opencv/modules/gpu/src/match_template.cpp

287 lines
12 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <iostream>
#include <utility>
using namespace cv;
using namespace cv::gpu;
#define BLOCK_VERSION
#if !defined (HAVE_CUDA)
void cv::gpu::matchTemplate(const GpuMat&, const GpuMat&, GpuMat&, int) { throw_nogpu(); }
#else
#include <cufft.h>
namespace cv { namespace gpu { namespace imgproc
{
2010-12-10 11:23:32 +01:00
void multiplyAndNormalizeSpects(int n, float scale, const cufftComplex* a,
const cufftComplex* b, cufftComplex* c);
2010-12-10 11:23:32 +01:00
void matchTemplateNaive_8U_SQDIFF(
const DevMem2D image, const DevMem2D templ, DevMem2Df result);
void matchTemplateNaive_32F_SQDIFF(
const DevMem2D image, const DevMem2D templ, DevMem2Df result);
void matchTemplatePrepared_8U_SQDIFF(
int w, int h, const DevMem2Df image_sumsq, float templ_sumsq,
DevMem2Df result);
}}}
namespace
{
2010-12-10 11:23:32 +01:00
void matchTemplate_32F_SQDIFF(const GpuMat&, const GpuMat&, GpuMat&);
void matchTemplate_32F_CCORR(const GpuMat&, const GpuMat&, GpuMat&);
void matchTemplate_8U_SQDIFF(const GpuMat&, const GpuMat&, GpuMat&);
void matchTemplate_8U_CCORR(const GpuMat&, const GpuMat&, GpuMat&);
#ifdef BLOCK_VERSION
void estimateBlockSize(int w, int h, int tw, int th, int& bw, int& bh)
{
const int scale = 40;
const int bh_min = 1024;
const int bw_min = 1024;
bw = std::max(tw * scale, bw_min);
bh = std::max(th * scale, bh_min);
bw = std::min(bw, w);
bh = std::min(bh, h);
}
#endif
2010-12-10 11:23:32 +01:00
void matchTemplate_32F_SQDIFF(const GpuMat& image, const GpuMat& templ, GpuMat& result)
{
result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32F);
imgproc::matchTemplateNaive_32F_SQDIFF(image, templ, result);
}
#ifdef BLOCK_VERSION
2010-12-10 11:23:32 +01:00
void matchTemplate_32F_CCORR(const GpuMat& image, const GpuMat& templ, GpuMat& result)
{
result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32F);
Size block_size;
estimateBlockSize(result.cols, result.rows, templ.cols, templ.rows,
block_size.width, block_size.height);
Size dft_size;
dft_size.width = getOptimalDFTSize(block_size.width + templ.cols - 1);
dft_size.height = getOptimalDFTSize(block_size.width + templ.rows - 1);
block_size.width = std::min(dft_size.width - templ.cols + 1, result.cols);
block_size.height = std::min(dft_size.height - templ.rows + 1, result.rows);
cufftReal* image_data;
cufftReal* templ_data;
cufftReal* result_data;
cudaMalloc((void**)&image_data, sizeof(cufftReal) * dft_size.area());
cudaMalloc((void**)&templ_data, sizeof(cufftReal) * dft_size.area());
cudaMalloc((void**)&result_data, sizeof(cufftReal) * dft_size.area());
int spect_len = dft_size.height * (dft_size.width / 2 + 1);
cufftComplex* image_spect;
cufftComplex* templ_spect;
cufftComplex* result_spect;
cudaMalloc((void**)&image_spect, sizeof(cufftComplex) * spect_len);
cudaMalloc((void**)&templ_spect, sizeof(cufftComplex) * spect_len);
cudaMalloc((void**)&result_spect, sizeof(cufftComplex) * spect_len);
cufftHandle planR2C, planC2R;
CV_Assert(cufftPlan2d(&planC2R, dft_size.height, dft_size.width, CUFFT_C2R) == CUFFT_SUCCESS);
CV_Assert(cufftPlan2d(&planR2C, dft_size.height, dft_size.width, CUFFT_R2C) == CUFFT_SUCCESS);
GpuMat templ_roi(templ.size(), CV_32S, templ.data, templ.step);
GpuMat templ_block(dft_size, CV_32S, templ_data, dft_size.width * sizeof(cufftReal));
copyMakeBorder(templ_roi, templ_block, 0, templ_block.rows - templ_roi.rows, 0,
templ_block.cols - templ_roi.cols, 0);
CV_Assert(cufftExecR2C(planR2C, templ_data, templ_spect) == CUFFT_SUCCESS);
GpuMat image_block(dft_size, CV_32S, image_data, dft_size.width * sizeof(cufftReal));
for (int y = 0; y < result.rows; y += block_size.height)
{
for (int x = 0; x < result.cols; x += block_size.width)
{
Size image_roi_size;
image_roi_size.width = min(x + dft_size.width, image.cols) - x;
image_roi_size.height = min(y + dft_size.height, image.rows) - y;
GpuMat image_roi(image_roi_size, CV_32S, (void*)(image.ptr<float>(y) + x), image.step);
copyMakeBorder(image_roi, image_block, 0, image_block.rows - image_roi.rows, 0,
image_block.cols - image_roi.cols, 0);
CV_Assert(cufftExecR2C(planR2C, image_data, image_spect) == CUFFT_SUCCESS);
imgproc::multiplyAndNormalizeSpects(spect_len, 1.f / dft_size.area(),
