opencv/modules/gpu/src/optical_flow_farneback.cpp

399 lines
14 KiB
C++
Raw Normal View History

2012-02-16 11:26:17 +00:00
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other GpuMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or bpied warranties, including, but not limited to, the bpied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#define MIN_SIZE 32
#define S(x) StreamAccessor::getStream(x)
// GPU resize() is fast, but it differs from the CPU analog. Disabling this flag
// leads to an inefficient code. It's for debug purposes only.
#define ENABLE_GPU_RESIZE 1
using namespace std;
using namespace cv;
using namespace cv::gpu;
#if !defined(HAVE_CUDA)
void cv::gpu::FarnebackOpticalFlow::operator ()(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
#else
namespace cv { namespace gpu { namespace device { namespace optflow_farneback
{
2012-02-16 11:32:32 +00:00
void setPolynomialExpansionConsts(
2012-02-16 11:26:17 +00:00
int polyN, const float *g, const float *xg, const float *xxg,
float ig11, float ig03, float ig33, float ig55);
void polynomialExpansionGpu(const DevMem2Df &src, int polyN, DevMem2Df dst, cudaStream_t stream);
void setUpdateMatricesConsts();
void updateMatricesGpu(
const DevMem2Df flowx, const DevMem2Df flowy, const DevMem2Df R0, const DevMem2Df R1,
DevMem2Df M, cudaStream_t stream);
void updateFlowGpu(
const DevMem2Df M, DevMem2Df flowx, DevMem2Df flowy, cudaStream_t stream);
/*void boxFilterGpu(const DevMem2Df src, int ksizeHalf, DevMem2Df dst, cudaStream_t stream);*/
void boxFilter5Gpu(const DevMem2Df src, int ksizeHalf, DevMem2Df dst, cudaStream_t stream);
void setGaussianBlurKernel(const float *gKer, int ksizeHalf);
void gaussianBlurGpu(
const DevMem2Df src, int ksizeHalf, DevMem2Df dst, int borderType, cudaStream_t stream);
void gaussianBlur5Gpu(
const DevMem2Df src, int ksizeHalf, DevMem2Df dst, int borderType, cudaStream_t stream);
}}}} // namespace cv { namespace gpu { namespace device { namespace optflow_farneback
void cv::gpu::FarnebackOpticalFlow::prepareGaussian(
int n, double sigma, float *g, float *xg, float *xxg,
double &ig11, double &ig03, double &ig33, double &ig55)
{
double s = 0.;
for (int x = -n; x <= n; x++)
{
g[x] = (float)std::exp(-x*x/(2*sigma*sigma));
s += g[x];
}
s = 1./s;
for (int x = -n; x <= n; x++)
{
g[x] = (float)(g[x]*s);
xg[x] = (float)(x*g[x]);
xxg[x] = (float)(x*x*g[x]);
}
Mat_<double> G(6, 6);
G.setTo(0);
for (int y = -n; y <= n; y++)
{
for (int x = -n; x <= n; x++)
{
G(0,0) += g[y]*g[x];
G(1,1) += g[y]*g[x]*x*x;
G(3,3) += g[y]*g[x]*x*x*x*x;
G(5,5) += g[y]*g[x]*x*x*y*y;
}
}
//G[0][0] = 1.;
G(2,2) = G(0,3) = G(0,4) = G(3,0) = G(4,0) = G(1,1);
G(4,4) = G(3,3);
G(3,4) = G(4,3) = G(5,5);
// invG:
// [ x e e ]
// [ y ]
// [ y ]
// [ e z ]
// [ e z ]
// [ u ]
Mat_<double> invG = G.inv(DECOMP_CHOLESKY);
ig11 = invG(1,1);
ig03 = invG(0,3);
ig33 = invG(3,3);
ig55 = invG(5,5);
}
void cv::gpu::FarnebackOpticalFlow::setPolynomialExpansionConsts(int n, double sigma)
{
vector<float> buf(n*6 + 3);
float* g = &buf[0] + n;
float* xg = g + n*2 + 1;
float* xxg = xg + n*2 + 1;
if (sigma < FLT_EPSILON)
sigma = n*0.3;
double ig11, ig03, ig33, ig55;
prepareGaussian(n, sigma, g, xg, xxg, ig11, ig03, ig33, ig55);
device::optflow_farneback::setPolynomialExpansionConsts(n, g, xg, xxg, static_cast<float>(ig11), static_cast<float>(ig03), static_cast<float>(ig33), static_cast<float>(ig55));
