2010-10-12 14:35:04 +02:00
|
|
|
#include "precomp.hpp"
|
|
|
|
#include "_lsvm_fft.h"
|
2010-10-09 13:36:06 +02:00
|
|
|
|
|
|
|
int getEntireRes(int number, int divisor, int *entire, int *res)
|
|
|
|
{
|
|
|
|
*entire = number / divisor;
|
|
|
|
*res = number % divisor;
|
|
|
|
return FFT_OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
int getMultipliers(int n, int *n1, int *n2)
|
|
|
|
{
|
|
|
|
int multiplier, i;
|
|
|
|
if (n == 1)
|
|
|
|
{
|
|
|
|
*n1 = 1;
|
|
|
|
*n2 = 1;
|
|
|
|
return FFT_ERROR; // n = 1
|
|
|
|
}
|
|
|
|
multiplier = n / 2;
|
|
|
|
for (i = multiplier; i >= 2; i--)
|
|
|
|
{
|
|
|
|
if (n % i == 0)
|
|
|
|
{
|
|
|
|
*n1 = i;
|
|
|
|
*n2 = n / i;
|
|
|
|
return FFT_OK; // n = n1 * n2
|
|
|
|
}
|
|
|
|
}
|
|
|
|
*n1 = 1;
|
|
|
|
*n2 = n;
|
|
|
|
return FFT_ERROR; // n - prime number
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
// 1-dimensional FFT
|
|
|
|
//
|
|
|
|
// API
|
|
|
|
// int fft(float *x_in, float *x_out, int n, int shift);
|
|
|
|
// INPUT
|
|
|
|
// x_in - input signal
|
|
|
|
// n - number of elements for searching Fourier image
|
|
|
|
// shift - shift between input elements
|
|
|
|
// OUTPUT
|
|
|
|
// x_out - output signal (contains 2n elements in order
|
|
|
|
Re(x_in[0]), Im(x_in[0]), Re(x_in[1]), Im(x_in[1]) and etc.)
|
|
|
|
// RESULT
|
|
|
|
// Error status
|
|
|
|
*/
|
|
|
|
int fft(float *x_in, float *x_out, int n, int shift)
|
|
|
|
{
|
|
|
|
int n1, n2, res, k1, k2, m1, m2, index, idx;
|
|
|
|
float alpha, beta, gamma, angle, cosAngle, sinAngle;
|
|
|
|
float tmpGamma, tmpAlpha, tmpBeta;
|
|
|
|
float tmpRe, tmpIm, phaseRe, phaseIm;
|
|
|
|
res = getMultipliers(n, &n1, &n2);
|
|
|
|
if (res == FFT_OK)
|
|
|
|
{
|
|
|
|
fft(x_in, x_out, n1, shift);
|
|
|
|
fft(x_in, x_out, n2, shift);
|
|
|
|
}
|
|
|
|
alpha = (float)(2.0 * PI / ((float)n));
|
|
|
|
beta = (float)(2.0 * PI / ((float)n1));
|
|
|
|
gamma = (float)(2.0 * PI / ((float)n2));
|
|
|
|
for (k1 = 0; k1 < n1; k1++)
|
|
|
|
{
|
|
|
|
tmpBeta = beta * k1;
|
|
|
|
for (k2 = 0; k2 < n2; k2++)
|
|
|
|
{
|
|
|
|
idx = shift * (n2 * k1 + k2);
|
|
|
|
x_out[idx] = 0.0;
|
|
|
|
x_out[idx + 1] = 0.0;
|
|
|
|
tmpGamma = gamma * k2;
|
|
|
|
tmpAlpha = alpha * k2;
|
|
|
|
for (m1 = 0; m1 < n1; m1++)
|
|
|
|
{
|
|
|
|
tmpRe = 0.0;
|
|
|
|
tmpIm = 0.0;
|
|
|
|
for (m2 = 0; m2 < n2; m2++)
|
|
|
|
{
|
|
|
|
angle = tmpGamma * m2;
|
|
|
|
index = shift * (n1 * m2 + m1);
|
|
|
|
cosAngle = cosf(angle);
|
|
|
|
sinAngle = sinf(angle);
|
|
|
|
tmpRe += x_in[index] * cosAngle + x_in[index + 1] * sinAngle;
|
|
|
|
tmpIm += x_in[index + 1] * cosAngle - x_in[index] * sinAngle;
|
|
|
|
}
|
|
|
|
angle = tmpAlpha * m1;
|
|
|
|
cosAngle = cosf(angle);
|
|
|
|
sinAngle = sinf(angle);
|
|
|
|
phaseRe = cosAngle * tmpRe + sinAngle * tmpIm;
|
|
|
|
phaseIm = cosAngle * tmpIm - sinAngle * tmpRe;
|
|
|
|
angle = tmpBeta * m1;
|
|
|
|
cosAngle = cosf(angle);
|
|
|
|
sinAngle = sinf(angle);
|
|
|
|
x_out[idx] += (cosAngle * phaseRe + sinAngle * phaseIm);
