opencv/modules/objdetect/src/fft.cpp

248 lines
7.6 KiB
C++
Raw Normal View History

#include "precomp.hpp"
#include "_lsvm_fft.h"
int getEntireRes(int number, int divisor, int *entire, int *res)
{
*entire = number / divisor;
*res = number % divisor;
return FFT_OK;
}
int getMultipliers(int n, int *n1, int *n2)
{
int multiplier, i;
if (n == 1)
{
*n1 = 1;
*n2 = 1;
return FFT_ERROR; // n = 1
}
multiplier = n / 2;
for (i = multiplier; i >= 2; i--)
{
if (n % i == 0)
{
*n1 = i;
*n2 = n / i;
return FFT_OK; // n = n1 * n2
}
}
*n1 = 1;
*n2 = n;
return FFT_ERROR; // n - prime number
}
/*
// 1-dimensional FFT
//
// API
// int fft(float *x_in, float *x_out, int n, int shift);
// INPUT
// x_in - input signal
// n - number of elements for searching Fourier image
// shift - shift between input elements
// OUTPUT
// x_out - output signal (contains 2n elements in order
Re(x_in[0]), Im(x_in[0]), Re(x_in[1]), Im(x_in[1]) and etc.)
// RESULT
// Error status
*/
int fft(float *x_in, float *x_out, int n, int shift)
{
int n1, n2, res, k1, k2, m1, m2, index, idx;
float alpha, beta, gamma, angle, cosAngle, sinAngle;
float tmpGamma, tmpAlpha, tmpBeta;
float tmpRe, tmpIm, phaseRe, phaseIm;
res = getMultipliers(n, &n1, &n2);
if (res == FFT_OK)
{
fft(x_in, x_out, n1, shift);
fft(x_in, x_out, n2, shift);
}
alpha = (float)(2.0 * PI / ((float)n));
beta = (float)(2.0 * PI / ((float)n1));
gamma = (float)(2.0 * PI / ((float)n2));
for (k1 = 0; k1 < n1; k1++)
{
tmpBeta = beta * k1;
for (k2 = 0; k2 < n2; k2++)
{
idx = shift * (n2 * k1 + k2);
x_out[idx] = 0.0;
x_out[idx + 1] = 0.0;
tmpGamma = gamma * k2;
tmpAlpha = alpha * k2;
for (m1 = 0; m1 < n1; m1++)
{
tmpRe = 0.0;
tmpIm = 0.0;
for (m2 = 0; m2 < n2; m2++)
{
angle = tmpGamma * m2;
index = shift * (n1 * m2 + m1);
cosAngle = cosf(angle);
sinAngle = sinf(angle);
tmpRe += x_in[index] * cosAngle + x_in[index + 1] * sinAngle;
tmpIm += x_in[index + 1] * cosAngle - x_in[index] * sinAngle;
}
angle = tmpAlpha * m1;
cosAngle = cosf(angle);
sinAngle = sinf(angle);
phaseRe = cosAngle * tmpRe + sinAngle * tmpIm;
phaseIm = cosAngle * tmpIm - sinAngle * tmpRe;
angle = tmpBeta * m1;
cosAngle = cosf(angle);
sinAngle = sinf(angle);
x_out[idx] += (cosAngle * phaseRe + sinAngle * phaseIm);
x_out[idx + 1] += (cosAngle * phaseIm - sinAngle * phaseRe);
}
}
}
return FFT_OK;
}
/*
// Inverse 1-dimensional FFT
//
// API
// int fftInverse(float *x_in, float *x_out, int n, int shift);
// INPUT
// x_in - Fourier image of 1d input signal(contains 2n elements
in order Re(x_in[0]), Im(x_in[0]),
Re(x_in[1]), Im(x_in[1]) and etc.)