2012-02-16 11:26:17 +00:00
}
void cv::gpu::FarnebackOpticalFlow::updateFlow_boxFilter(
const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat &flowy,
GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[])
{
device::optflow_farneback::boxFilter5Gpu(M, blockSize/2, bufM, S(streams[0]));
swap(M, bufM);
for (int i = 1; i < 5; ++i)
streams[i].waitForCompletion();
device::optflow_farneback::updateFlowGpu(M, flowx, flowy, S(streams[0]));
if (updateMatrices)
device::optflow_farneback::updateMatricesGpu(flowx, flowy, R0, R1, M, S(streams[0]));
}
void cv::gpu::FarnebackOpticalFlow::updateFlow_gaussianBlur(
const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat& flowy,
GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[])
{
device::optflow_farneback::gaussianBlur5Gpu(
M, blockSize/2, bufM, BORDER_REPLICATE_GPU, S(streams[0]));
swap(M, bufM);
device::optflow_farneback::updateFlowGpu(M, flowx, flowy, S(streams[0]));
if (updateMatrices)
device::optflow_farneback::updateMatricesGpu(flowx, flowy, R0, R1, M, S(streams[0]));
}
void cv::gpu::FarnebackOpticalFlow::operator ()(
const GpuMat &frame0, const GpuMat &frame1, GpuMat &flowx, GpuMat &flowy, Stream &s)
{
CV_Assert(frame0.type() == CV_8U && frame1.type() == CV_8U);
CV_Assert(frame0.size() == frame1.size());
CV_Assert(polyN == 5 || polyN == 7);
CV_Assert(!fastPyramids || std::abs(pyrScale - 0.5) < 1e-6);
Stream streams[5];
if (S(s))
streams[0] = s;
Size size = frame0.size();
GpuMat prevFlowX, prevFlowY, curFlowX, curFlowY;
flowx.create(size, CV_32F);
flowy.create(size, CV_32F);
GpuMat flowx0 = flowx;
GpuMat flowy0 = flowy;
// Crop unnecessary levels
double scale = 1;
int numLevelsCropped = 0;
for (; numLevelsCropped < numLevels; numLevelsCropped++)
{
scale *= pyrScale;
if (size.width*scale < MIN_SIZE || size.height*scale < MIN_SIZE)
break;
}
streams[0].enqueueConvert(frame0, frames_[0], CV_32F);
streams[1].enqueueConvert(frame1, frames_[1], CV_32F);
if (fastPyramids)
{
// Build Gaussian pyramids using pyrDown()
pyramid0_.resize(numLevelsCropped + 1);
pyramid1_.resize(numLevelsCropped + 1);
pyramid0_[0] = frames_[0];
pyramid1_[0] = frames_[1];
for (int i = 1; i <= numLevelsCropped; ++i)
{
pyrDown(pyramid0_[i - 1], pyramid0_[i], streams[0]);
pyrDown(pyramid1_[i - 1], pyramid1_[i], streams[1]);
}
}
setPolynomialExpansionConsts(polyN, polySigma);
device::optflow_farneback::setUpdateMatricesConsts();
for (int k = numLevelsCropped; k >= 0; k--)
{
streams[0].waitForCompletion();
scale = 1;
for (int i = 0; i < k; i++)
scale *= pyrScale;
double sigma = (1./scale - 1) * 0.5;
int smoothSize = cvRound(sigma*5) | 1;
smoothSize = std::max(smoothSize, 3);
int width = cvRound(size.width*scale);
int height = cvRound(size.height*scale);
if (fastPyramids)
{
width = pyramid0_[k].cols;
height = pyramid0_[k].rows;
}
if (k > 0)
{
curFlowX.create(height, width, CV_32F);
curFlowY.create(height, width, CV_32F);
}
else
{
curFlowX = flowx0;
curFlowY = flowy0;
}
if (!prevFlowX.data)
{
if (flags & OPTFLOW_USE_INITIAL_FLOW)
{
#if ENABLE_GPU_RESIZE
resize(flowx0, curFlowX, Size(width, height), 0, 0, INTER_LINEAR, streams[0]);
resize(flowy0, curFlowY, Size(width, height), 0, 0, INTER_LINEAR, streams[1]);
streams[0].enqueueConvert(curFlowX, curFlowX, curFlowX.depth(), scale);
streams[1].enqueueConvert(curFlowY, curFlowY, curFlowY.depth(), scale);
#else
Mat tmp1, tmp2;
flowx0.download(tmp1);
resize(tmp1, tmp2, Size(width, height), 0, 0, INTER_AREA);
