2010-12-06 10:44:51 +01:00
|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
2010-12-06 15:19:41 +01:00
|
|
|
#include "precomp.hpp"
|
2010-12-08 14:03:53 +01:00
|
|
|
#include <iostream>
|
|
|
|
#include <utility>
|
|
|
|
|
|
|
|
using namespace cv;
|
|
|
|
using namespace cv::gpu;
|
|
|
|
|
|
|
|
#define BLOCK_VERSION
|
2010-12-06 10:44:51 +01:00
|
|
|
|
2010-12-06 15:19:41 +01:00
|
|
|
#if !defined (HAVE_CUDA)
|
2010-12-06 10:44:51 +01:00
|
|
|
|
2010-12-06 15:19:41 +01:00
|
|
|
void cv::gpu::matchTemplate(const GpuMat&, const GpuMat&, GpuMat&, int) { throw_nogpu(); }
|
2010-12-06 10:44:51 +01:00
|
|
|
|
2010-12-06 15:19:41 +01:00
|
|
|
#else
|
2010-12-06 10:44:51 +01:00
|
|
|
|
2010-12-08 16:06:10 +01:00
|
|
|
#include <cufft.h>
|
|
|
|
|
2010-12-08 14:03:53 +01:00
|
|
|
namespace cv { namespace gpu { namespace imgproc
|
|
|
|
{
|
|
|
|
void multiplyAndNormalizeSpects(int n, float scale, const cufftComplex* a,
|
|
|
|
const cufftComplex* b, cufftComplex* c);
|
2010-12-08 16:06:10 +01:00
|
|
|
void matchTemplateNaive_8U_SQDIFF(const DevMem2D image, const DevMem2D templ, DevMem2Df result);
|
|
|
|
void matchTemplateNaive_32F_SQDIFF(const DevMem2D image, const DevMem2D templ, DevMem2Df result);
|
2010-12-06 15:19:41 +01:00
|
|
|
}}}
|
|
|
|
|
2010-12-08 14:03:53 +01:00
|
|
|
|
|
|
|
namespace
|
2010-12-06 15:19:41 +01:00
|
|
|
{
|
|
|
|
|
2010-12-08 14:03:53 +01:00
|
|
|
template <int type, int method>
|
|
|
|
void matchTemplate(const GpuMat& image, const GpuMat& templ, GpuMat& result);
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef BLOCK_VERSION
|
|
|
|
void estimateBlockSize(int w, int h, int tw, int th, int& bw, int& bh)
|
|
|
|
{
|
|
|
|
const int scale = 40;
|
|
|
|
const int bh_min = 1024;
|
|
|
|
const int bw_min = 1024;
|
|
|
|
bw = std::max(tw * scale, bw_min);
|
|
|
|
bh = std::max(th * scale, bh_min);
|
|
|
|
bw = std::min(bw, w);
|
|
|
|
bh = std::min(bh, h);
|
|
|
|
}
|
|
|
|
#endif
|
2010-12-08 14:12:12 +01:00
|
|
|
|
|
|
|
template <>
|
|
|
|
void matchTemplate<CV_32F, CV_TM_SQDIFF>(const GpuMat& image, const GpuMat& templ, GpuMat& result)
|
|
|
|
{
|
|
|
|
result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32F);
|
2010-12-08 16:06:10 +01:00
|
|
|
imgproc::matchTemplateNaive_32F_SQDIFF(image, templ, result);
|
2010-12-08 14:12:12 +01:00
|
|
|
}
|
|
|
|
|
2010-12-08 14:03:53 +01:00
|
|
|
|
|
|
|
#ifdef BLOCK_VERSION
|
|
|
|
template <>
|
|
|
|
void matchTemplate<CV_32F, CV_TM_CCORR>(const GpuMat& image, const GpuMat& templ, GpuMat& result)
|
|
|
|
{
|
|
|
|
result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32F);
|
|
|
|
|
|
|
|
Size block_size;
|
|
|
|
estimateBlockSize(result.cols, result.rows, templ.cols, templ.rows,
|
|
|
|
block_size.width, block_size.height);
