2012-10-17 11:12:04 +04:00
|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
2013-03-29 18:48:06 +04:00
|
|
|
// and/or other materials provided with the distribution.
|
2012-10-17 11:12:04 +04:00
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#ifndef __OPENCV_GPU_HPP__
|
|
|
|
#define __OPENCV_GPU_HPP__
|
|
|
|
|
|
|
|
#ifndef SKIP_INCLUDES
|
|
|
|
#include <vector>
|
|
|
|
#include <memory>
|
|
|
|
#include <iosfwd>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include "opencv2/core/gpumat.hpp"
|
2013-04-17 17:39:17 +04:00
|
|
|
#include "opencv2/gpuarithm.hpp"
|
2013-03-13 16:22:44 +04:00
|
|
|
#include "opencv2/imgproc.hpp"
|
|
|
|
#include "opencv2/objdetect.hpp"
|
|
|
|
#include "opencv2/features2d.hpp"
|
2012-10-17 11:12:04 +04:00
|
|
|
|
|
|
|
namespace cv { namespace gpu {
|
|
|
|
//////////////////////////////// Filter Engine ////////////////////////////////
|
|
|
|
|
|
|
|
/*!
|
|
|
|
The Base Class for 1D or Row-wise Filters
|
|
|
|
|
|
|
|
This is the base class for linear or non-linear filters that process 1D data.
|
|
|
|
In particular, such filters are used for the "horizontal" filtering parts in separable filters.
|
|
|
|
*/
|
|
|
|
class CV_EXPORTS BaseRowFilter_GPU
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
BaseRowFilter_GPU(int ksize_, int anchor_) : ksize(ksize_), anchor(anchor_) {}
|
|
|
|
virtual ~BaseRowFilter_GPU() {}
|
|
|
|
virtual void operator()(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null()) = 0;
|
|
|
|
int ksize, anchor;
|
|
|
|
};
|
|
|
|
|
|
|
|
/*!
|
|
|
|
The Base Class for Column-wise Filters
|
|
|
|
|
|
|
|
This is the base class for linear or non-linear filters that process columns of 2D arrays.
|
|
|
|
Such filters are used for the "vertical" filtering parts in separable filters.
|
|
|
|
*/
|
|
|
|
class CV_EXPORTS BaseColumnFilter_GPU
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
BaseColumnFilter_GPU(int ksize_, int anchor_) : ksize(ksize_), anchor(anchor_) {}
|
|
|
|
virtual ~BaseColumnFilter_GPU() {}
|
|
|
|
virtual void operator()(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null()) = 0;
|
|
|
|
int ksize, anchor;
|
|
|
|
};
|
|
|
|
|
|
|
|
/*!
|
|
|
|
The Base Class for Non-Separable 2D Filters.
|
|
|
|
|
|
|
|
This is the base class for linear or non-linear 2D filters.
|
|
|
|
*/
|
|
|
|
class CV_EXPORTS BaseFilter_GPU
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
BaseFilter_GPU(const Size& ksize_, const Point& anchor_) : ksize(ksize_), anchor(anchor_) {}
|
|
|
|
virtual ~BaseFilter_GPU() {}
|
|
|
|
virtual void operator()(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null()) = 0;
|
|
|
|
Size ksize;
|
|
|
|
Point anchor;
|
|
|
|
};
|
|
|
|
|
|
|
|
/*!
|
|
|
|
The Base Class for Filter Engine.
|
|
|
|
|
|
|
|
The class can be used to apply an arbitrary filtering operation to an image.
|
|
|
|
It contains all the necessary intermediate buffers.
|
|
|
|
*/
|
|
|
|
class CV_EXPORTS FilterEngine_GPU
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
virtual ~FilterEngine_GPU() {}
|
|
|
|
|
|
|
|
virtual void apply(const GpuMat& src, GpuMat& dst, Rect roi = Rect(0,0,-1,-1), Stream& stream = Stream::Null()) = 0;
|
|
|
|
};
|
|
|
|
|
|
|
|
//! returns the non-separable filter engine with the specified filter
|
|
|
|
CV_EXPORTS Ptr<FilterEngine_GPU> createFilter2D_GPU(const Ptr<BaseFilter_GPU>& filter2D, int srcType, int dstType);
|
|
|
|
|
|
|
|
//! returns the separable filter engine with the specified filters
|
|
|
|
CV_EXPORTS Ptr<FilterEngine_GPU> createSeparableFilter_GPU(const Ptr<BaseRowFilter_GPU>& rowFilter,
|
|
|
|
const Ptr<BaseColumnFilter_GPU>& columnFilter, int srcType, int bufType, int dstType);
|
|
|
|
CV_EXPORTS Ptr<FilterEngine_GPU> createSeparableFilter_GPU(const Ptr<BaseRowFilter_GPU>& rowFilter,
|
|
|
|
const Ptr<BaseColumnFilter_GPU>& columnFilter, int srcType, int bufType, int dstType, GpuMat& buf);
|
|
|
|
|
|
|
|
//! returns horizontal 1D box filter
|
|
|
|
//! supports only CV_8UC1 source type and CV_32FC1 sum type
|
|
|
|
CV_EXPORTS Ptr<BaseRowFilter_GPU> getRowSumFilter_GPU(int srcType, int sumType, int ksize, int anchor = -1);
|
|
|
|
|
|
|
|
//! returns vertical 1D box filter
|
|
|
|
//! supports only CV_8UC1 sum type and CV_32FC1 dst type
|
|
|
|
CV_EXPORTS Ptr<BaseColumnFilter_GPU> getColumnSumFilter_GPU(int sumType, int dstType, int ksize, int anchor = -1);
|
|
|
|
|
|
|
|
//! returns 2D box filter
|
|
|
|
//! supports CV_8UC1 and CV_8UC4 source type, dst type must be the same as source type
|
|
|
|
CV_EXPORTS Ptr<BaseFilter_GPU> getBoxFilter_GPU(int srcType, int dstType, const Size& ksize, Point anchor = Point(-1, -1));
|
|
|
|
|
|
|
|
//! returns box filter engine
|
|
|
|
CV_EXPORTS Ptr<FilterEngine_GPU> createBoxFilter_GPU(int srcType, int dstType, const Size& ksize,
|
|
|
|
const Point& anchor = Point(-1,-1));
|
|
|
|
|
|
|
|
//! returns 2D morphological filter
|
|
|
|
//! only MORPH_ERODE and MORPH_DILATE are supported
|
|
|
|
//! supports CV_8UC1 and CV_8UC4 types
|
|
|
|
//! kernel must have CV_8UC1 type, one rows and cols == ksize.width * ksize.height
|
|
|
|
CV_EXPORTS Ptr<BaseFilter_GPU> getMorphologyFilter_GPU(int op, int type, const Mat& kernel, const Size& ksize,
|
|
|
|
Point anchor=Point(-1,-1));
|
|
|
|
|
|
|
|
//! returns morphological filter engine. Only MORPH_ERODE and MORPH_DILATE are supported.
|
|
|
|
CV_EXPORTS Ptr<FilterEngine_GPU> createMorphologyFilter_GPU(int op, int type, const Mat& kernel,
|
|
|
|
const Point& anchor = Point(-1,-1), int iterations = 1);
|
|
|
|
CV_EXPORTS Ptr<FilterEngine_GPU> createMorphologyFilter_GPU(int op, int type, const Mat& kernel, GpuMat& buf,
|
|
|
|
const Point& anchor = Point(-1,-1), int iterations = 1);
|
|
|
|
|
|
|
|
//! returns 2D filter with the specified kernel
|
|
|
|
//! supports CV_8U, CV_16U and CV_32F one and four channel image
|
|
|
|
CV_EXPORTS Ptr<BaseFilter_GPU> getLinearFilter_GPU(int srcType, int dstType, const Mat& kernel, Point anchor = Point(-1, -1), int borderType = BORDER_DEFAULT);
|
|
|
|
|
|
|
|
//! returns the non-separable linear filter engine
|
|
|
|
CV_EXPORTS Ptr<FilterEngine_GPU> createLinearFilter_GPU(int srcType, int dstType, const Mat& kernel,
|
|
|
|
Point anchor = Point(-1,-1), int borderType = BORDER_DEFAULT);
|
|
|
|
|
|
|
|
//! returns the primitive row filter with the specified kernel.
|
|
|
|
//! supports only CV_8UC1, CV_8UC4, CV_16SC1, CV_16SC2, CV_32SC1, CV_32FC1 source type.
|
|
|
|
//! there are two version of algorithm: NPP and OpenCV.
|
|
|
|
//! NPP calls when srcType == CV_8UC1 or srcType == CV_8UC4 and bufType == srcType,
|
|
|
|
//! otherwise calls OpenCV version.
|
|
|
|
//! NPP supports only BORDER_CONSTANT border type.
|
|
|
|
//! OpenCV version supports only CV_32F as buffer depth and
|
|
|
|
//! BORDER_REFLECT101, BORDER_REPLICATE and BORDER_CONSTANT border types.
|
|
|
|
CV_EXPORTS Ptr<BaseRowFilter_GPU> getLinearRowFilter_GPU(int srcType, int bufType, const Mat& rowKernel,
|
|
|
|
int anchor = -1, int borderType = BORDER_DEFAULT);
|
|
|
|
|
|
|
|
//! returns the primitive column filter with the specified kernel.
|
|
|
|
//! supports only CV_8UC1, CV_8UC4, CV_16SC1, CV_16SC2, CV_32SC1, CV_32FC1 dst type.
|
|
|
|
//! there are two version of algorithm: NPP and OpenCV.
|
|
|
|
//! NPP calls when dstType == CV_8UC1 or dstType == CV_8UC4 and bufType == dstType,
|
|
|
|
//! otherwise calls OpenCV version.
|
|
|
|
//! NPP supports only BORDER_CONSTANT border type.
|
|
|
|
//! OpenCV version supports only CV_32F as buffer depth and
|
|
|
|
//! BORDER_REFLECT101, BORDER_REPLICATE and BORDER_CONSTANT border types.
