2013-01-16 15:21:47 +01:00
#!/usr/bin/env python
import argparse
import sft
import sys , os , os . path , glob , math , cv2
from datetime import datetime
import numpy
2013-01-20 17:20:08 +01:00
# "key" : ( b, g, r)
bgr = { " red " : ( 0 , 0 , 255 ) ,
" green " : ( 0 , 255 , 0 ) ,
" blue " : ( 255 , 0 , 0 ) }
2013-01-16 15:21:47 +01:00
def call_parser ( f , a ) :
return eval ( " sft.parse_ " + f + " ( ' " + a + " ' ) " )
if __name__ == " __main__ " :
parser = argparse . ArgumentParser ( description = ' Plot ROC curve using Caltech mathod of per image detection performance estimation. ' )
# positional
parser . add_argument ( " cascade " , help = " Path to the tested detector. " )
parser . add_argument ( " input " , help = " Image sequence pattern. " )
parser . add_argument ( " annotations " , help = " Path to the annotations. " )
# optional
parser . add_argument ( " -m " , " --min_scale " , dest = " min_scale " , type = float , metavar = " fl " , help = " Minimum scale to be tested. " , default = 0.4 )
parser . add_argument ( " -M " , " --max_scale " , dest = " max_scale " , type = float , metavar = " fl " , help = " Maximum scale to be tested. " , default = 5.0 )
parser . add_argument ( " -o " , " --output " , dest = " output " , type = str , metavar = " path " , help = " Path to store resultiong image. " , default = " ./roc.png " )
parser . add_argument ( " -n " , " --nscales " , dest = " nscales " , type = int , metavar = " n " , help = " Prefered count of scales from min to max. " , default = 55 )
# required
parser . add_argument ( " -f " , " --anttn-format " , dest = " anttn_format " , choices = [ ' inria ' , ' caltech ' , " idl " ] , help = " Annotation file for test sequence. " , required = True )
args = parser . parse_args ( )
2013-01-20 23:36:23 +01:00
# parse annotations
2013-01-16 15:21:47 +01:00
samples = call_parser ( args . anttn_format , args . annotations )
2013-01-20 23:36:23 +01:00
cascade = sft . cascade ( args . min_scale , args . max_scale , args . nscales , args . cascade )
2013-01-16 15:21:47 +01:00
pattern = args . input
2013-01-20 17:20:08 +01:00
camera = cv2 . VideoCapture ( pattern )
2013-01-19 18:25:09 +01:00
2013-01-20 23:36:23 +01:00
# for plotting over dataset
nannotated = 0
nframes = 0
confidenses = [ ]
tp = [ ]
2013-01-16 15:21:47 +01:00
while True :
ret , img = camera . read ( )
if not ret :
break ;
2013-01-20 23:36:23 +01:00
name = pattern % ( nframes , )
2013-01-16 15:21:47 +01:00
_ , tail = os . path . split ( name )
boxes = samples [ tail ]
2013-01-19 18:25:09 +01:00
boxes = sft . norm_acpect_ratio ( boxes , 0.5 )
2013-01-20 23:36:23 +01:00
nannotated = nannotated + len ( boxes )
nframes = nframes + 1
2013-01-16 15:21:47 +01:00
rects , confs = cascade . detect ( img , rois = None )
2013-01-20 23:36:23 +01:00
if confs is None :
continue
2013-01-20 17:20:08 +01:00
dts = sft . convert2detections ( rects , confs )
2013-01-20 23:36:23 +01:00
confs = confs . tolist ( ) [ 0 ]
confs . sort ( lambda x , y : - 1 if ( x - y ) > 0 else 1 )
confidenses = confidenses + confs
2013-01-17 17:36:39 +01:00
2013-01-20 23:36:23 +01:00
matched = sft . match ( boxes , dts )
tp = tp + matched
2013-01-16 15:21:47 +01:00
2013-01-20 23:36:23 +01:00
print nframes , nannotated
2013-01-18 09:22:03 +01:00
2013-01-20 23:36:23 +01:00
fppi , miss_rate = sft . computeROC ( confidenses , tp , nannotated , nframes )
sft . plotLogLog ( fppi , miss_rate )