image_spect, templ_spect, result_spect);
CV_Assert(cufftExecC2R(planC2R, result_spect, result_data) == CUFFT_SUCCESS);
Size result_roi_size;
result_roi_size.width = min(x + block_size.width, result.cols) - x;
result_roi_size.height = min(y + block_size.height, result.rows) - y;
GpuMat result_roi(result_roi_size, CV_32F, (void*)(result.ptr<float>(y) + x), result.step);
GpuMat result_block(result_roi_size, CV_32F, result_data, dft_size.width * sizeof(cufftReal));
result_block.copyTo(result_roi);
}
}
cufftDestroy(planR2C);
cufftDestroy(planC2R);
cudaFree(image_spect);
cudaFree(templ_spect);
cudaFree(result_spect);
cudaFree(image_data);
cudaFree(templ_data);
cudaFree(result_data);
}
#else
2010-12-10 11:23:32 +01:00
void matchTemplate_32F_CCORR(const GpuMat& image, const GpuMat& templ, GpuMat& result)
{
Size opt_size;
opt_size.width = getOptimalDFTSize(image.cols);
opt_size.height = getOptimalDFTSize(image.rows);
cufftReal* image_data;
cufftReal* templ_data;
cufftReal* result_data;
cudaMalloc((void**)&image_data, sizeof(cufftReal) * opt_size.area());
cudaMalloc((void**)&templ_data, sizeof(cufftReal) * opt_size.area());
cudaMalloc((void**)&result_data, sizeof(cufftReal) * opt_size.area());
int spect_len = opt_size.height * (opt_size.width / 2 + 1);
cufftComplex* image_spect;
cufftComplex* templ_spect;
cufftComplex* result_spect;
cudaMalloc((void**)&image_spect, sizeof(cufftComplex) * spect_len);
cudaMalloc((void**)&templ_spect, sizeof(cufftComplex) * spect_len);
cudaMalloc((void**)&result_spect, sizeof(cufftComplex) * spect_len);
GpuMat image_(image.size(), CV_32S, image.data, image.step);
GpuMat image_cont(opt_size, CV_32S, image_data, opt_size.width * sizeof(cufftReal));
copyMakeBorder(image_, image_cont, 0, image_cont.rows - image.rows, 0,
image_cont.cols - image.cols, 0);
GpuMat templ_(templ.size(), CV_32S, templ.data, templ.step);
GpuMat templ_cont(opt_size, CV_32S, templ_data, opt_size.width * sizeof(cufftReal));
copyMakeBorder(templ_, templ_cont, 0, templ_cont.rows - templ.rows, 0,
templ_cont.cols - templ.cols, 0);
cufftHandle planR2C, planC2R;
CV_Assert(cufftPlan2d(&planC2R, opt_size.height, opt_size.width, CUFFT_C2R) == CUFFT_SUCCESS);
CV_Assert(cufftPlan2d(&planR2C, opt_size.height, opt_size.width, CUFFT_R2C) == CUFFT_SUCCESS);
CV_Assert(cufftExecR2C(planR2C, image_data, image_spect) == CUFFT_SUCCESS);
CV_Assert(cufftExecR2C(planR2C, templ_data, templ_spect) == CUFFT_SUCCESS);
imgproc::multiplyAndNormalizeSpects(spect_len, 1.f / opt_size.area(),
image_spect, templ_spect, result_spect);
CV_Assert(cufftExecC2R(planC2R, result_spect, result_data) == CUFFT_SUCCESS);
cufftDestroy(planR2C);
cufftDestroy(planC2R);
GpuMat result_cont(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32F,
result_data, opt_size.width * sizeof(cufftReal));
result_cont.copyTo(result);
cudaFree(image_spect);
cudaFree(templ_spect);
cudaFree(result_spect);
cudaFree(image_data);
cudaFree(templ_data);
cudaFree(result_data);
}
#endif
2010-12-10 11:23:32 +01:00
void matchTemplate_8U_SQDIFF(const GpuMat& image, const GpuMat& templ, GpuMat& result)
{
result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32F);
imgproc::matchTemplateNaive_8U_SQDIFF(image, templ, result);
2010-12-10 11:23:32 +01:00
}
void matchTemplate_8U_CCORR(const GpuMat& image, const GpuMat& templ, GpuMat& result)
{
GpuMat imagef, templf;
image.convertTo(imagef, CV_32F);
templ.convertTo(templf, CV_32F);
matchTemplate_32F_CCORR(imagef, templf, result);
}
}
void cv::gpu::matchTemplate(const GpuMat& image, const GpuMat& templ, GpuMat& result, int method)
{
CV_Assert(image.type() == templ.type());
CV_Assert(image.cols >= templ.cols && image.rows >= templ.rows);
typedef void (*Caller)(const GpuMat&, const GpuMat&, GpuMat&);
2010-12-10 11:23:32 +01:00
static const Caller callers8U[] = { ::matchTemplate_8U_SQDIFF, 0,
::matchTemplate_8U_CCORR, 0, 0, 0 };
static const Caller callers32F[] = { ::matchTemplate_32F_SQDIFF, 0,
::matchTemplate_32F_CCORR, 0, 0, 0 };
const Caller* callers;
switch (image.type())
{
case CV_8U: callers = callers8U; break;
case CV_32F: callers = callers32F; break;
default: CV_Error(CV_StsBadArg, "matchTemplate: unsupported data type");
}
Caller caller = callers[method];
CV_Assert(caller);
caller(image, templ, result);
}
#endif