|
|
|
|
CV_EXPORTS Ptr<BaseColumnFilter_GPU> getLinearColumnFilter_GPU(int bufType, int dstType, const Mat& columnKernel,
|
|
|
|
int anchor = -1, int borderType = BORDER_DEFAULT);
|
|
|
|
|
|
|
|
//! returns the separable linear filter engine
|
|
|
|
CV_EXPORTS Ptr<FilterEngine_GPU> createSeparableLinearFilter_GPU(int srcType, int dstType, const Mat& rowKernel,
|
|
|
|
const Mat& columnKernel, const Point& anchor = Point(-1,-1), int rowBorderType = BORDER_DEFAULT,
|
|
|
|
int columnBorderType = -1);
|
|
|
|
CV_EXPORTS Ptr<FilterEngine_GPU> createSeparableLinearFilter_GPU(int srcType, int dstType, const Mat& rowKernel,
|
|
|
|
const Mat& columnKernel, GpuMat& buf, const Point& anchor = Point(-1,-1), int rowBorderType = BORDER_DEFAULT,
|
|
|
|
int columnBorderType = -1);
|
|
|
|
|
|
|
|
//! returns filter engine for the generalized Sobel operator
|
|
|
|
CV_EXPORTS Ptr<FilterEngine_GPU> createDerivFilter_GPU(int srcType, int dstType, int dx, int dy, int ksize,
|
|
|
|
int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1);
|
|
|
|
CV_EXPORTS Ptr<FilterEngine_GPU> createDerivFilter_GPU(int srcType, int dstType, int dx, int dy, int ksize, GpuMat& buf,
|
|
|
|
int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1);
|
|
|
|
|
|
|
|
//! returns the Gaussian filter engine
|
|
|
|
CV_EXPORTS Ptr<FilterEngine_GPU> createGaussianFilter_GPU(int type, Size ksize, double sigma1, double sigma2 = 0,
|
|
|
|
int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1);
|
|
|
|
CV_EXPORTS Ptr<FilterEngine_GPU> createGaussianFilter_GPU(int type, Size ksize, GpuMat& buf, double sigma1, double sigma2 = 0,
|
|
|
|
int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1);
|
|
|
|
|
|
|
|
//! returns maximum filter
|
|
|
|
CV_EXPORTS Ptr<BaseFilter_GPU> getMaxFilter_GPU(int srcType, int dstType, const Size& ksize, Point anchor = Point(-1,-1));
|
|
|
|
|
|
|
|
//! returns minimum filter
|
|
|
|
CV_EXPORTS Ptr<BaseFilter_GPU> getMinFilter_GPU(int srcType, int dstType, const Size& ksize, Point anchor = Point(-1,-1));
|
|
|
|
|
|
|
|
//! smooths the image using the normalized box filter
|
|
|
|
//! supports CV_8UC1, CV_8UC4 types
|
|
|
|
CV_EXPORTS void boxFilter(const GpuMat& src, GpuMat& dst, int ddepth, Size ksize, Point anchor = Point(-1,-1), Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! a synonym for normalized box filter
|
|
|
|
static inline void blur(const GpuMat& src, GpuMat& dst, Size ksize, Point anchor = Point(-1,-1), Stream& stream = Stream::Null())
|
|
|
|
{
|
|
|
|
boxFilter(src, dst, -1, ksize, anchor, stream);
|
|
|
|
}
|
|
|
|
|
|
|
|
//! erodes the image (applies the local minimum operator)
|
|
|
|
CV_EXPORTS void erode(const GpuMat& src, GpuMat& dst, const Mat& kernel, Point anchor = Point(-1, -1), int iterations = 1);
|
|
|
|
CV_EXPORTS void erode(const GpuMat& src, GpuMat& dst, const Mat& kernel, GpuMat& buf,
|
|
|
|
Point anchor = Point(-1, -1), int iterations = 1,
|
|
|
|
Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! dilates the image (applies the local maximum operator)
|
|
|
|
CV_EXPORTS void dilate(const GpuMat& src, GpuMat& dst, const Mat& kernel, Point anchor = Point(-1, -1), int iterations = 1);
|
|
|
|
CV_EXPORTS void dilate(const GpuMat& src, GpuMat& dst, const Mat& kernel, GpuMat& buf,
|
|
|
|
Point anchor = Point(-1, -1), int iterations = 1,
|
|
|
|
Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! applies an advanced morphological operation to the image
|
|
|
|
CV_EXPORTS void morphologyEx(const GpuMat& src, GpuMat& dst, int op, const Mat& kernel, Point anchor = Point(-1, -1), int iterations = 1);
|
|
|
|
CV_EXPORTS void morphologyEx(const GpuMat& src, GpuMat& dst, int op, const Mat& kernel, GpuMat& buf1, GpuMat& buf2,
|
|
|
|
Point anchor = Point(-1, -1), int iterations = 1, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! applies non-separable 2D linear filter to the image
|
|
|
|
CV_EXPORTS void filter2D(const GpuMat& src, GpuMat& dst, int ddepth, const Mat& kernel, Point anchor=Point(-1,-1), int borderType = BORDER_DEFAULT, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! applies separable 2D linear filter to the image
|
|
|
|
CV_EXPORTS void sepFilter2D(const GpuMat& src, GpuMat& dst, int ddepth, const Mat& kernelX, const Mat& kernelY,
|
|
|
|
Point anchor = Point(-1,-1), int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1);
|
|
|
|
CV_EXPORTS void sepFilter2D(const GpuMat& src, GpuMat& dst, int ddepth, const Mat& kernelX, const Mat& kernelY, GpuMat& buf,
|
|
|
|
Point anchor = Point(-1,-1), int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1,
|
|
|
|
Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! applies generalized Sobel operator to the image
|
|
|
|
CV_EXPORTS void Sobel(const GpuMat& src, GpuMat& dst, int ddepth, int dx, int dy, int ksize = 3, double scale = 1,
|
|
|
|
int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1);
|
|
|
|
CV_EXPORTS void Sobel(const GpuMat& src, GpuMat& dst, int ddepth, int dx, int dy, GpuMat& buf, int ksize = 3, double scale = 1,
|
|
|
|
int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! applies the vertical or horizontal Scharr operator to the image
|
|
|
|
CV_EXPORTS void Scharr(const GpuMat& src, GpuMat& dst, int ddepth, int dx, int dy, double scale = 1,
|
|
|
|
int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1);
|
|
|
|
CV_EXPORTS void Scharr(const GpuMat& src, GpuMat& dst, int ddepth, int dx, int dy, GpuMat& buf, double scale = 1,
|
|
|
|
int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! smooths the image using Gaussian filter.
|
|
|
|
CV_EXPORTS void GaussianBlur(const GpuMat& src, GpuMat& dst, Size ksize, double sigma1, double sigma2 = 0,
|
|
|
|
int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1);
|
|
|
|
CV_EXPORTS void GaussianBlur(const GpuMat& src, GpuMat& dst, Size ksize, GpuMat& buf, double sigma1, double sigma2 = 0,
|
|
|
|
int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! applies Laplacian operator to the image
|
|
|
|
//! supports only ksize = 1 and ksize = 3
|
|
|
|
CV_EXPORTS void Laplacian(const GpuMat& src, GpuMat& dst, int ddepth, int ksize = 1, double scale = 1, int borderType = BORDER_DEFAULT, Stream& stream = Stream::Null());
|
|
|
|
|
2013-04-17 17:39:17 +04:00
|
|
|
////////////////////////////// Image processing //////////////////////////////
|
2012-10-17 11:12:04 +04:00
|
|
|
|
|
|
|
|
|
|
|
enum { ALPHA_OVER, ALPHA_IN, ALPHA_OUT, ALPHA_ATOP, ALPHA_XOR, ALPHA_PLUS, ALPHA_OVER_PREMUL, ALPHA_IN_PREMUL, ALPHA_OUT_PREMUL,
|
|
|
|
ALPHA_ATOP_PREMUL, ALPHA_XOR_PREMUL, ALPHA_PLUS_PREMUL, ALPHA_PREMUL};
|
|
|
|
|
|
|
|
//! Composite two images using alpha opacity values contained in each image
|
|
|
|
//! Supports CV_8UC4, CV_16UC4, CV_32SC4 and CV_32FC4 types
|
|
|
|
CV_EXPORTS void alphaComp(const GpuMat& img1, const GpuMat& img2, GpuMat& dst, int alpha_op, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! DST[x,y] = SRC[xmap[x,y],ymap[x,y]]
|
|
|
|
//! supports only CV_32FC1 map type
|
|
|
|
CV_EXPORTS void remap(const GpuMat& src, GpuMat& dst, const GpuMat& xmap, const GpuMat& ymap,
|
|
|
|
int interpolation, int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar(),
|
|
|
|
Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! Does mean shift filtering on GPU.
|
|
|
|
CV_EXPORTS void meanShiftFiltering(const GpuMat& src, GpuMat& dst, int sp, int sr,
|
|
|
|
TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1),
|
|
|
|
Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! Does mean shift procedure on GPU.
|
|
|
|
CV_EXPORTS void meanShiftProc(const GpuMat& src, GpuMat& dstr, GpuMat& dstsp, int sp, int sr,
|
|
|
|
TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1),
|
|
|
|
Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! Does mean shift segmentation with elimination of small regions.
|
|
|
|
CV_EXPORTS void meanShiftSegmentation(const GpuMat& src, Mat& dst, int sp, int sr, int minsize,
|
|
|
|
TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1));
|
|
|
|
|
|
|
|
//! Does coloring of disparity image: [0..ndisp) -> [0..240, 1, 1] in HSV.
|
|
|
|
//! Supported types of input disparity: CV_8U, CV_16S.
|
|
|
|
//! Output disparity has CV_8UC4 type in BGRA format (alpha = 255).
|
|
|
|
CV_EXPORTS void drawColorDisp(const GpuMat& src_disp, GpuMat& dst_disp, int ndisp, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! Reprojects disparity image to 3D space.
|
|
|
|
//! Supports CV_8U and CV_16S types of input disparity.
|
|
|
|
//! The output is a 3- or 4-channel floating-point matrix.
|
|
|
|
//! Each element of this matrix will contain the 3D coordinates of the point (x,y,z,1), computed from the disparity map.
|
|
|
|
//! Q is the 4x4 perspective transformation matrix that can be obtained with cvStereoRectify.
|
|
|
|
CV_EXPORTS void reprojectImageTo3D(const GpuMat& disp, GpuMat& xyzw, const Mat& Q, int dst_cn = 4, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! converts image from one color space to another
|
|
|
|
CV_EXPORTS void cvtColor(const GpuMat& src, GpuMat& dst, int code, int dcn = 0, Stream& stream = Stream::Null());
|
|
|
|
|
2013-03-21 20:59:18 +04:00
|
|
|
enum
|
|
|
|
{
|
|
|
|
// Bayer Demosaicing (Malvar, He, and Cutler)
|
|
|
|
COLOR_BayerBG2BGR_MHT = 256,
|
|
|
|
COLOR_BayerGB2BGR_MHT = 257,
|
|
|
|
COLOR_BayerRG2BGR_MHT = 258,
|
|
|
|
COLOR_BayerGR2BGR_MHT = 259,
|
|
|
|
|
|
|
|
COLOR_BayerBG2RGB_MHT = COLOR_BayerRG2BGR_MHT,
|
|
|
|
COLOR_BayerGB2RGB_MHT = COLOR_BayerGR2BGR_MHT,
|
|
|
|
COLOR_BayerRG2RGB_MHT = COLOR_BayerBG2BGR_MHT,
|
|
|
|
COLOR_BayerGR2RGB_MHT = COLOR_BayerGB2BGR_MHT,
|
|
|
|
|
|
|
|
COLOR_BayerBG2GRAY_MHT = 260,
|
|
|
|
COLOR_BayerGB2GRAY_MHT = 261,
|
|
|
|
COLOR_BayerRG2GRAY_MHT = 262,
|
|
|
|
COLOR_BayerGR2GRAY_MHT = 263
|
|
|
|
};
|
|
|
|
CV_EXPORTS void demosaicing(const GpuMat& src, GpuMat& dst, int code, int dcn = -1, Stream& stream = Stream::Null());
|
|
|
|
|
2012-10-17 11:12:04 +04:00
|
|
|
//! swap channels
|
|
|
|
//! dstOrder - Integer array describing how channel values are permutated. The n-th entry
|
|
|
|
//! of the array contains the number of the channel that is stored in the n-th channel of
|
|
|
|
//! the output image. E.g. Given an RGBA image, aDstOrder = [3,2,1,0] converts this to ABGR
|
|
|
|
//! channel order.