|
|
|
|
|
|
|
|
Size dft_size;
|
|
|
|
dft_size.width = getOptimalDFTSize(block_size.width + templ.cols - 1);
|
|
|
|
dft_size.height = getOptimalDFTSize(block_size.width + templ.rows - 1);
|
|
|
|
|
|
|
|
block_size.width = std::min(dft_size.width - templ.cols + 1, result.cols);
|
|
|
|
block_size.height = std::min(dft_size.height - templ.rows + 1, result.rows);
|
|
|
|
|
|
|
|
cufftReal* image_data;
|
|
|
|
cufftReal* templ_data;
|
|
|
|
cufftReal* result_data;
|
|
|
|
cudaMalloc((void**)&image_data, sizeof(cufftReal) * dft_size.area());
|
|
|
|
cudaMalloc((void**)&templ_data, sizeof(cufftReal) * dft_size.area());
|
|
|
|
cudaMalloc((void**)&result_data, sizeof(cufftReal) * dft_size.area());
|
|
|
|
|
|
|
|
int spect_len = dft_size.height * (dft_size.width / 2 + 1);
|
|
|
|
cufftComplex* image_spect;
|
|
|
|
cufftComplex* templ_spect;
|
|
|
|
cufftComplex* result_spect;
|
|
|
|
cudaMalloc((void**)&image_spect, sizeof(cufftComplex) * spect_len);
|
|
|
|
cudaMalloc((void**)&templ_spect, sizeof(cufftComplex) * spect_len);
|
|
|
|
cudaMalloc((void**)&result_spect, sizeof(cufftComplex) * spect_len);
|
|
|
|
|
|
|
|
cufftHandle planR2C, planC2R;
|
|
|
|
CV_Assert(cufftPlan2d(&planC2R, dft_size.height, dft_size.width, CUFFT_C2R) == CUFFT_SUCCESS);
|
|
|
|
CV_Assert(cufftPlan2d(&planR2C, dft_size.height, dft_size.width, CUFFT_R2C) == CUFFT_SUCCESS);
|
|
|
|
|
|
|
|
GpuMat templ_roi(templ.size(), CV_32S, templ.data, templ.step);
|
|
|
|
GpuMat templ_block(dft_size, CV_32S, templ_data, dft_size.width * sizeof(cufftReal));
|
|
|
|
copyMakeBorder(templ_roi, templ_block, 0, templ_block.rows - templ_roi.rows, 0,
|
|
|
|
templ_block.cols - templ_roi.cols, 0);
|
|
|
|
CV_Assert(cufftExecR2C(planR2C, templ_data, templ_spect) == CUFFT_SUCCESS);
|
|
|
|
|
|
|
|
GpuMat image_block(dft_size, CV_32S, image_data, dft_size.width * sizeof(cufftReal));
|
|
|
|
|
|
|
|
for (int y = 0; y < result.rows; y += block_size.height)
|
|
|
|
{
|
|
|
|
for (int x = 0; x < result.cols; x += block_size.width)
|
|
|
|
{
|
|
|
|
Size image_roi_size;
|
|
|
|
image_roi_size.width = min(x + dft_size.width, image.cols) - x;
|
|
|
|
image_roi_size.height = min(y + dft_size.height, image.rows) - y;
|
|
|
|
GpuMat image_roi(image_roi_size, CV_32S, (void*)(image.ptr<float>(y) + x), image.step);
|
|
|
|
copyMakeBorder(image_roi, image_block, 0, image_block.rows - image_roi.rows, 0,
|
|
|
|
image_block.cols - image_roi.cols, 0);
|
|
|
|
|
|
|
|
CV_Assert(cufftExecR2C(planR2C, image_data, image_spect) == CUFFT_SUCCESS);
|
|
|
|
imgproc::multiplyAndNormalizeSpects(spect_len, 1.f / dft_size.area(),
|
|
|
|
image_spect, templ_spect, result_spect);
|
|
|
|
CV_Assert(cufftExecC2R(planC2R, result_spect, result_data) == CUFFT_SUCCESS);
|
|
|
|
|
|
|
|