|
|
|
|
x_out[idx + 1] += (cosAngle * phaseIm - sinAngle * phaseRe);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return FFT_OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
// Inverse 1-dimensional FFT
|
|
|
|
//
|
|
|
|
// API
|
|
|
|
// int fftInverse(float *x_in, float *x_out, int n, int shift);
|
|
|
|
// INPUT
|
|
|
|
// x_in - Fourier image of 1d input signal(contains 2n elements
|
|
|
|
in order Re(x_in[0]), Im(x_in[0]),
|
|
|
|
Re(x_in[1]), Im(x_in[1]) and etc.)
|
|
|
|
// n - number of elements for searching counter FFT image
|
|
|
|
// shift - shift between input elements
|
|
|
|
// OUTPUT
|
|
|
|
// x_in - input signal (contains n elements)
|
|
|
|
// RESULT
|
|
|
|
// Error status
|
|
|
|
*/
|
|
|
|
int fftInverse(float *x_in, float *x_out, int n, int shift)
|
|
|
|
{
|
|
|
|
int n1, n2, res, k1, k2, m1, m2, index, idx;
|
|
|
|
float alpha, beta, gamma, angle, cosAngle, sinAngle;
|
|
|
|
float tmpRe, tmpIm, phaseRe, phaseIm;
|
|
|
|
res = getMultipliers(n, &n1, &n2);
|
|
|
|
if (res == FFT_OK)
|
|
|
|
{
|
|
|
|
fftInverse(x_in, x_out, n1, shift);
|
|
|
|
fftInverse(x_in, x_out, n2, shift);
|
|
|
|
}
|
|
|
|
alpha = (float)(2.0f * PI / ((float)n));
|
|
|
|
beta = (float)(2.0f * PI / ((float)n1));
|
|
|
|
gamma = (float)(2.0f * PI / ((float)n2));
|
|
|
|
for (m1 = 0; m1 < n1; m1++)
|
|
|
|
{
|
|
|
|
for (m2 = 0; m2 < n2; m2++)
|
|
|
|
{
|
|
|
|
idx = (n1 * m2 + m1) * shift;
|
|
|
|
x_out[idx] = 0.0;
|
|
|
|
x_out[idx + 1] = 0.0;
|
|
|
|
for (k2 = 0; k2 < n2; k2++)
|
|
|
|
{
|
|
|
|
tmpRe = 0.0;
|
|
|
|
tmpIm = 0.0;
|
|
|
|
for (k1 = 0; k1 < n1; k1++)
|
|
|
|
{
|
|
|
|
angle = beta * k1 * m1;
|
|
|
|
index = shift *(n2 * k1 + k2);
|
|
|
|
sinAngle = sinf(angle);
|
|
|
|
cosAngle = cosf(angle);
|
|
|
|
tmpRe += x_in[index] * cosAngle - x_in[index + 1] * sinAngle;
|
|
|
|
tmpIm += x_in[index] * sinAngle + x_in[index + 1] * cosAngle;
|
|
|
|
}
|
|
|
|
angle = alpha * m1 * k2;
|
|
|
|
sinAngle = sinf(angle);
|
|
|
|
cosAngle = cosf(angle);
|
|
|
|
phaseRe = cosAngle * tmpRe - sinAngle * tmpIm;
|
|
|
|
phaseIm = cosAngle * tmpIm + sinAngle * tmpRe;
|
|
|
|
angle = gamma * k2 * m2;
|
|
|
|
sinAngle = sinf(angle);
|
|
|
|
cosAngle = cosf(angle);
|
|
|
|
x_out[idx] += cosAngle * phaseRe - sinAngle * phaseIm;
|
|
|
|
x_out[idx + 1] += cosAngle * phaseIm + sinAngle * phaseRe;
|
|
|
|
}
|
|
|
|
x_out[idx] /= n;
|
|
|
|
x_out[idx + 1] /= n;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return FFT_OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
// 2-dimensional FFT
|
|
|
|
//
|
|
|
|
// API
|
|
|
|
// int fft2d(float *x_in, float *x_out, int numRows, int numColls);
|
|
|
|
// INPUT
|
|
|
|
// x_in - input signal (matrix, launched by rows)
|
|
|
|
// numRows - number of rows
|
|
|
|
// numColls - number of collumns
|
|
|
|
// OUTPUT
|
|
|
|
// x_out - output signal (contains (2 * numRows * numColls) elements
|
|
|
|
in order Re(x_in[0][0]), Im(x_in[0][0]),
|
|
|
|
Re(x_in[0][1]), Im(x_in[0][1]) and etc.)