|
|
|
|
CV_EXPORTS void swapChannels(GpuMat& image, const int dstOrder[4], Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! Routines for correcting image color gamma
|
|
|
|
CV_EXPORTS void gammaCorrection(const GpuMat& src, GpuMat& dst, bool forward = true, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! resizes the image
|
|
|
|
//! Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC, INTER_AREA
|
|
|
|
CV_EXPORTS void resize(const GpuMat& src, GpuMat& dst, Size dsize, double fx=0, double fy=0, int interpolation = INTER_LINEAR, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! warps the image using affine transformation
|
|
|
|
//! Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC
|
|
|
|
CV_EXPORTS void warpAffine(const GpuMat& src, GpuMat& dst, const Mat& M, Size dsize, int flags = INTER_LINEAR,
|
|
|
|
int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar(), Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
CV_EXPORTS void buildWarpAffineMaps(const Mat& M, bool inverse, Size dsize, GpuMat& xmap, GpuMat& ymap, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! warps the image using perspective transformation
|
|
|
|
//! Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC
|
|
|
|
CV_EXPORTS void warpPerspective(const GpuMat& src, GpuMat& dst, const Mat& M, Size dsize, int flags = INTER_LINEAR,
|
|
|
|
int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar(), Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
CV_EXPORTS void buildWarpPerspectiveMaps(const Mat& M, bool inverse, Size dsize, GpuMat& xmap, GpuMat& ymap, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! builds plane warping maps
|
|
|
|
CV_EXPORTS void buildWarpPlaneMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat& R, const Mat &T, float scale,
|
|
|
|
GpuMat& map_x, GpuMat& map_y, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! builds cylindrical warping maps
|
|
|
|
CV_EXPORTS void buildWarpCylindricalMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat& R, float scale,
|
|
|
|
GpuMat& map_x, GpuMat& map_y, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! builds spherical warping maps
|
|
|
|
CV_EXPORTS void buildWarpSphericalMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat& R, float scale,
|
|
|
|
GpuMat& map_x, GpuMat& map_y, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! rotates an image around the origin (0,0) and then shifts it
|
|
|
|
//! supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC
|
|
|
|
//! supports 1, 3 or 4 channels images with CV_8U, CV_16U or CV_32F depth
|
|
|
|
CV_EXPORTS void rotate(const GpuMat& src, GpuMat& dst, Size dsize, double angle, double xShift = 0, double yShift = 0,
|
|
|
|
int interpolation = INTER_LINEAR, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! copies 2D array to a larger destination array and pads borders with user-specifiable constant
|
|
|
|
CV_EXPORTS void copyMakeBorder(const GpuMat& src, GpuMat& dst, int top, int bottom, int left, int right, int borderType,
|
|
|
|
const Scalar& value = Scalar(), Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! computes the integral image
|
|
|
|
//! sum will have CV_32S type, but will contain unsigned int values
|
|
|
|
//! supports only CV_8UC1 source type
|
|
|
|
CV_EXPORTS void integral(const GpuMat& src, GpuMat& sum, Stream& stream = Stream::Null());
|
|
|
|
//! buffered version
|
|
|
|
CV_EXPORTS void integralBuffered(const GpuMat& src, GpuMat& sum, GpuMat& buffer, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! computes squared integral image
|
|
|
|
//! result matrix will have 64F type, but will contain 64U values
|
|
|
|
//! supports source images of 8UC1 type only
|
|
|
|
CV_EXPORTS void sqrIntegral(const GpuMat& src, GpuMat& sqsum, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! computes vertical sum, supports only CV_32FC1 images
|
|
|
|
CV_EXPORTS void columnSum(const GpuMat& src, GpuMat& sum);
|
|
|
|
|
|
|
|
//! computes the standard deviation of integral images
|
|
|
|
//! supports only CV_32SC1 source type and CV_32FC1 sqr type
|
|
|
|
//! output will have CV_32FC1 type
|
|
|
|
CV_EXPORTS void rectStdDev(const GpuMat& src, const GpuMat& sqr, GpuMat& dst, const Rect& rect, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! computes Harris cornerness criteria at each image pixel
|
|
|
|
CV_EXPORTS void cornerHarris(const GpuMat& src, GpuMat& dst, int blockSize, int ksize, double k, int borderType = BORDER_REFLECT101);
|
|
|
|
CV_EXPORTS void cornerHarris(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, int blockSize, int ksize, double k, int borderType = BORDER_REFLECT101);
|
|
|
|
CV_EXPORTS void cornerHarris(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, GpuMat& buf, int blockSize, int ksize, double k,
|
|
|
|
int borderType = BORDER_REFLECT101, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! computes minimum eigen value of 2x2 derivative covariation matrix at each pixel - the cornerness criteria
|
|
|
|
CV_EXPORTS void cornerMinEigenVal(const GpuMat& src, GpuMat& dst, int blockSize, int ksize, int borderType=BORDER_REFLECT101);
|
|
|
|
CV_EXPORTS void cornerMinEigenVal(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, int blockSize, int ksize, int borderType=BORDER_REFLECT101);
|
|
|
|
CV_EXPORTS void cornerMinEigenVal(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, GpuMat& buf, int blockSize, int ksize,
|
|
|
|
int borderType=BORDER_REFLECT101, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! performs per-element multiplication of two full (not packed) Fourier spectrums
|
|
|
|
//! supports 32FC2 matrixes only (interleaved format)
|
|
|
|
CV_EXPORTS void mulSpectrums(const GpuMat& a, const GpuMat& b, GpuMat& c, int flags, bool conjB=false, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! performs per-element multiplication of two full (not packed) Fourier spectrums
|
|
|
|
//! supports 32FC2 matrixes only (interleaved format)
|
|
|
|
CV_EXPORTS void mulAndScaleSpectrums(const GpuMat& a, const GpuMat& b, GpuMat& c, int flags, float scale, bool conjB=false, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! Performs a forward or inverse discrete Fourier transform (1D or 2D) of floating point matrix.
|
|
|
|
//! Param dft_size is the size of DFT transform.
|
|
|
|
//!
|
|
|
|
//! If the source matrix is not continous, then additional copy will be done,
|
|
|
|
//! so to avoid copying ensure the source matrix is continous one. If you want to use
|
|
|
|
//! preallocated output ensure it is continuous too, otherwise it will be reallocated.
|
|
|
|
//!
|
|
|
|
//! Being implemented via CUFFT real-to-complex transform result contains only non-redundant values
|
|
|
|
//! in CUFFT's format. Result as full complex matrix for such kind of transform cannot be retrieved.
|
|
|
|
//!
|
|
|
|
//! For complex-to-real transform it is assumed that the source matrix is packed in CUFFT's format.
