523 lines
19 KiB
C++
523 lines
19 KiB
C++
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// Intel License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
#include "test_precomp.hpp"
|
||
|
#include <algorithm>
|
||
|
#include <iterator>
|
||
|
|
||
|
using namespace cv;
|
||
|
using namespace cv::gpu;
|
||
|
using namespace std;
|
||
|
|
||
|
class CV_GpuBruteForceMatcherTest : public cvtest::BaseTest
|
||
|
{
|
||
|
public:
|
||
|
CV_GpuBruteForceMatcherTest()
|
||
|
{
|
||
|
}
|
||
|
|
||
|
protected:
|
||
|
virtual void run(int);
|
||
|
|
||
|
void emptyDataTest();
|
||
|
void dataTest(int dim);
|
||
|
|
||
|
void generateData(GpuMat& query, GpuMat& train, int dim);
|
||
|
|
||
|
void matchTest(const GpuMat& query, const GpuMat& train);
|
||
|
void knnMatchTest(const GpuMat& query, const GpuMat& train);
|
||
|
void radiusMatchTest(const GpuMat& query, const GpuMat& train);
|
||
|
|
||
|
private:
|
||
|
BruteForceMatcher_GPU< L2<float> > dmatcher;
|
||
|
|
||
|
static const int queryDescCount = 300; // must be even number because we split train data in some cases in two
|
||
|
static const int countFactor = 4; // do not change it
|
||
|
};
|
||
|
|
||
|
void CV_GpuBruteForceMatcherTest::emptyDataTest()
|
||
|
{
|
||
|
GpuMat queryDescriptors, trainDescriptors, mask;
|
||
|
vector<GpuMat> trainDescriptorCollection, masks;
|
||
|
vector<DMatch> matches;
|
||
|
vector< vector<DMatch> > vmatches;
|
||
|
|
||
|
try
|
||
|
{
|
||
|
dmatcher.match(queryDescriptors, trainDescriptors, matches, mask);
|
||
|
}
|
||
|
catch(...)
|
||
|
{
|
||
|
ts->printf( cvtest::TS::LOG, "match() on empty descriptors must not generate exception (1).\n" );
|
||
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||
|
}
|
||
|
|
||
|
try
|
||
|
{
|
||
|
dmatcher.knnMatch(queryDescriptors, trainDescriptors, vmatches, 2, mask);
|
||
|
}
|
||
|
catch(...)
|
||
|
{
|
||
|
ts->printf( cvtest::TS::LOG, "knnMatch() on empty descriptors must not generate exception (1).\n" );
|
||
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||
|
}
|
||
|
|
||
|
try
|
||
|
{
|
||
|
dmatcher.radiusMatch(queryDescriptors, trainDescriptors, vmatches, 10.f, mask);
|
||
|
}
|
||
|
catch(...)
|
||
|
{
|
||
|
ts->printf( cvtest::TS::LOG, "radiusMatch() on empty descriptors must not generate exception (1).\n" );
|
||
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||
|
}
|
||
|
|
||
|
try
|
||
|
{
|
||
|
dmatcher.add(trainDescriptorCollection);
|
||
|
}
|
||
|
catch(...)
|
||
|
{
|
||
|
ts->printf( cvtest::TS::LOG, "add() on empty descriptors must not generate exception.\n" );
|
||
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||
|
}
|
||
|
|
||
|
try
|
||
|
{
|
||
|
dmatcher.match(queryDescriptors, matches, masks);
|
||
|
}
|
||
|
catch(...)
|
||
|
{
|
||
|
ts->printf( cvtest::TS::LOG, "match() on empty descriptors must not generate exception (2).\n" );
|
||
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||
|
}
|
||
|
|
||
|
try
|
||
|
{
|
||
|
dmatcher.knnMatch(queryDescriptors, vmatches, 2, masks);
|
||
|
}
|
||
|
catch(...)
|
||
|
{
|
||
|
ts->printf( cvtest::TS::LOG, "knnMatch() on empty descriptors must not generate exception (2).\n" );
|
||
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||
|
}
|
||
|
|
||
|
try
|
||
|
{
|
||
|
dmatcher.radiusMatch( queryDescriptors, vmatches, 10.f, masks );
|
||
|
}
|
||
|
catch(...)
|
||
|
{
|
||
|
ts->printf( cvtest::TS::LOG, "radiusMatch() on empty descriptors must not generate exception (2).\n" );
|
||
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
void CV_GpuBruteForceMatcherTest::generateData( GpuMat& queryGPU, GpuMat& trainGPU, int dim )
|
||
|
{
|
||
|
Mat query, train;
|
||
|
RNG& rng = ts->get_rng();
|
||
|
|
||
|
// Generate query descriptors randomly.