|
|
|
|
// RESULT
|
|
|
|
// Error status
|
|
|
|
*/
|
|
|
|
int fft2d(float *x_in, float *x_out, int numRows, int numColls)
|
|
|
|
{
|
|
|
|
int i, size;
|
|
|
|
float *x_outTmp;
|
|
|
|
size = numRows * numColls;
|
|
|
|
x_outTmp = (float *)malloc(sizeof(float) * (2 * size));
|
|
|
|
for (i = 0; i < numRows; i++)
|
|
|
|
{
|
|
|
|
fft(x_in + i * 2 * numColls,
|
|
|
|
x_outTmp + i * 2 * numColls,
|
|
|
|
numColls, 2);
|
|
|
|
}
|
|
|
|
for (i = 0; i < numColls; i++)
|
|
|
|
{
|
|
|
|
fft(x_outTmp + 2 * i,
|
|
|
|
x_out + 2 * i,
|
|
|
|
numRows, 2 * numColls);
|
|
|
|
}
|
|
|
|
free(x_outTmp);
|
|
|
|
return FFT_OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
// Inverse 2-dimensional FFT
|
|
|
|
//
|
|
|
|
// API
|
|
|
|
// int fftInverse2d(float *x_in, float *x_out, int numRows, int numColls);
|
|
|
|
// INPUT
|
|
|
|
// x_in - Fourier image of matrix (contains (2 * numRows * numColls)
|
|
|
|
elements in order Re(x_in[0][0]), Im(x_in[0][0]),
|
|
|
|
Re(x_in[0][1]), Im(x_in[0][1]) and etc.)
|
|
|
|
// numRows - number of rows
|
|
|
|
// numColls - number of collumns
|
|
|
|
// OUTPUT
|
|
|
|
// x_out - initial signal (matrix, launched by rows)
|
|
|
|
// RESULT
|
|
|
|
// Error status
|
|
|
|
*/
|
|
|
|
int fftInverse2d(float *x_in, float *x_out, int numRows, int numColls)
|
|
|
|
{
|
|
|
|
int i, size;
|
|
|
|
float *x_outTmp;
|
|
|
|
size = numRows * numColls;
|
|
|
|
x_outTmp = (float *)malloc(sizeof(float) * (2 * size));
|
|
|
|
for (i = 0; i < numRows; i++)
|
|
|
|
{
|
|
|
|
fftInverse(x_in + i * 2 * numColls,
|
|
|
|
x_outTmp + i * 2 * numColls,
|
|
|
|
numColls, 2);
|
|
|
|
}
|
|
|
|
for (i = 0; i < numColls; i++)
|
|
|
|
{
|
|
|
|
fftInverse(x_outTmp + 2 * i,
|
|
|
|
x_out + 2 * i,
|
|
|
|
numRows, 2 * numColls);
|
|
|
|
}
|
|
|
|
free(x_outTmp);
|
|
|
|
return FFT_OK;
|
|
|
|
}
|
|
|
|
|