|
|
|
|
CV_EXPORTS void dft(const GpuMat& src, GpuMat& dst, Size dft_size, int flags=0, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
struct CV_EXPORTS ConvolveBuf
|
|
|
|
{
|
|
|
|
Size result_size;
|
|
|
|
Size block_size;
|
|
|
|
Size user_block_size;
|
|
|
|
Size dft_size;
|
|
|
|
int spect_len;
|
|
|
|
|
|
|
|
GpuMat image_spect, templ_spect, result_spect;
|
|
|
|
GpuMat image_block, templ_block, result_data;
|
|
|
|
|
|
|
|
void create(Size image_size, Size templ_size);
|
|
|
|
static Size estimateBlockSize(Size result_size, Size templ_size);
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
//! computes convolution (or cross-correlation) of two images using discrete Fourier transform
|
|
|
|
//! supports source images of 32FC1 type only
|
|
|
|
//! result matrix will have 32FC1 type
|
|
|
|
CV_EXPORTS void convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result, bool ccorr = false);
|
|
|
|
CV_EXPORTS void convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result, bool ccorr, ConvolveBuf& buf, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
struct CV_EXPORTS MatchTemplateBuf
|
|
|
|
{
|
|
|
|
Size user_block_size;
|
|
|
|
GpuMat imagef, templf;
|
|
|
|
std::vector<GpuMat> images;
|
|
|
|
std::vector<GpuMat> image_sums;
|
|
|
|
std::vector<GpuMat> image_sqsums;
|
|
|
|
};
|
|
|
|
|
|
|
|
//! computes the proximity map for the raster template and the image where the template is searched for
|
|
|
|
CV_EXPORTS void matchTemplate(const GpuMat& image, const GpuMat& templ, GpuMat& result, int method, Stream &stream = Stream::Null());
|
|
|
|
|
|
|
|
//! computes the proximity map for the raster template and the image where the template is searched for
|
|
|
|
CV_EXPORTS void matchTemplate(const GpuMat& image, const GpuMat& templ, GpuMat& result, int method, MatchTemplateBuf &buf, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! smoothes the source image and downsamples it
|
|
|
|
CV_EXPORTS void pyrDown(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! upsamples the source image and then smoothes it
|
|
|
|
CV_EXPORTS void pyrUp(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! performs linear blending of two images
|
|
|
|
//! to avoid accuracy errors sum of weigths shouldn't be very close to zero
|
|
|
|
CV_EXPORTS void blendLinear(const GpuMat& img1, const GpuMat& img2, const GpuMat& weights1, const GpuMat& weights2,
|
|
|
|
GpuMat& result, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! Performa bilateral filtering of passsed image
|
|
|
|
CV_EXPORTS void bilateralFilter(const GpuMat& src, GpuMat& dst, int kernel_size, float sigma_color, float sigma_spatial,
|
|
|
|
int borderMode = BORDER_DEFAULT, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! Brute force non-local means algorith (slow but universal)
|
|
|
|
CV_EXPORTS void nonLocalMeans(const GpuMat& src, GpuMat& dst, float h, int search_window = 21, int block_size = 7, int borderMode = BORDER_DEFAULT, Stream& s = Stream::Null());
|
|
|
|
|
|
|
|
//! Fast (but approximate)version of non-local means algorith similar to CPU function (running sums technique)
|
|
|
|
class CV_EXPORTS FastNonLocalMeansDenoising
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
//! Simple method, recommended for grayscale images (though it supports multichannel images)
|
|
|
|
void simpleMethod(const GpuMat& src, GpuMat& dst, float h, int search_window = 21, int block_size = 7, Stream& s = Stream::Null());
|
|
|
|
|
|
|
|
//! Processes luminance and color components separatelly
|
|
|
|
void labMethod(const GpuMat& src, GpuMat& dst, float h_luminance, float h_color, int search_window = 21, int block_size = 7, Stream& s = Stream::Null());
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
|
|
|
GpuMat buffer, extended_src_buffer;
|
|
|
|
GpuMat lab, l, ab;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct CV_EXPORTS CannyBuf
|
|
|
|
{
|
|
|
|
void create(const Size& image_size, int apperture_size = 3);
|
|
|
|
void release();
|
|
|
|
|
|
|
|
GpuMat dx, dy;
|
2012-11-12 13:02:17 +04:00
|
|
|
GpuMat mag;
|
|
|
|
GpuMat map;
|
|
|
|
GpuMat st1, st2;
|
2012-10-17 11:12:04 +04:00
|
|
|
Ptr<FilterEngine_GPU> filterDX, filterDY;
|
|
|
|
};
|
|
|
|
|
2012-11-12 13:02:17 +04:00
|
|
|
CV_EXPORTS void Canny(const GpuMat& image, GpuMat& edges, double low_thresh, double high_thresh, int apperture_size = 3, bool L2gradient = false);
|
|
|
|
CV_EXPORTS void Canny(const GpuMat& image, CannyBuf& buf, GpuMat& edges, double low_thresh, double high_thresh, int apperture_size = 3, bool L2gradient = false);
|
|
|
|
CV_EXPORTS void Canny(const GpuMat& dx, const GpuMat& dy, GpuMat& edges, double low_thresh, double high_thresh, bool L2gradient = false);
|
|
|
|
CV_EXPORTS void Canny(const GpuMat& dx, const GpuMat& dy, CannyBuf& buf, GpuMat& edges, double low_thresh, double high_thresh, bool L2gradient = false);
|
|
|
|
|
2012-10-17 11:12:04 +04:00
|
|
|
class CV_EXPORTS ImagePyramid
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
inline ImagePyramid() : nLayers_(0) {}
|
|
|
|
inline ImagePyramid(const GpuMat& img, int nLayers, Stream& stream = Stream::Null())
|
|
|
|
{
|
|
|
|
build(img, nLayers, stream);
|
|
|
|
}
|
|
|
|
|
|
|
|
void build(const GpuMat& img, int nLayers, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
void getLayer(GpuMat& outImg, Size outRoi, Stream& stream = Stream::Null()) const;
|
|
|
|
|
|
|
|
inline void release()
|
|
|
|
{
|
|
|
|
layer0_.release();
|
|
|
|
pyramid_.clear();
|
|
|
|
nLayers_ = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
GpuMat layer0_;
|
|
|
|
std::vector<GpuMat> pyramid_;
|
|
|
|
int nLayers_;
|
|
|
|
};
|
|
|
|
|
|
|
|
//! HoughLines
|
|
|
|
|
|
|
|
struct HoughLinesBuf
|
|
|
|
{
|
|
|
|
GpuMat accum;
|
|
|
|
GpuMat list;
|
|
|
|
};
|
|
|
|
|
|
|
|
CV_EXPORTS void HoughLines(const GpuMat& src, GpuMat& lines, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096);
|
|
|
|
CV_EXPORTS void HoughLines(const GpuMat& src, GpuMat& lines, HoughLinesBuf& buf, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096);
|
|
|
|
CV_EXPORTS void HoughLinesDownload(const GpuMat& d_lines, OutputArray h_lines, OutputArray h_votes = noArray());
|
|
|
|
|
2012-12-06 15:14:20 +04:00
|
|
|
//! HoughLinesP
|
|
|
|
|
|
|
|
//! finds line segments in the black-n-white image using probabalistic Hough transform
|
2012-12-13 17:18:25 +04:00
|
|
|
CV_EXPORTS void HoughLinesP(const GpuMat& image, GpuMat& lines, HoughLinesBuf& buf, float rho, float theta, int minLineLength, int maxLineGap, int maxLines = 4096);
|
2012-12-06 15:14:20 +04:00
|
|
|
|
2012-10-17 11:12:04 +04:00
|
|
|
//! HoughCircles
|
|
|
|
|
|
|
|
struct HoughCirclesBuf
|
|
|
|
{
|
|
|
|
GpuMat edges;
|
|
|
|
GpuMat accum;
|
|
|
|
GpuMat list;
|
|
|
|
CannyBuf cannyBuf;
|
|
|
|
};
|
|
|
|
|
|
|
|
CV_EXPORTS void HoughCircles(const GpuMat& src, GpuMat& circles, int method, float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles = 4096);
|
|
|
|
CV_EXPORTS void HoughCircles(const GpuMat& src, GpuMat& circles, HoughCirclesBuf& buf, int method, float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles = 4096);
|
|
|
|
CV_EXPORTS void HoughCirclesDownload(const GpuMat& d_circles, OutputArray h_circles);
|
|
|
|
|
|
|
|
//! finds arbitrary template in the grayscale image using Generalized Hough Transform
|
|
|
|
//! Ballard, D.H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13 (2): 111-122.
|
|
|
|
//! Guil, N., González-Linares, J.M. and Zapata, E.L. (1999). Bidimensional shape detection using an invariant approach. Pattern Recognition 32 (6): 1025-1038.
|
2013-02-20 14:38:16 +04:00
|
|
|
class CV_EXPORTS GeneralizedHough_GPU : public cv::Algorithm
|
2012-10-17 11:12:04 +04:00
|
|
|
{
|
|
|
|
public:
|
|
|
|
static Ptr<GeneralizedHough_GPU> create(int method);
|
|
|
|
|
|
|
|
virtual ~GeneralizedHough_GPU();
|
|
|
|
|
|
|
|
//! set template to search
|
|
|
|
void setTemplate(const GpuMat& templ, int cannyThreshold = 100, Point templCenter = Point(-1, -1));
|
|
|
|
void setTemplate(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, Point templCenter = Point(-1, -1));
|
|
|
|
|
|
|
|
//! find template on image
|
|
|
|
void detect(const GpuMat& image, GpuMat& positions, int cannyThreshold = 100);
|
|
|
|
void detect(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, GpuMat& positions);
|
|
|
|
|
|
|
|
void download(const GpuMat& d_positions, OutputArray h_positions, OutputArray h_votes = noArray());
|
|
|
|
|
|
|
|
void release();
|
|
|
|
|
|
|
|
protected:
|
|
|
|
virtual void setTemplateImpl(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, Point templCenter) = 0;
|
|
|
|
virtual void detectImpl(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, GpuMat& positions) = 0;
|
|
|
|
virtual void releaseImpl() = 0;
|
|
|
|
|
|
|
|
private:
|
|
|
|
GpuMat edges_;
|
|
|
|
CannyBuf cannyBuf_;
|
|
|
|
};
|
|
|
|
|
|
|
|
///////////////////////////// Calibration 3D //////////////////////////////////
|
|
|
|
|
|
|
|
CV_EXPORTS void transformPoints(const GpuMat& src, const Mat& rvec, const Mat& tvec,
|
|
|
|
GpuMat& dst, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
CV_EXPORTS void projectPoints(const GpuMat& src, const Mat& rvec, const Mat& tvec,
|
|
|
|
const Mat& camera_mat, const Mat& dist_coef, GpuMat& dst,
|
|
|
|
Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
CV_EXPORTS void solvePnPRansac(const Mat& object, const Mat& image, const Mat& camera_mat,
|
|
|
|
const Mat& dist_coef, Mat& rvec, Mat& tvec, bool use_extrinsic_guess=false,
|
|
|
|
int num_iters=100, float max_dist=8.0, int min_inlier_count=100,
|
|
|
|
std::vector<int>* inliers=NULL);
|
|
|
|
|
|
|
|
//////////////////////////////// Image Labeling ////////////////////////////////
|
|
|
|
|
|
|
|
//!performs labeling via graph cuts of a 2D regular 4-connected graph.
|
|
|
|
CV_EXPORTS void graphcut(GpuMat& terminals, GpuMat& leftTransp, GpuMat& rightTransp, GpuMat& top, GpuMat& bottom, GpuMat& labels,
|
|
|
|
GpuMat& buf, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//!performs labeling via graph cuts of a 2D regular 8-connected graph.
|
|
|
|
CV_EXPORTS void graphcut(GpuMat& terminals, GpuMat& leftTransp, GpuMat& rightTransp, GpuMat& top, GpuMat& topLeft, GpuMat& topRight,
|
|
|
|
GpuMat& bottom, GpuMat& bottomLeft, GpuMat& bottomRight,
|
|
|
|
GpuMat& labels,
|
|
|
|
GpuMat& buf, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! compute mask for Generalized Flood fill componetns labeling.
|
|
|
|
CV_EXPORTS void connectivityMask(const GpuMat& image, GpuMat& mask, const cv::Scalar& lo, const cv::Scalar& hi, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! performs connected componnents labeling.
|
|
|
|
CV_EXPORTS void labelComponents(const GpuMat& mask, GpuMat& components, int flags = 0, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
////////////////////////////////// Histograms //////////////////////////////////
|
|
|
|
|
|
|
|
//! Compute levels with even distribution. levels will have 1 row and nLevels cols and CV_32SC1 type.
|
|
|
|
CV_EXPORTS void evenLevels(GpuMat& levels, int nLevels, int lowerLevel, int upperLevel);
|
|
|
|
//! Calculates histogram with evenly distributed bins for signle channel source.
|
|
|
|
//! Supports CV_8UC1, CV_16UC1 and CV_16SC1 source types.
|
|
|
|
//! Output hist will have one row and histSize cols and CV_32SC1 type.
|
|
|
|
CV_EXPORTS void histEven(const GpuMat& src, GpuMat& hist, int histSize, int lowerLevel, int upperLevel, Stream& stream = Stream::Null());
|
|
|
|
CV_EXPORTS void histEven(const GpuMat& src, GpuMat& hist, GpuMat& buf, int histSize, int lowerLevel, int upperLevel, Stream& stream = Stream::Null());
|
|
|
|
//! Calculates histogram with evenly distributed bins for four-channel source.
|
|
|
|
//! All channels of source are processed separately.
|
|
|
|
//! Supports CV_8UC4, CV_16UC4 and CV_16SC4 source types.
|
|
|
|
//! Output hist[i] will have one row and histSize[i] cols and CV_32SC1 type.