|
||
|
// Descriptor vector elements are integer values.
|
||
|
Mat buf( queryDescCount, dim, CV_32SC1 );
|
||
|
rng.fill( buf, RNG::UNIFORM, Scalar::all(0), Scalar(3) );
|
||
|
buf.convertTo( query, CV_32FC1 );
|
||
|
|
||
|
// Generate train decriptors as follows:
|
||
|
// copy each query descriptor to train set countFactor times
|
||
|
// and perturb some one element of the copied descriptors in
|
||
|
// in ascending order. General boundaries of the perturbation
|
||
|
// are (0.f, 1.f).
|
||
|
train.create( query.rows*countFactor, query.cols, CV_32FC1 );
|
||
|
float step = 1.f / countFactor;
|
||
|
for( int qIdx = 0; qIdx < query.rows; qIdx++ )
|
||
|
{
|
||
|
Mat queryDescriptor = query.row(qIdx);
|
||
|
for( int c = 0; c < countFactor; c++ )
|
||
|
{
|
||
|
int tIdx = qIdx * countFactor + c;
|
||
|
Mat trainDescriptor = train.row(tIdx);
|
||
|
queryDescriptor.copyTo( trainDescriptor );
|
||
|
int elem = rng(dim);
|
||
|
float diff = rng.uniform( step*c, step*(c+1) );
|
||
|
trainDescriptor.at<float>(0, elem) += diff;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
queryGPU.upload(query);
|
||
|
trainGPU.upload(train);
|
||
|
}
|
||
|
|
||
|
void CV_GpuBruteForceMatcherTest::matchTest( const GpuMat& query, const GpuMat& train )
|
||
|
{
|
||
|
dmatcher.clear();
|
||
|
|
||
|
// test const version of match()
|
||
|
{
|
||
|
vector<DMatch> matches;
|
||
|
dmatcher.match( query, train, matches );
|
||
|
|
||
|
if( (int)matches.size() != queryDescCount )
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "Incorrect matches count while test match() function (1).\n");
|
||
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
int badCount = 0;
|
||
|
for( size_t i = 0; i < matches.size(); i++ )
|
||
|
{
|
||
|
DMatch match = matches[i];
|
||
|
if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor) || (match.imgIdx != 0) )
|
||
|
badCount++;
|
||
|
}
|
||
|
if (badCount > 0)
|
||
|
{
|
||
|
ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test match() function (1).\n",
|
||
|
(float)badCount/(float)queryDescCount );
|
||
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// test version of match() with add()
|
||
|
{
|
||
|
vector<DMatch> matches;
|
||
|
// make add() twice to test such case
|
||
|
dmatcher.add( vector<GpuMat>(1,train.rowRange(0, train.rows/2)) );
|
||
|
dmatcher.add( vector<GpuMat>(1,train.rowRange(train.rows/2, train.rows)) );
|
||
|
// prepare masks (make first nearest match illegal)
|
||
|
vector<GpuMat> masks(2);
|
||
|
for(int mi = 0; mi < 2; mi++ )
|
||
|
{
|
||
|
masks[mi] = GpuMat(query.rows, train.rows/2, CV_8UC1, Scalar::all(1));
|
||
|
for( int di = 0; di < queryDescCount/2; di++ )
|
||
|
masks[mi].col(di*countFactor).setTo(Scalar::all(0));
|
||
|
}
|
||
|
|
||
|
dmatcher.match( query, matches, masks );
|
||
|
|
||
|
if( (int)matches.size() != queryDescCount )
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "Incorrect matches count while test match() function (2).\n");
|
||
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
int badCount = 0;
|
||
|
for( size_t i = 0; i < matches.size(); i++ )
|
||
|
{
|
||
|
DMatch match = matches[i];
|
||
|
int shift = dmatcher.isMaskSupported() ? 1 : 0;
|
||
|
{
|
||
|
if( i < queryDescCount/2 )
|
||
|
{
|
||
|
if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor + shift) || (match.imgIdx != 0) )
|
||
|
badCount++;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if( (match.queryIdx != (int)i) || (match.trainIdx != ((int)i-queryDescCount/2)*countFactor + shift) || (match.imgIdx != 1) )
|
||
|
badCount++;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (badCount > 0)
|
||
|
{
|
||
|
ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test match() function (2).\n",
|
||
|
(float)badCount/(float)queryDescCount );
|
||
|