Size result_roi_size;
|
|
|
|
result_roi_size.width = min(x + block_size.width, result.cols) - x;
|
|
|
|
result_roi_size.height = min(y + block_size.height, result.rows) - y;
|
|
|
|
GpuMat result_roi(result_roi_size, CV_32F, (void*)(result.ptr<float>(y) + x), result.step);
|
|
|
|
GpuMat result_block(result_roi_size, CV_32F, result_data, dft_size.width * sizeof(cufftReal));
|
|
|
|
result_block.copyTo(result_roi);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
cufftDestroy(planR2C);
|
|
|
|
cufftDestroy(planC2R);
|
|
|
|
|
|
|
|
cudaFree(image_spect);
|
|
|
|
cudaFree(templ_spect);
|
|
|
|
cudaFree(result_spect);
|
|
|
|
cudaFree(image_data);
|
|
|
|
cudaFree(templ_data);
|
|
|
|
cudaFree(result_data);
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
template <>
|
|
|
|
void matchTemplate<CV_32F, CV_TM_CCORR>(const GpuMat& image, const GpuMat& templ, GpuMat& result)
|
|
|
|
{
|
|
|
|
Size opt_size;
|
|
|
|
opt_size.width = getOptimalDFTSize(image.cols);
|
|
|
|
opt_size.height = getOptimalDFTSize(image.rows);
|
|
|
|
|
|
|
|
cufftReal* image_data;
|
|
|
|
cufftReal* templ_data;
|
|
|
|
cufftReal* result_data;
|
|
|
|
cudaMalloc((void**)&image_data, sizeof(cufftReal) * opt_size.area());
|
|
|
|
cudaMalloc((void**)&templ_data, sizeof(cufftReal) * opt_size.area());
|
|
|
|
cudaMalloc((void**)&result_data, sizeof(cufftReal) * opt_size.area());
|
|
|
|
|
|
|
|
int spect_len = opt_size.height * (opt_size.width / 2 + 1);
|
|
|
|
cufftComplex* image_spect;
|
|
|
|
cufftComplex* templ_spect;
|
|
|
|
cufftComplex* result_spect;
|
|
|
|
cudaMalloc((void**)&image_spect, sizeof(cufftComplex) * spect_len);
|
|
|
|
cudaMalloc((void**)&templ_spect, sizeof(cufftComplex) * spect_len);
|
|
|
|
cudaMalloc((void**)&result_spect, sizeof(cufftComplex) * spect_len);
|
|
|
|
|
|
|
|
GpuMat image_(image.size(), CV_32S, image.data, image.step);
|
|
|
|
GpuMat image_cont(opt_size, CV_32S, image_data, opt_size.width * sizeof(cufftReal));
|
|
|
|
copyMakeBorder(image_, image_cont, 0, image_cont.rows - image.rows, 0,
|
|
|
|
image_cont.cols - image.cols, 0);
|
|
|
|
|
|
|
|
GpuMat templ_(templ.size(), CV_32S, templ.data, templ.step);
|
|
|
|
GpuMat templ_cont(opt_size, CV_32S, templ_data, opt_size.width * sizeof(cufftReal));
|
|
|
|
copyMakeBorder(templ_, templ_cont, 0, templ_cont.rows - templ.rows, 0,
|
|
|
|
templ_cont.cols - templ.cols, 0);
|
|
|
|
|
|
|
|
cufftHandle planR2C, planC2R;
|
|
|
|
CV_Assert(cufftPlan2d(&planC2R, opt_size.height, opt_size.width, CUFFT_C2R) == CUFFT_SUCCESS);
|
|
|
|
CV_Assert(cufftPlan2d(&planR2C, opt_size.height, opt_size.width, CUFFT_R2C) == CUFFT_SUCCESS);
|
|
|
|
|
|
|
|
CV_Assert(cufftExecR2C(planR2C, image_data, image_spect) == CUFFT_SUCCESS);
|
|
|
|