|
|
|
|
CV_EXPORTS void histEven(const GpuMat& src, GpuMat hist[4], int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream = Stream::Null());
|
|
|
|
CV_EXPORTS void histEven(const GpuMat& src, GpuMat hist[4], GpuMat& buf, int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream = Stream::Null());
|
|
|
|
//! Calculates histogram with bins determined by levels array.
|
|
|
|
//! levels must have one row and CV_32SC1 type if source has integer type or CV_32FC1 otherwise.
|
|
|
|
//! Supports CV_8UC1, CV_16UC1, CV_16SC1 and CV_32FC1 source types.
|
|
|
|
//! Output hist will have one row and (levels.cols-1) cols and CV_32SC1 type.
|
|
|
|
CV_EXPORTS void histRange(const GpuMat& src, GpuMat& hist, const GpuMat& levels, Stream& stream = Stream::Null());
|
|
|
|
CV_EXPORTS void histRange(const GpuMat& src, GpuMat& hist, const GpuMat& levels, GpuMat& buf, Stream& stream = Stream::Null());
|
|
|
|
//! Calculates histogram with bins determined by levels array.
|
|
|
|
//! All levels must have one row and CV_32SC1 type if source has integer type or CV_32FC1 otherwise.
|
|
|
|
//! All channels of source are processed separately.
|
|
|
|
//! Supports CV_8UC4, CV_16UC4, CV_16SC4 and CV_32FC4 source types.
|
|
|
|
//! Output hist[i] will have one row and (levels[i].cols-1) cols and CV_32SC1 type.
|
|
|
|
CV_EXPORTS void histRange(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], Stream& stream = Stream::Null());
|
|
|
|
CV_EXPORTS void histRange(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], GpuMat& buf, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! Calculates histogram for 8u one channel image
|
|
|
|
//! Output hist will have one row, 256 cols and CV32SC1 type.
|
|
|
|
CV_EXPORTS void calcHist(const GpuMat& src, GpuMat& hist, Stream& stream = Stream::Null());
|
2013-03-21 20:59:18 +04:00
|
|
|
CV_EXPORTS void calcHist(const GpuMat& src, GpuMat& hist, GpuMat& buf, Stream& stream = Stream::Null());
|
2012-10-17 11:12:04 +04:00
|
|
|
|
|
|
|
//! normalizes the grayscale image brightness and contrast by normalizing its histogram
|
|
|
|
CV_EXPORTS void equalizeHist(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null());
|
2013-03-21 20:59:18 +04:00
|
|
|
CV_EXPORTS void equalizeHist(const GpuMat& src, GpuMat& dst, GpuMat& hist, Stream& stream = Stream::Null());
|
2012-10-17 11:12:04 +04:00
|
|
|
CV_EXPORTS void equalizeHist(const GpuMat& src, GpuMat& dst, GpuMat& hist, GpuMat& buf, Stream& stream = Stream::Null());
|
|
|
|
|
2013-03-29 18:48:06 +04:00
|
|
|
class CV_EXPORTS CLAHE : public cv::CLAHE
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
using cv::CLAHE::apply;
|
|
|
|
virtual void apply(InputArray src, OutputArray dst, Stream& stream) = 0;
|
|
|
|
};
|
|
|
|
CV_EXPORTS Ptr<cv::gpu::CLAHE> createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8));
|
|
|
|
|
2012-10-17 11:12:04 +04:00
|
|
|
//////////////////////////////// StereoBM_GPU ////////////////////////////////
|
|
|
|
|
|
|
|
class CV_EXPORTS StereoBM_GPU
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
enum { BASIC_PRESET = 0, PREFILTER_XSOBEL = 1 };
|
|
|
|
|
|
|
|
enum { DEFAULT_NDISP = 64, DEFAULT_WINSZ = 19 };
|
|
|
|
|
|
|
|
//! the default constructor
|
|
|
|
StereoBM_GPU();
|
|
|
|
//! the full constructor taking the camera-specific preset, number of disparities and the SAD window size. ndisparities must be multiple of 8.
|
|
|
|
StereoBM_GPU(int preset, int ndisparities = DEFAULT_NDISP, int winSize = DEFAULT_WINSZ);
|
|
|
|
|
|
|
|
//! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair
|
|
|
|
//! Output disparity has CV_8U type.
|
|
|
|
void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! Some heuristics that tries to estmate
|
|
|
|
// if current GPU will be faster than CPU in this algorithm.
|
|
|
|
// It queries current active device.
|
|
|
|
static bool checkIfGpuCallReasonable();
|
|
|
|
|
|
|
|
int preset;
|
|
|
|
int ndisp;
|
|
|
|
int winSize;
|
|
|
|
|
|
|
|
// If avergeTexThreshold == 0 => post procesing is disabled
|
|
|
|
// If avergeTexThreshold != 0 then disparity is set 0 in each point (x,y) where for left image
|
|
|
|
// SumOfHorizontalGradiensInWindow(x, y, winSize) < (winSize * winSize) * avergeTexThreshold
|
|
|
|
// i.e. input left image is low textured.
|
|
|
|
float avergeTexThreshold;
|
|
|
|
|
|
|
|
private:
|
|
|
|
GpuMat minSSD, leBuf, riBuf;
|
|
|
|
};
|
|
|
|
|
|
|
|
////////////////////////// StereoBeliefPropagation ///////////////////////////
|
|
|
|
// "Efficient Belief Propagation for Early Vision"
|
|
|
|
// P.Felzenszwalb
|
|
|
|
|
|
|
|
class CV_EXPORTS StereoBeliefPropagation
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
enum { DEFAULT_NDISP = 64 };
|
|
|
|
enum { DEFAULT_ITERS = 5 };
|
|
|
|
enum { DEFAULT_LEVELS = 5 };
|
|
|
|
|
|
|
|
static void estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels);
|
|
|
|
|
|
|
|
//! the default constructor
|
|
|
|
explicit StereoBeliefPropagation(int ndisp = DEFAULT_NDISP,
|
|
|
|
int iters = DEFAULT_ITERS,
|
|
|
|
int levels = DEFAULT_LEVELS,
|
|
|
|
int msg_type = CV_32F);
|
|
|
|
|
|
|
|
//! the full constructor taking the number of disparities, number of BP iterations on each level,
|
|
|
|
//! number of levels, truncation of data cost, data weight,
|
|
|
|
//! truncation of discontinuity cost and discontinuity single jump
|
|
|
|
//! DataTerm = data_weight * min(fabs(I2-I1), max_data_term)
|
|
|
|
//! DiscTerm = min(disc_single_jump * fabs(f1-f2), max_disc_term)
|
|
|
|
//! please see paper for more details
|
|
|
|
StereoBeliefPropagation(int ndisp, int iters, int levels,
|
|
|
|
float max_data_term, float data_weight,
|
|
|
|
float max_disc_term, float disc_single_jump,
|
|
|
|
int msg_type = CV_32F);
|
|
|
|
|
|
|
|
//! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair,
|
|
|
|
//! if disparity is empty output type will be CV_16S else output type will be disparity.type().
|
|
|
|
void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
|
|
|
|
//! version for user specified data term
|
|
|
|
void operator()(const GpuMat& data, GpuMat& disparity, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
int ndisp;
|
|
|
|
|
|
|
|
int iters;
|
|
|
|
int levels;
|
|
|
|
|
|
|
|
float max_data_term;
|
|
|
|
float data_weight;
|
|
|
|
float max_disc_term;
|
|
|
|
float disc_single_jump;
|
|
|
|
|
|
|
|
int msg_type;
|
|
|
|
private:
|
|
|
|
GpuMat u, d, l, r, u2, d2, l2, r2;
|
|
|
|
std::vector<GpuMat> datas;
|
|
|
|
GpuMat out;
|
|
|
|
};
|
|
|
|
|
|
|
|
/////////////////////////// StereoConstantSpaceBP ///////////////////////////
|
|
|
|
// "A Constant-Space Belief Propagation Algorithm for Stereo Matching"
|
|
|
|
// Qingxiong Yang, Liang Wang, Narendra Ahuja
|
|
|
|
// http://vision.ai.uiuc.edu/~qyang6/
|
|
|
|
|
|
|
|
class CV_EXPORTS StereoConstantSpaceBP
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
enum { DEFAULT_NDISP = 128 };
|
|
|
|
enum { DEFAULT_ITERS = 8 };
|
|
|
|
enum { DEFAULT_LEVELS = 4 };
|
|
|
|
enum { DEFAULT_NR_PLANE = 4 };
|
|
|
|
|
|
|
|
static void estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels, int& nr_plane);
|
|
|
|
|
|
|
|
//! the default constructor
|
|
|
|
explicit StereoConstantSpaceBP(int ndisp = DEFAULT_NDISP,
|
|
|
|
int iters = DEFAULT_ITERS,
|
|
|
|
int levels = DEFAULT_LEVELS,
|
|
|
|
int nr_plane = DEFAULT_NR_PLANE,
|
|
|
|
int msg_type = CV_32F);
|
|
|
|
|
|
|
|
//! the full constructor taking the number of disparities, number of BP iterations on each level,
|
|
|
|
//! number of levels, number of active disparity on the first level, truncation of data cost, data weight,
|
|
|
|
//! truncation of discontinuity cost, discontinuity single jump and minimum disparity threshold
|
|
|
|
StereoConstantSpaceBP(int ndisp, int iters, int levels, int nr_plane,
|
|
|
|
float max_data_term, float data_weight, float max_disc_term, float disc_single_jump,
|
|
|
|
int min_disp_th = 0,
|
|
|
|
int msg_type = CV_32F);
|
|
|
|
|
|
|
|
//! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair,
|
|
|
|
//! if disparity is empty output type will be CV_16S else output type will be disparity.type().
|
|
|
|
void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
int ndisp;
|
|
|
|
|
|
|
|
int iters;
|
|
|
|
int levels;
|
|
|
|
|
|
|
|
int nr_plane;
|
|
|
|
|
|
|
|
float max_data_term;
|
|
|
|
float data_weight;
|
|
|
|
float max_disc_term;
|
|
|
|
float disc_single_jump;
|
|
|
|
|
|
|
|
int min_disp_th;
|
|
|
|
|
|
|
|
int msg_type;
|
|
|
|
|
|
|
|
bool use_local_init_data_cost;
|
|
|
|
private:
|
|
|
|
GpuMat messages_buffers;
|
|
|
|
|
|
|
|
GpuMat temp;
|
|
|
|
GpuMat out;
|
|
|
|
};
|
|
|
|
|
|
|
|
/////////////////////////// DisparityBilateralFilter ///////////////////////////
|
|
|
|
// Disparity map refinement using joint bilateral filtering given a single color image.