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void CV_GpuBruteForceMatcherTest::knnMatchTest( const GpuMat& query, const GpuMat& train )
|
||
|
{
|
||
|
dmatcher.clear();
|
||
|
|
||
|
// test const version of knnMatch()
|
||
|
{
|
||
|
const int knn = 3;
|
||
|
|
||
|
vector< vector<DMatch> > matches;
|
||
|
dmatcher.knnMatch( query, train, matches, knn );
|
||
|
|
||
|
if( (int)matches.size() != queryDescCount )
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "Incorrect matches count while test knnMatch() function (1).\n");
|
||
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
int badCount = 0;
|
||
|
for( size_t i = 0; i < matches.size(); i++ )
|
||
|
{
|
||
|
if( (int)matches[i].size() != knn )
|
||
|
badCount++;
|
||
|
else
|
||
|
{
|
||
|
int localBadCount = 0;
|
||
|
for( int k = 0; k < knn; k++ )
|
||
|
{
|
||
|
DMatch match = matches[i][k];
|
||
|
if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor+k) || (match.imgIdx != 0) )
|
||
|
localBadCount++;
|
||
|
}
|
||
|
badCount += localBadCount > 0 ? 1 : 0;
|
||
|
}
|
||
|
}
|
||
|
if (badCount > 0)
|
||
|
{
|
||
|
ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test knnMatch() function (1).\n",
|
||
|
(float)badCount/(float)queryDescCount );
|
||
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// test version of knnMatch() with add()
|
||
|
{
|
||
|
const int knn = 2;
|
||
|
vector<vector<DMatch> > matches;
|
||
|
// make add() twice to test such case
|
||
|
dmatcher.add( vector<GpuMat>(1,train.rowRange(0, train.rows/2)) );
|
||
|
dmatcher.add( vector<GpuMat>(1,train.rowRange(train.rows/2, train.rows)) );
|
||
|
// prepare masks (make first nearest match illegal)
|
||
|
vector<GpuMat> masks(2);
|
||
|
for(int mi = 0; mi < 2; mi++ )
|
||
|
{
|
||
|
masks[mi] = GpuMat(query.rows, train.rows/2, CV_8UC1, Scalar::all(1));
|
||
|
for( int di = 0; di < queryDescCount/2; di++ )
|
||
|
masks[mi].col(di*countFactor).setTo(Scalar::all(0));
|
||
|
}
|
||
|
|
||
|
dmatcher.knnMatch( query, matches, knn, masks );
|
||
|
|
||
|
if( (int)matches.size() != queryDescCount )
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "Incorrect matches count while test knnMatch() function (2).\n");
|
||
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
int badCount = 0;
|
||
|
int shift = dmatcher.isMaskSupported() ? 1 : 0;
|
||
|
for( size_t i = 0; i < matches.size(); i++ )
|
||
|
{
|
||
|
if( (int)matches[i].size() != knn )
|
||
|
badCount++;
|
||
|
else
|
||
|
{
|
||
|
int localBadCount = 0;
|
||
|
for( int k = 0; k < knn; k++ )
|
||
|
{
|
||
|
DMatch match = matches[i][k];
|
||
|
{
|
||
|
if( i < queryDescCount/2 )
|
||
|
{
|
||
|
if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor + k + shift) ||
|
||
|
(match.imgIdx != 0) )
|
||
|
localBadCount++;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if( (match.queryIdx != (int)i) || (match.trainIdx != ((int)i-queryDescCount/2)*countFactor + k + shift) ||
|
||
|
(match.imgIdx != 1) )
|
||
|
localBadCount++;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
badCount += localBadCount > 0 ? 1 : 0;
|
||
|
}
|
||
|
}
|
||
|
if (badCount > 0)
|
||
|
{
|
||
|
ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test knnMatch() function (2).\n",
|
||
|
(float)badCount/(float)queryDescCount );
|
||
|
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void CV_GpuBruteForceMatcherTest::radiusMatchTest( const GpuMat& query, const GpuMat& train )
|
||
|
{
|
||
|
bool atomics_ok = TargetArchs::builtWith(GLOBAL_ATOMICS) && DeviceInfo().supports(GLOBAL_ATOMICS);
|
||
|
if (!atomics_ok)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::CONSOLE, "\nCode and device atomics support is required for radiusMatch (CC >= 1.1)");
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_GENERIC);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
dmatcher.clear();
|
||
|
// test const version of match()
|
||
|
{
|
||
|
const float radius = 1.f/countFactor;
