
|
||
|
bp_moment_scale = 0.0 )
|
||
|
print 'training...'
|
||
|
labels_train_unrolled = unroll_responses(labels_train, CLASS_N)
|
||
|
model.train(digits_train, labels_train_unrolled, None, params=params)
|
||
|
model.save('dig_nn.dat')
|
||
|
model.load('dig_nn.dat')
|
||
|
|
||
|
def evaluate(model, samples, labels):
|
||
|
'''Evaluates classifier preformance on a given labeled samples set.'''
|
||
|
ret, resp = model.predict(samples)
|
||
|
resp = resp.argmax(-1)
|
||
|
error_mask = (resp == labels)
|
||
|
accuracy = error_mask.mean()
|
||
|
return accuracy, error_mask
|
||
|
|
||
|
# evaluate model
|
||
|
train_accuracy, _ = evaluate(model, digits_train, labels_train)
|
||
|
print 'train accuracy: ', train_accuracy
|
||
|
test_accuracy, test_error_mask = evaluate(model, digits_test, labels_test)
|
||
|
print 'test accuracy: ', test_accuracy
|
||
|
|
||
|
# visualize test results
|
||
|
vis = []
|
||
|
for img, flag in zip(digits_test, test_error_mask):
|
||
|
img = np.uint8(img).reshape(SZ, SZ)
|
||
|
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
||
|
if not flag:
|
||
|
img[...,:2] = 0
|
||
|
vis.append(img)
|
||
|
vis = mosaic(25, vis)
|
||
|
cv2.imshow('test', vis)
|
||
|
cv2.waitKey()
|