|
|
|
|
// Qingxiong Yang, Liang Wang, Narendra Ahuja
|
|
|
|
// http://vision.ai.uiuc.edu/~qyang6/
|
|
|
|
|
|
|
|
class CV_EXPORTS DisparityBilateralFilter
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
enum { DEFAULT_NDISP = 64 };
|
|
|
|
enum { DEFAULT_RADIUS = 3 };
|
|
|
|
enum { DEFAULT_ITERS = 1 };
|
|
|
|
|
|
|
|
//! the default constructor
|
|
|
|
explicit DisparityBilateralFilter(int ndisp = DEFAULT_NDISP, int radius = DEFAULT_RADIUS, int iters = DEFAULT_ITERS);
|
|
|
|
|
|
|
|
//! the full constructor taking the number of disparities, filter radius,
|
|
|
|
//! number of iterations, truncation of data continuity, truncation of disparity continuity
|
|
|
|
//! and filter range sigma
|
|
|
|
DisparityBilateralFilter(int ndisp, int radius, int iters, float edge_threshold, float max_disc_threshold, float sigma_range);
|
|
|
|
|
|
|
|
//! the disparity map refinement operator. Refine disparity map using joint bilateral filtering given a single color image.
|
|
|
|
//! disparity must have CV_8U or CV_16S type, image must have CV_8UC1 or CV_8UC3 type.
|
|
|
|
void operator()(const GpuMat& disparity, const GpuMat& image, GpuMat& dst, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
private:
|
|
|
|
int ndisp;
|
|
|
|
int radius;
|
|
|
|
int iters;
|
|
|
|
|
|
|
|
float edge_threshold;
|
|
|
|
float max_disc_threshold;
|
|
|
|
float sigma_range;
|
|
|
|
|
|
|
|
GpuMat table_color;
|
|
|
|
GpuMat table_space;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
//////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector //////////////
|
|
|
|
struct CV_EXPORTS HOGConfidence
|
|
|
|
{
|
|
|
|
double scale;
|
2013-02-24 20:14:01 +04:00
|
|
|
std::vector<Point> locations;
|
|
|
|
std::vector<double> confidences;
|
|
|
|
std::vector<double> part_scores[4];
|
2012-10-17 11:12:04 +04:00
|
|
|
};
|
|
|
|
|
|
|
|
struct CV_EXPORTS HOGDescriptor
|
|
|
|
{
|
|
|
|
enum { DEFAULT_WIN_SIGMA = -1 };
|
|
|
|
enum { DEFAULT_NLEVELS = 64 };
|
|
|
|
enum { DESCR_FORMAT_ROW_BY_ROW, DESCR_FORMAT_COL_BY_COL };
|
|
|
|
|
|
|
|
HOGDescriptor(Size win_size=Size(64, 128), Size block_size=Size(16, 16),
|
|
|
|
Size block_stride=Size(8, 8), Size cell_size=Size(8, 8),
|
|
|
|
int nbins=9, double win_sigma=DEFAULT_WIN_SIGMA,
|
|
|
|
double threshold_L2hys=0.2, bool gamma_correction=true,
|
|
|
|
int nlevels=DEFAULT_NLEVELS);
|
|
|
|
|
|
|
|
size_t getDescriptorSize() const;
|
|
|
|
size_t getBlockHistogramSize() const;
|
|
|
|
|
2013-02-24 20:14:01 +04:00
|
|
|
void setSVMDetector(const std::vector<float>& detector);
|
2012-10-17 11:12:04 +04:00
|
|
|
|
2013-02-24 20:14:01 +04:00
|
|
|
static std::vector<float> getDefaultPeopleDetector();
|
|
|
|
static std::vector<float> getPeopleDetector48x96();
|
|
|
|
static std::vector<float> getPeopleDetector64x128();
|
2012-10-17 11:12:04 +04:00
|
|
|
|
2013-02-24 20:14:01 +04:00
|
|
|
void detect(const GpuMat& img, std::vector<Point>& found_locations,
|
2012-10-17 11:12:04 +04:00
|
|
|
double hit_threshold=0, Size win_stride=Size(),
|
|
|
|
Size padding=Size());
|
|
|
|
|
2013-02-24 20:14:01 +04:00
|
|
|
void detectMultiScale(const GpuMat& img, std::vector<Rect>& found_locations,
|
2012-10-17 11:12:04 +04:00
|
|
|
double hit_threshold=0, Size win_stride=Size(),
|
|
|
|
Size padding=Size(), double scale0=1.05,
|
|
|
|
int group_threshold=2);
|
|
|
|
|
2013-02-24 20:14:01 +04:00
|
|
|
void computeConfidence(const GpuMat& img, std::vector<Point>& hits, double hit_threshold,
|
|
|
|
Size win_stride, Size padding, std::vector<Point>& locations, std::vector<double>& confidences);
|
2012-10-17 11:12:04 +04:00
|
|
|
|
2013-02-24 20:14:01 +04:00
|
|
|
void computeConfidenceMultiScale(const GpuMat& img, std::vector<Rect>& found_locations,
|
2012-10-17 11:12:04 +04:00
|
|
|
double hit_threshold, Size win_stride, Size padding,
|
2013-02-24 20:14:01 +04:00
|
|
|
std::vector<HOGConfidence> &conf_out, int group_threshold);
|
2012-10-17 11:12:04 +04:00
|
|
|
|
|
|
|
void getDescriptors(const GpuMat& img, Size win_stride,
|
|
|
|
GpuMat& descriptors,
|
|
|
|
int descr_format=DESCR_FORMAT_COL_BY_COL);
|
|
|
|
|
|
|
|
Size win_size;
|
|
|
|
Size block_size;
|
|
|
|
Size block_stride;
|
|
|
|
Size cell_size;
|
|
|
|
int nbins;
|
|
|
|
double win_sigma;
|
|
|
|
double threshold_L2hys;
|
|
|
|
bool gamma_correction;
|
|
|
|
int nlevels;
|
|
|
|
|
|
|
|
protected:
|
|
|
|
void computeBlockHistograms(const GpuMat& img);
|
|
|
|
void computeGradient(const GpuMat& img, GpuMat& grad, GpuMat& qangle);
|
|
|
|
|
|
|
|
double getWinSigma() const;
|
|
|
|
bool checkDetectorSize() const;
|
|
|
|
|
|
|
|
static int numPartsWithin(int size, int part_size, int stride);
|
|
|
|
static Size numPartsWithin(Size size, Size part_size, Size stride);
|
|
|
|
|
|
|
|
// Coefficients of the separating plane
|
|
|
|
float free_coef;
|
|
|
|
GpuMat detector;
|
|
|
|
|
|
|
|
// Results of the last classification step
|
|
|
|
GpuMat labels, labels_buf;
|
|
|
|
Mat labels_host;
|
|
|
|
|
|
|
|
// Results of the last histogram evaluation step
|
|
|
|
GpuMat block_hists, block_hists_buf;
|
|
|
|
|
|
|
|
// Gradients conputation results
|
|
|
|
GpuMat grad, qangle, grad_buf, qangle_buf;
|
|
|
|
|
|
|
|
// returns subbuffer with required size, reallocates buffer if nessesary.
|
|
|
|
static GpuMat getBuffer(const Size& sz, int type, GpuMat& buf);
|
|
|
|
static GpuMat getBuffer(int rows, int cols, int type, GpuMat& buf);
|
|
|
|
|
|
|
|
std::vector<GpuMat> image_scales;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
////////////////////////////////// BruteForceMatcher //////////////////////////////////
|
|
|
|
|
|
|
|
class CV_EXPORTS BFMatcher_GPU
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
explicit BFMatcher_GPU(int norm = cv::NORM_L2);
|
|
|
|
|
|
|
|
// Add descriptors to train descriptor collection
|
|
|
|
void add(const std::vector<GpuMat>& descCollection);
|
|
|
|
|
|
|
|
// Get train descriptors collection
|
|
|
|
const std::vector<GpuMat>& getTrainDescriptors() const;
|
|
|
|
|
|
|
|
// Clear train descriptors collection
|
|
|
|
void clear();
|
|
|
|
|
|
|
|
// Return true if there are not train descriptors in collection
|
|
|
|
bool empty() const;
|
|
|
|
|
|
|
|
// Return true if the matcher supports mask in match methods
|
|
|
|
bool isMaskSupported() const;
|
|
|
|
|
|
|
|
// Find one best match for each query descriptor
|
|
|
|
void matchSingle(const GpuMat& query, const GpuMat& train,
|
|
|
|
GpuMat& trainIdx, GpuMat& distance,
|
|
|
|
const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
// Download trainIdx and distance and convert it to CPU vector with DMatch
|
|
|
|
static void matchDownload(const GpuMat& trainIdx, const GpuMat& distance, std::vector<DMatch>& matches);
|
|
|
|
// Convert trainIdx and distance to vector with DMatch
|
|
|
|
static void matchConvert(const Mat& trainIdx, const Mat& distance, std::vector<DMatch>& matches);
|
|
|
|
|
|
|
|
// Find one best match for each query descriptor
|
|
|
|
void match(const GpuMat& query, const GpuMat& train, std::vector<DMatch>& matches, const GpuMat& mask = GpuMat());
|
|
|
|
|
|
|
|
// Make gpu collection of trains and masks in suitable format for matchCollection function
|
|
|
|
void makeGpuCollection(GpuMat& trainCollection, GpuMat& maskCollection, const std::vector<GpuMat>& masks = std::vector<GpuMat>());
|
|
|
|
|
|
|
|
// Find one best match from train collection for each query descriptor
|
|
|
|
void matchCollection(const GpuMat& query, const GpuMat& trainCollection,
|
|
|
|
GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance,
|
|
|
|
const GpuMat& masks = GpuMat(), Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
// Download trainIdx, imgIdx and distance and convert it to vector with DMatch
|
|
|
|
static void matchDownload(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance, std::vector<DMatch>& matches);
|
|
|
|
// Convert trainIdx, imgIdx and distance to vector with DMatch
|
|
|
|
static void matchConvert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance, std::vector<DMatch>& matches);
|
|
|
|
|
|
|
|
// Find one best match from train collection for each query descriptor.
|
|
|
|
void match(const GpuMat& query, std::vector<DMatch>& matches, const std::vector<GpuMat>& masks = std::vector<GpuMat>());
|
|
|
|
|
|
|
|
// Find k best matches for each query descriptor (in increasing order of distances)
|
|
|
|
void knnMatchSingle(const GpuMat& query, const GpuMat& train,
|
|
|
|
GpuMat& trainIdx, GpuMat& distance, GpuMat& allDist, int k,
|
|
|
|
const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
// Download trainIdx and distance and convert it to vector with DMatch
|
|
|
|
// compactResult is used when mask is not empty. If compactResult is false matches
|
|
|
|
// vector will have the same size as queryDescriptors rows. If compactResult is true
|
|
|
|
// matches vector will not contain matches for fully masked out query descriptors.