|
||
|
vector< vector<DMatch> > matches;
|
||
|
dmatcher.radiusMatch( query, train, matches, radius );
|
||
|
|
||
|
if( (int)matches.size() != queryDescCount )
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "Incorrect matches count while test radiusMatch() function (1).\n");
|
||
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
int badCount = 0;
|
||
|
for( size_t i = 0; i < matches.size(); i++ )
|
||
|
{
|
||
|
if( (int)matches[i].size() != 1 )
|
||
|
badCount++;
|
||
|
else
|
||
|
{
|
||
|
DMatch match = matches[i][0];
|
||
|
if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor) || (match.imgIdx != 0) )
|
||
|
badCount++;
|
||
|
}
|
||
|
}
|
||
|
if (badCount > 0)
|
||
|
{
|
||
|
ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test radiusMatch() function (1).\n",
|
||
|
(float)badCount/(float)queryDescCount );
|
||
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// test version of match() with add()
|
||
|
{
|
||
|
int n = 3;
|
||
|
const float radius = 1.f/countFactor * n;
|
||
|
vector< vector<DMatch> > matches;
|
||
|
// make add() twice to test such case
|
||
|
dmatcher.add( vector<GpuMat>(1,train.rowRange(0, train.rows/2)) );
|
||
|
dmatcher.add( vector<GpuMat>(1,train.rowRange(train.rows/2, train.rows)) );
|
||
|
// prepare masks (make first nearest match illegal)
|
||
|
vector<GpuMat> masks(2);
|
||
|
for(int mi = 0; mi < 2; mi++ )
|
||
|
{
|
||
|
masks[mi] = GpuMat(query.rows, train.rows/2, CV_8UC1, Scalar::all(1));
|
||
|
for( int di = 0; di < queryDescCount/2; di++ )
|
||
|
masks[mi].col(di*countFactor).setTo(Scalar::all(0));
|
||
|
}
|
||
|
|
||
|
dmatcher.radiusMatch( query, matches, radius, masks );
|
||
|
|
||
|
int curRes = cvtest::TS::OK;
|
||
|
if( (int)matches.size() != queryDescCount )
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "Incorrect matches count while test radiusMatch() function (1).\n");
|
||
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||
|
}
|
||
|
|
||
|
int badCount = 0;
|
||
|
int shift = dmatcher.isMaskSupported() ? 1 : 0;
|
||
|
int needMatchCount = dmatcher.isMaskSupported() ? n-1 : n;
|
||
|
for( size_t i = 0; i < matches.size(); i++ )
|
||
|
{
|
||
|
if( (int)matches[i].size() != needMatchCount )
|
||
|
badCount++;
|
||
|
else
|
||
|
{
|
||
|
int localBadCount = 0;
|
||
|
for( int k = 0; k < needMatchCount; k++ )
|
||
|
{
|
||
|
DMatch match = matches[i][k];
|
||
|
{
|
||
|
if( i < queryDescCount/2 )
|
||
|
{
|
||
|
if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor + k + shift) ||
|
||
|
(match.imgIdx != 0) )
|
||
|
localBadCount++;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if( (match.queryIdx != (int)i) || (match.trainIdx != ((int)i-queryDescCount/2)*countFactor + k + shift) ||
|
||
|
(match.imgIdx != 1) )
|
||
|
localBadCount++;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
badCount += localBadCount > 0 ? 1 : 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (badCount > 0)
|
||
|
{
|
||
|
curRes = cvtest::TS::FAIL_INVALID_OUTPUT;
|
||
|
ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test radiusMatch() function (2).\n",
|
||
|
(float)badCount/(float)queryDescCount );
|
||
|
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void CV_GpuBruteForceMatcherTest::dataTest(int dim)
|
||
|
{
|
||
|
GpuMat query, train;
|
||
|
generateData(query, train, dim);
|
||
|
|
||
|
matchTest(query, train);
|
||
|
knnMatchTest(query, train);
|
||
|
radiusMatchTest(query, train);
|
||
|
|
||
|
dmatcher.clear();
|
||
|
}
|
||
|
|
||
|
void CV_GpuBruteForceMatcherTest::run(int)
|
||
|
{
|
||
|
emptyDataTest();
|
||
|
|
||
|
dataTest(50);
|
||
|
dataTest(64);
|
||
|
dataTest(100);
|
||
|
dataTest(128);
|
||
|
dataTest(200);
|
||
|
dataTest(256);
|
||
|
dataTest(300);
|
||
|
}
|
||
|
|
||
|
TEST(BruteForceMatcher, accuracy) { CV_GpuBruteForceMatcherTest test; test.safe_run(); }
|