// n - number of elements for searching counter FFT image
// shift - shift between input elements
// OUTPUT
// x_in - input signal (contains n elements)
// RESULT
// Error status
*/
int fftInverse(float *x_in, float *x_out, int n, int shift)
{
int n1, n2, res, k1, k2, m1, m2, index, idx;
float alpha, beta, gamma, angle, cosAngle, sinAngle;
float tmpRe, tmpIm, phaseRe, phaseIm;
res = getMultipliers(n, &n1, &n2);
if (res == FFT_OK)
{
fftInverse(x_in, x_out, n1, shift);
fftInverse(x_in, x_out, n2, shift);
}
alpha = (float)(2.0f * PI / ((float)n));
beta = (float)(2.0f * PI / ((float)n1));
gamma = (float)(2.0f * PI / ((float)n2));
for (m1 = 0; m1 < n1; m1++)
{
for (m2 = 0; m2 < n2; m2++)
{
idx = (n1 * m2 + m1) * shift;
x_out[idx] = 0.0;
x_out[idx + 1] = 0.0;
for (k2 = 0; k2 < n2; k2++)
{
tmpRe = 0.0;
tmpIm = 0.0;
for (k1 = 0; k1 < n1; k1++)
{
angle = beta * k1 * m1;
index = shift *(n2 * k1 + k2);
sinAngle = sinf(angle);
cosAngle = cosf(angle);
tmpRe += x_in[index] * cosAngle - x_in[index + 1] * sinAngle;
tmpIm += x_in[index] * sinAngle + x_in[index + 1] * cosAngle;
}
angle = alpha * m1 * k2;
sinAngle = sinf(angle);
cosAngle = cosf(angle);
phaseRe = cosAngle * tmpRe - sinAngle * tmpIm;
phaseIm = cosAngle * tmpIm + sinAngle * tmpRe;
angle = gamma * k2 * m2;
sinAngle = sinf(angle);
cosAngle = cosf(angle);
x_out[idx] += cosAngle * phaseRe - sinAngle * phaseIm;
x_out[idx + 1] += cosAngle * phaseIm + sinAngle * phaseRe;
}
x_out[idx] /= n;
x_out[idx + 1] /= n;
}
}
return FFT_OK;
}
/*
// 2-dimensional FFT
//
// API
// int fft2d(float *x_in, float *x_out, int numRows, int numColls);
// INPUT
// x_in - input signal (matrix, launched by rows)
// numRows - number of rows
// numColls - number of collumns
// OUTPUT
// x_out - output signal (contains (2 * numRows * numColls) elements
in order Re(x_in[0][0]), Im(x_in[0][0]),
Re(x_in[0][1]), Im(x_in[0][1]) and etc.)
// RESULT
// Error status
*/
int fft2d(float *x_in, float *x_out, int numRows, int numColls)
{
int i, size;
float *x_outTmp;
size = numRows * numColls;
x_outTmp = (float *)malloc(sizeof(float) * (2 * size));
for (i = 0; i < numRows; i++)
{
fft(x_in + i * 2 * numColls,
x_outTmp + i * 2 * numColls,
numColls, 2);
}
for (i = 0; i < numColls; i++)
{
fft(x_outTmp + 2 * i,
x_out + 2 * i,
numRows, 2 * numColls);
}
free(x_outTmp);
return FFT_OK;
}
/*
// Inverse 2-dimensional FFT
//
// API
// int fftInverse2d(float *x_in, float *x_out, int numRows, int numColls);
// INPUT
// x_in - Fourier image of matrix (contains (2 * numRows * numColls)
elements in order Re(x_in[0][0]), Im(x_in[0][0]),
Re(x_in[0][1]), Im(x_in[0][1]) and etc.)
// numRows - number of rows
// numColls - number of collumns
// OUTPUT
// x_out - initial signal (matrix, launched by rows)
// RESULT
// Error status
*/
int fftInverse2d(float *x_in, float *x_out, int numRows, int numColls)
{
int i, size;
float *x_outTmp;
size = numRows * numColls;
x_outTmp = (float *)malloc(sizeof(float) * (2 * size));
for (i = 0; i < numRows; i++)
{
fftInverse(x_in + i * 2 * numColls,
x_outTmp + i * 2 * numColls,
numColls, 2);
}
for (i = 0; i < numColls; i++)
{
fftInverse(x_outTmp + 2 * i,
x_out + 2 * i,
numRows, 2 * numColls);
}
free(x_outTmp);
return FFT_OK;
}