|
|
|
|
static void knnMatchDownload(const GpuMat& trainIdx, const GpuMat& distance,
|
|
|
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
|
|
|
|
// Convert trainIdx and distance to vector with DMatch
|
|
|
|
static void knnMatchConvert(const Mat& trainIdx, const Mat& distance,
|
|
|
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
|
|
|
|
|
|
|
|
// Find k best matches for each query descriptor (in increasing order of distances).
|
|
|
|
// compactResult is used when mask is not empty. If compactResult is false matches
|
|
|
|
// vector will have the same size as queryDescriptors rows. If compactResult is true
|
|
|
|
// matches vector will not contain matches for fully masked out query descriptors.
|
|
|
|
void knnMatch(const GpuMat& query, const GpuMat& train,
|
|
|
|
std::vector< std::vector<DMatch> >& matches, int k, const GpuMat& mask = GpuMat(),
|
|
|
|
bool compactResult = false);
|
|
|
|
|
|
|
|
// Find k best matches from train collection for each query descriptor (in increasing order of distances)
|
|
|
|
void knnMatch2Collection(const GpuMat& query, const GpuMat& trainCollection,
|
|
|
|
GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance,
|
|
|
|
const GpuMat& maskCollection = GpuMat(), Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
// Download trainIdx and distance and convert it to vector with DMatch
|
|
|
|
// compactResult is used when mask is not empty. If compactResult is false matches
|
|
|
|
// vector will have the same size as queryDescriptors rows. If compactResult is true
|
|
|
|
// matches vector will not contain matches for fully masked out query descriptors.
|
|
|
|
static void knnMatch2Download(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance,
|
|
|
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
|
|
|
|
// Convert trainIdx and distance to vector with DMatch
|
|
|
|
static void knnMatch2Convert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance,
|
|
|
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
|
|
|
|
|
|
|
|
// Find k best matches for each query descriptor (in increasing order of distances).
|
|
|
|
// compactResult is used when mask is not empty. If compactResult is false matches
|
|
|
|
// vector will have the same size as queryDescriptors rows. If compactResult is true
|
|
|
|
// matches vector will not contain matches for fully masked out query descriptors.
|
|
|
|
void knnMatch(const GpuMat& query, std::vector< std::vector<DMatch> >& matches, int k,
|
|
|
|
const std::vector<GpuMat>& masks = std::vector<GpuMat>(), bool compactResult = false);
|
|
|
|
|
|
|
|
// Find best matches for each query descriptor which have distance less than maxDistance.
|
|
|
|
// nMatches.at<int>(0, queryIdx) will contain matches count for queryIdx.
|
|
|
|
// carefully nMatches can be greater than trainIdx.cols - it means that matcher didn't find all matches,
|
|
|
|
// because it didn't have enough memory.
|
|
|
|
// If trainIdx is empty, then trainIdx and distance will be created with size nQuery x max((nTrain / 100), 10),
|
|
|
|
// otherwize user can pass own allocated trainIdx and distance with size nQuery x nMaxMatches
|
|
|
|
// Matches doesn't sorted.
|
|
|
|
void radiusMatchSingle(const GpuMat& query, const GpuMat& train,
|
|
|
|
GpuMat& trainIdx, GpuMat& distance, GpuMat& nMatches, float maxDistance,
|
|
|
|
const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
// Download trainIdx, nMatches and distance and convert it to vector with DMatch.
|
|
|
|
// matches will be sorted in increasing order of distances.
|
|
|
|
// compactResult is used when mask is not empty. If compactResult is false matches
|
|
|
|
// vector will have the same size as queryDescriptors rows. If compactResult is true
|
|
|
|
// matches vector will not contain matches for fully masked out query descriptors.
|
|
|
|
static void radiusMatchDownload(const GpuMat& trainIdx, const GpuMat& distance, const GpuMat& nMatches,
|
|
|
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
|
|
|
|
// Convert trainIdx, nMatches and distance to vector with DMatch.
|
|
|
|
static void radiusMatchConvert(const Mat& trainIdx, const Mat& distance, const Mat& nMatches,
|
|
|
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
|
|
|
|
|
|
|
|
// Find best matches for each query descriptor which have distance less than maxDistance
|
|
|
|
// in increasing order of distances).
|
|
|
|
void radiusMatch(const GpuMat& query, const GpuMat& train,
|
|
|
|
std::vector< std::vector<DMatch> >& matches, float maxDistance,
|
|
|
|
const GpuMat& mask = GpuMat(), bool compactResult = false);
|
|
|
|
|
|
|
|
// Find best matches for each query descriptor which have distance less than maxDistance.
|
|
|
|
// If trainIdx is empty, then trainIdx and distance will be created with size nQuery x max((nQuery / 100), 10),
|
|
|
|
// otherwize user can pass own allocated trainIdx and distance with size nQuery x nMaxMatches
|
|
|
|
// Matches doesn't sorted.
|
|
|
|
void radiusMatchCollection(const GpuMat& query, GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, GpuMat& nMatches, float maxDistance,
|
|
|
|
const std::vector<GpuMat>& masks = std::vector<GpuMat>(), Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
// Download trainIdx, imgIdx, nMatches and distance and convert it to vector with DMatch.
|
|
|
|
// matches will be sorted in increasing order of distances.
|
|
|
|
// compactResult is used when mask is not empty. If compactResult is false matches
|
|
|
|
// vector will have the same size as queryDescriptors rows. If compactResult is true
|
|
|
|
// matches vector will not contain matches for fully masked out query descriptors.
|
|
|
|
static void radiusMatchDownload(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance, const GpuMat& nMatches,
|
|
|
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
|
|
|
|
// Convert trainIdx, nMatches and distance to vector with DMatch.
|
|
|
|
static void radiusMatchConvert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance, const Mat& nMatches,
|
|
|
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
|
|
|
|
|
|
|
|
// Find best matches from train collection for each query descriptor which have distance less than
|
|
|
|
// maxDistance (in increasing order of distances).
|
|
|
|
void radiusMatch(const GpuMat& query, std::vector< std::vector<DMatch> >& matches, float maxDistance,
|
|
|
|
const std::vector<GpuMat>& masks = std::vector<GpuMat>(), bool compactResult = false);
|
|
|
|
|
|
|
|
int norm;
|
|
|
|
|
|
|
|
private:
|
|
|
|
std::vector<GpuMat> trainDescCollection;
|
|
|
|
};
|
|
|
|
|
|
|
|
template <class Distance>
|
|
|
|
class CV_EXPORTS BruteForceMatcher_GPU;
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
class CV_EXPORTS BruteForceMatcher_GPU< L1<T> > : public BFMatcher_GPU
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
explicit BruteForceMatcher_GPU() : BFMatcher_GPU(NORM_L1) {}
|
|
|
|
explicit BruteForceMatcher_GPU(L1<T> /*d*/) : BFMatcher_GPU(NORM_L1) {}
|
|
|
|
};
|
|
|
|
template <typename T>
|
|
|
|
class CV_EXPORTS BruteForceMatcher_GPU< L2<T> > : public BFMatcher_GPU
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
explicit BruteForceMatcher_GPU() : BFMatcher_GPU(NORM_L2) {}
|
|
|
|
explicit BruteForceMatcher_GPU(L2<T> /*d*/) : BFMatcher_GPU(NORM_L2) {}
|
|
|
|
};
|
|
|
|
template <> class CV_EXPORTS BruteForceMatcher_GPU< Hamming > : public BFMatcher_GPU
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
explicit BruteForceMatcher_GPU() : BFMatcher_GPU(NORM_HAMMING) {}
|
|
|
|
explicit BruteForceMatcher_GPU(Hamming /*d*/) : BFMatcher_GPU(NORM_HAMMING) {}
|
|
|
|
};
|
|
|
|
|
|
|
|
////////////////////////////////// CascadeClassifier_GPU //////////////////////////////////////////
|
|
|
|
// The cascade classifier class for object detection: supports old haar and new lbp xlm formats and nvbin for haar cascades olny.