tmp2 *= scale;
curFlowX.upload(tmp2);
flowy0.download(tmp1);
resize(tmp1, tmp2, Size(width, height), 0, 0, INTER_AREA);
tmp2 *= scale;
curFlowY.upload(tmp2);
#endif
}
else
{
streams[0].enqueueMemSet(curFlowX, 0);
streams[1].enqueueMemSet(curFlowY, 0);
}
}
else
{
#if ENABLE_GPU_RESIZE
resize(prevFlowX, curFlowX, Size(width, height), 0, 0, INTER_LINEAR, streams[0]);
resize(prevFlowY, curFlowY, Size(width, height), 0, 0, INTER_LINEAR, streams[1]);
streams[0].enqueueConvert(curFlowX, curFlowX, curFlowX.depth(), 1./pyrScale);
streams[1].enqueueConvert(curFlowY, curFlowY, curFlowY.depth(), 1./pyrScale);
#else
Mat tmp1, tmp2;
prevFlowX.download(tmp1);
resize(tmp1, tmp2, Size(width, height), 0, 0, INTER_LINEAR);
tmp2 *= 1./pyrScale;
curFlowX.upload(tmp2);
prevFlowY.download(tmp1);
resize(tmp1, tmp2, Size(width, height), 0, 0, INTER_LINEAR);
tmp2 *= 1./pyrScale;
curFlowY.upload(tmp2);
#endif
}
GpuMat M = allocMatFromBuf(5*height, width, CV_32F, M_);
GpuMat bufM = allocMatFromBuf(5*height, width, CV_32F, bufM_);
GpuMat R[2] =
{
allocMatFromBuf(5*height, width, CV_32F, R_[0]),
allocMatFromBuf(5*height, width, CV_32F, R_[1])
};
if (fastPyramids)
{
device::optflow_farneback::polynomialExpansionGpu(pyramid0_[k], polyN, R[0], S(streams[0]));
device::optflow_farneback::polynomialExpansionGpu(pyramid1_[k], polyN, R[1], S(streams[1]));
}
else
{
2012-02-16 12:00:17 +00:00
GpuMat blurredFrame[2] =
2012-02-16 11:26:17 +00:00
{
2012-02-16 12:00:17 +00:00
allocMatFromBuf(size.height, size.width, CV_32F, blurredFrame_[0]),
allocMatFromBuf(size.height, size.width, CV_32F, blurredFrame_[1])
2012-02-16 11:26:17 +00:00
};
2012-02-16 12:00:17 +00:00
GpuMat pyrLevel[2] =
2012-02-16 11:26:17 +00:00
{
2012-02-16 12:00:17 +00:00
allocMatFromBuf(height, width, CV_32F, pyrLevel_[0]),
allocMatFromBuf(height, width, CV_32F, pyrLevel_[1])
2012-02-16 11:26:17 +00:00
};
Mat g = getGaussianKernel(smoothSize, sigma, CV_32F);
device::optflow_farneback::setGaussianBlurKernel(g.ptr<float>(smoothSize/2), smoothSize/2);
for (int i = 0; i < 2; i++)
{
device::optflow_farneback::gaussianBlurGpu(
2012-02-16 12:00:17 +00:00
frames_[i], smoothSize/2, blurredFrame[i], BORDER_REFLECT101_GPU, S(streams[i]));
2012-02-16 11:26:17 +00:00
#if ENABLE_GPU_RESIZE
2012-02-16 12:00:17 +00:00
resize(blurredFrame[i], pyrLevel[i], Size(width, height), INTER_LINEAR, streams[i]);
2012-02-16 11:26:17 +00:00
#else
Mat tmp1, tmp2;
tmp[i].download(tmp1);
resize(tmp1, tmp2, Size(width, height), INTER_LINEAR);
I[i].upload(tmp2);
#endif
2012-02-16 12:00:17 +00:00
device::optflow_farneback::polynomialExpansionGpu(pyrLevel[i], polyN, R[i], S(streams[i]));
2012-02-16 11:26:17 +00:00
}
}
streams[1].waitForCompletion();
device::optflow_farneback::updateMatricesGpu(curFlowX, curFlowY, R[0], R[1], M, S(streams[0]));
if (flags & OPTFLOW_FARNEBACK_GAUSSIAN)
{
Mat g = getGaussianKernel(winSize, winSize/2*0.3f, CV_32F);
device::optflow_farneback::setGaussianBlurKernel(g.ptr<float>(winSize/2), winSize/2);
}
for (int i = 0; i < numIters; i++)
{
if (flags & OPTFLOW_FARNEBACK_GAUSSIAN)
updateFlow_gaussianBlur(R[0], R[1], curFlowX, curFlowY, M, bufM, winSize, i < numIters-1, streams);
else
updateFlow_boxFilter(R[0], R[1], curFlowX, curFlowY, M, bufM, winSize, i < numIters-1, streams);
}
prevFlowX = curFlowX;
prevFlowY = curFlowY;
}
flowx = curFlowX;
flowy = curFlowY;
if (!S(s))
streams[0].waitForCompletion();
}
#endif