CV_Assert(cufftExecR2C(planR2C, templ_data, templ_spect) == CUFFT_SUCCESS);
|
|
|
|
imgproc::multiplyAndNormalizeSpects(spect_len, 1.f / opt_size.area(),
|
|
|
|
image_spect, templ_spect, result_spect);
|
|
|
|
|
|
|
|
CV_Assert(cufftExecC2R(planC2R, result_spect, result_data) == CUFFT_SUCCESS);
|
|
|
|
|
|
|
|
cufftDestroy(planR2C);
|
|
|
|
cufftDestroy(planC2R);
|
|
|
|
|
|
|
|
GpuMat result_cont(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32F,
|
|
|
|
result_data, opt_size.width * sizeof(cufftReal));
|
|
|
|
result_cont.copyTo(result);
|
|
|
|
|
|
|
|
cudaFree(image_spect);
|
|
|
|
cudaFree(templ_spect);
|
|
|
|
cudaFree(result_spect);
|
|
|
|
cudaFree(image_data);
|
|
|
|
cudaFree(templ_data);
|
|
|
|
cudaFree(result_data);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2010-12-10 09:06:54 +01:00
|
|
|
|
|
|
|
template <>
|
|
|
|
void matchTemplate<CV_8U, CV_TM_SQDIFF>(const GpuMat& image, const GpuMat& templ, GpuMat& result)
|
|
|
|
{
|
|
|
|
result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32F);
|
|
|
|
imgproc::matchTemplateNaive_8U_SQDIFF(image, templ, result);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <>
|
|
|
|
void matchTemplate<CV_8U, CV_TM_CCORR>(const GpuMat& image, const GpuMat& templ, GpuMat& result)
|
|
|
|
{
|
|
|
|
GpuMat imagef, templf;
|
|
|
|
image.convertTo(imagef, CV_32F);
|
|
|
|
templ.convertTo(templf, CV_32F);
|
|
|
|
matchTemplate<CV_32F, CV_TM_SQDIFF>(imagef, templf, result);
|
|
|
|
}
|
|
|
|
|
2010-12-08 14:03:53 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void cv::gpu::matchTemplate(const GpuMat& image, const GpuMat& templ, GpuMat& result, int method)
|
|
|
|
{
|
2010-12-06 15:19:41 +01:00
|
|
|
CV_Assert(image.type() == templ.type());
|
|
|
|
CV_Assert(image.cols >= templ.cols && image.rows >= templ.rows);
|
|
|
|
|
2010-12-08 14:03:53 +01:00
|
|
|
typedef void (*Caller)(const GpuMat&, const GpuMat&, GpuMat&);
|
|
|
|
|
2010-12-10 09:06:54 +01:00
|
|
|
static const Caller callers8U[] = { ::matchTemplate<CV_8U, CV_TM_SQDIFF>, 0,
|
|
|
|
::matchTemplate<CV_8U, CV_TM_CCORR>, 0, 0, 0 };
|
2010-12-08 14:12:12 +01:00
|
|
|
static const Caller callers32F[] = { ::matchTemplate<CV_32F, CV_TM_SQDIFF>, 0,
|
|
|
|
::matchTemplate<CV_32F, CV_TM_CCORR>, 0, 0, 0 };
|
2010-12-08 14:03:53 +01:00
|
|
|
|
|
|
|
const Caller* callers;
|
|
|
|
switch (image.type())
|
|
|
|
{
|
|
|
|
case CV_8U: callers = callers8U; break;
|
|
|
|
case CV_32F: callers = callers32F; break;
|
|
|
|
default: CV_Error(CV_StsBadArg, "matchTemplate: unsupported data type");
|
|
|
|
}
|
|
|
|
|
|
|
|
Caller caller = callers[method];
|
|
|
|
CV_Assert(caller);
|
|
|
|
caller(image, templ, result);
|
2010-12-06 15:19:41 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
2010-12-08 14:03:53 +01:00
|
|
|
|