|
|
|
|
class CV_EXPORTS CascadeClassifier_GPU
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
CascadeClassifier_GPU();
|
2013-03-22 20:37:49 +04:00
|
|
|
CascadeClassifier_GPU(const String& filename);
|
2012-10-17 11:12:04 +04:00
|
|
|
~CascadeClassifier_GPU();
|
|
|
|
|
|
|
|
bool empty() const;
|
2013-03-22 20:37:49 +04:00
|
|
|
bool load(const String& filename);
|
2012-10-17 11:12:04 +04:00
|
|
|
void release();
|
|
|
|
|
|
|
|
/* returns number of detected objects */
|
|
|
|
int detectMultiScale(const GpuMat& image, GpuMat& objectsBuf, double scaleFactor = 1.2, int minNeighbors = 4, Size minSize = Size());
|
2013-02-21 16:12:33 +04:00
|
|
|
int detectMultiScale(const GpuMat& image, GpuMat& objectsBuf, Size maxObjectSize, Size minSize = Size(), double scaleFactor = 1.1, int minNeighbors = 4);
|
2012-10-17 11:12:04 +04:00
|
|
|
|
|
|
|
bool findLargestObject;
|
|
|
|
bool visualizeInPlace;
|
|
|
|
|
|
|
|
Size getClassifierSize() const;
|
|
|
|
|
|
|
|
private:
|
|
|
|
struct CascadeClassifierImpl;
|
|
|
|
CascadeClassifierImpl* impl;
|
|
|
|
struct HaarCascade;
|
|
|
|
struct LbpCascade;
|
|
|
|
friend class CascadeClassifier_GPU_LBP;
|
|
|
|
};
|
|
|
|
|
|
|
|
////////////////////////////////// FAST //////////////////////////////////////////
|
|
|
|
|
|
|
|
class CV_EXPORTS FAST_GPU
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
enum
|
|
|
|
{
|
|
|
|
LOCATION_ROW = 0,
|
|
|
|
RESPONSE_ROW,
|
|
|
|
ROWS_COUNT
|
|
|
|
};
|
|
|
|
|
|
|
|
// all features have same size
|
|
|
|
static const int FEATURE_SIZE = 7;
|
|
|
|
|
|
|
|
explicit FAST_GPU(int threshold, bool nonmaxSupression = true, double keypointsRatio = 0.05);
|
|
|
|
|
|
|
|
//! finds the keypoints using FAST detector
|
|
|
|
//! supports only CV_8UC1 images
|
|
|
|
void operator ()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints);
|
|
|
|
void operator ()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints);
|
|
|
|
|
|
|
|
//! download keypoints from device to host memory
|
|
|
|
static void downloadKeypoints(const GpuMat& d_keypoints, std::vector<KeyPoint>& keypoints);
|
|
|
|
|
|
|
|
//! convert keypoints to KeyPoint vector
|
|
|
|
static void convertKeypoints(const Mat& h_keypoints, std::vector<KeyPoint>& keypoints);
|
|
|
|
|
|
|
|
//! release temporary buffer's memory
|
|
|
|
void release();
|
|
|
|
|
|
|
|
bool nonmaxSupression;
|
|
|
|
|
|
|
|
int threshold;
|
|
|
|
|
|
|
|
//! max keypoints = keypointsRatio * img.size().area()
|
|
|
|
double keypointsRatio;
|
|
|
|
|
|
|
|
//! find keypoints and compute it's response if nonmaxSupression is true
|
|
|
|
//! return count of detected keypoints
|
|
|
|
int calcKeyPointsLocation(const GpuMat& image, const GpuMat& mask);
|
|
|
|
|
|
|
|
//! get final array of keypoints
|
|
|
|
//! performs nonmax supression if needed
|
|
|
|
//! return final count of keypoints
|
|
|
|
int getKeyPoints(GpuMat& keypoints);
|
|
|
|
|
|
|
|
private:
|
|
|
|
GpuMat kpLoc_;
|
|
|
|
int count_;
|
|
|
|
|
|
|
|
GpuMat score_;
|
|
|
|
|
|
|
|
GpuMat d_keypoints_;
|
|
|
|
};
|
|
|
|
|
|
|
|
////////////////////////////////// ORB //////////////////////////////////////////
|
|
|
|
|
|
|
|
class CV_EXPORTS ORB_GPU
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
enum
|
|
|
|
{
|
|
|
|
X_ROW = 0,
|
|
|
|
Y_ROW,
|
|
|
|
RESPONSE_ROW,
|
|
|
|
ANGLE_ROW,
|
|
|
|
OCTAVE_ROW,
|
|
|
|
SIZE_ROW,
|
|
|
|
ROWS_COUNT
|
|
|
|
};
|
|
|
|
|
|
|
|
enum
|
|
|
|
{
|
|
|
|
DEFAULT_FAST_THRESHOLD = 20
|
|
|
|
};
|
|
|
|
|
|
|
|
//! Constructor
|
|
|
|
explicit ORB_GPU(int nFeatures = 500, float scaleFactor = 1.2f, int nLevels = 8, int edgeThreshold = 31,
|
|
|
|
int firstLevel = 0, int WTA_K = 2, int scoreType = 0, int patchSize = 31);
|
|
|
|
|
|
|
|
//! Compute the ORB features on an image
|
|
|
|
//! image - the image to compute the features (supports only CV_8UC1 images)
|
|
|
|
//! mask - the mask to apply
|
|
|
|
//! keypoints - the resulting keypoints
|
|
|
|
void operator()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints);
|
|
|
|
void operator()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints);
|
|
|
|
|
|
|
|
//! Compute the ORB features and descriptors on an image
|
|
|
|
//! image - the image to compute the features (supports only CV_8UC1 images)
|
|
|
|
//! mask - the mask to apply
|
|
|
|
//! keypoints - the resulting keypoints
|
|
|
|
//! descriptors - descriptors array
|
|
|
|
void operator()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints, GpuMat& descriptors);
|
|
|
|
void operator()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints, GpuMat& descriptors);
|
|
|
|
|
|
|
|
//! download keypoints from device to host memory
|
|
|
|
static void downloadKeyPoints(const GpuMat& d_keypoints, std::vector<KeyPoint>& keypoints);
|
|
|
|
//! convert keypoints to KeyPoint vector
|
|
|
|
static void convertKeyPoints(const Mat& d_keypoints, std::vector<KeyPoint>& keypoints);
|
|
|
|
|
|
|
|
//! returns the descriptor size in bytes
|
|
|
|
inline int descriptorSize() const { return kBytes; }
|
|
|
|
|
|
|
|
inline void setFastParams(int threshold, bool nonmaxSupression = true)
|
|
|
|
{
|
|
|
|
fastDetector_.threshold = threshold;
|
|
|
|
fastDetector_.nonmaxSupression = nonmaxSupression;
|
|
|
|
}
|
|
|
|
|
|
|
|
//! release temporary buffer's memory
|
|
|
|
void release();
|
|
|
|
|
|
|
|
//! if true, image will be blurred before descriptors calculation
|
|
|
|
bool blurForDescriptor;
|
|
|
|
|
|
|
|
private:
|
|
|
|
enum { kBytes = 32 };
|
|
|
|
|
|
|
|
void buildScalePyramids(const GpuMat& image, const GpuMat& mask);
|
|
|
|
|
|
|
|
void computeKeyPointsPyramid();
|
|
|
|
|
|
|
|
void computeDescriptors(GpuMat& descriptors);
|
|
|
|
|
|
|
|
void mergeKeyPoints(GpuMat& keypoints);
|
|
|
|
|
|
|
|
int nFeatures_;
|
|
|
|
float scaleFactor_;
|
|
|
|
int nLevels_;
|
|
|
|
int edgeThreshold_;
|
|
|
|
int firstLevel_;
|
|
|
|
int WTA_K_;
|
|
|
|
int scoreType_;
|
|
|
|
int patchSize_;
|
|
|
|
|
|
|
|
// The number of desired features per scale
|
|
|
|
std::vector<size_t> n_features_per_level_;
|
|
|
|
|
|
|
|
// Points to compute BRIEF descriptors from
|
|
|
|
GpuMat pattern_;
|
|
|
|
|
|
|
|
std::vector<GpuMat> imagePyr_;
|
|
|
|
std::vector<GpuMat> maskPyr_;
|
|
|
|
|
|
|
|
GpuMat buf_;
|
|
|
|
|
|
|
|
std::vector<GpuMat> keyPointsPyr_;
|
|
|
|
std::vector<int> keyPointsCount_;
|
|
|
|
|
|
|
|
FAST_GPU fastDetector_;
|
|
|
|
|
|
|
|
Ptr<FilterEngine_GPU> blurFilter;
|
|
|
|
|
|
|
|
GpuMat d_keypoints_;
|
|
|
|
};
|
|
|
|
|
|
|
|
////////////////////////////////// Optical Flow //////////////////////////////////////////
|
|
|
|
|
|
|
|
class CV_EXPORTS BroxOpticalFlow
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
BroxOpticalFlow(float alpha_, float gamma_, float scale_factor_, int inner_iterations_, int outer_iterations_, int solver_iterations_) :
|
|
|
|
alpha(alpha_), gamma(gamma_), scale_factor(scale_factor_),
|
|
|
|
inner_iterations(inner_iterations_), outer_iterations(outer_iterations_), solver_iterations(solver_iterations_)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
//! Compute optical flow
|
|
|
|
//! frame0 - source frame (supports only CV_32FC1 type)
|
|
|
|
//! frame1 - frame to track (with the same size and type as frame0)
|
|
|
|
//! u - flow horizontal component (along x axis)
|
|
|
|
//! v - flow vertical component (along y axis)
|
|
|
|
void operator ()(const GpuMat& frame0, const GpuMat& frame1, GpuMat& u, GpuMat& v, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! flow smoothness
|
|
|
|
float alpha;
|
|
|
|
|
|
|
|
//! gradient constancy importance
|
|
|
|
float gamma;
|
|
|
|
|
|
|
|
//! pyramid scale factor
|
|
|
|
float scale_factor;
|
|
|
|
|
|
|
|
//! number of lagged non-linearity iterations (inner loop)
|
|
|
|
int inner_iterations;
|
|
|
|
|
|
|
|
//! number of warping iterations (number of pyramid levels)
|
|
|
|
int outer_iterations;
|
|
|
|
|
|
|
|
//! number of linear system solver iterations
|
|
|
|
int solver_iterations;
|
|
|
|
|
|
|
|
GpuMat buf;
|
|
|
|
};
|
|
|
|
|
|
|
|
class CV_EXPORTS GoodFeaturesToTrackDetector_GPU
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
explicit GoodFeaturesToTrackDetector_GPU(int maxCorners = 1000, double qualityLevel = 0.01, double minDistance = 0.0,
|
|
|
|
int blockSize = 3, bool useHarrisDetector = false, double harrisK = 0.04);
|
|
|
|
|
|
|
|
//! return 1 rows matrix with CV_32FC2 type
|
|
|
|
void operator ()(const GpuMat& image, GpuMat& corners, const GpuMat& mask = GpuMat());
|
|
|
|
|
|
|
|
int maxCorners;
|
|
|
|
double qualityLevel;
|
|
|
|
double minDistance;
|
|
|
|
|
|
|
|
int blockSize;
|
|
|
|
bool useHarrisDetector;
|
|
|
|
double harrisK;
|
|
|
|
|
|
|
|
void releaseMemory()
|
|
|
|
{
|
|
|
|
Dx_.release();
|
|
|
|
Dy_.release();
|
|
|
|
buf_.release();
|
|
|
|
eig_.release();
|
|
|
|
minMaxbuf_.release();
|
|
|
|
tmpCorners_.release();
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
GpuMat Dx_;
|
|
|
|
GpuMat Dy_;
|
|
|
|
GpuMat buf_;
|
|
|
|
GpuMat eig_;
|
|
|
|
GpuMat minMaxbuf_;
|
|
|
|
GpuMat tmpCorners_;
|
|
|
|
};
|
|
|
|
|
|
|
|
inline GoodFeaturesToTrackDetector_GPU::GoodFeaturesToTrackDetector_GPU(int maxCorners_, double qualityLevel_, double minDistance_,
|
|
|
|
int blockSize_, bool useHarrisDetector_, double harrisK_)
|
|
|
|
{
|
|
|
|
maxCorners = maxCorners_;
|
|
|
|
qualityLevel = qualityLevel_;
|
|
|
|
minDistance = minDistance_;
|
|
|
|
blockSize = blockSize_;
|
|
|
|
useHarrisDetector = useHarrisDetector_;
|
|
|
|
harrisK = harrisK_;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
class CV_EXPORTS PyrLKOpticalFlow
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
PyrLKOpticalFlow();
|
|
|
|
|
|
|
|
void sparse(const GpuMat& prevImg, const GpuMat& nextImg, const GpuMat& prevPts, GpuMat& nextPts,
|
|
|
|
GpuMat& status, GpuMat* err = 0);
|
|
|
|
|
|
|
|
void dense(const GpuMat& prevImg, const GpuMat& nextImg, GpuMat& u, GpuMat& v, GpuMat* err = 0);
|
|
|
|
|
|
|
|
void releaseMemory();
|
|
|
|
|
|
|
|
Size winSize;
|
|
|
|
int maxLevel;
|
|
|
|
int iters;
|
|
|
|
bool useInitialFlow;
|
|
|
|
|
|
|
|
private:
|
2013-02-24 20:14:01 +04:00
|
|
|
std::vector<GpuMat> prevPyr_;
|
|
|
|
std::vector<GpuMat> nextPyr_;
|
2012-10-17 11:12:04 +04:00
|
|
|
|
|
|
|
GpuMat buf_;
|
|
|
|
|
|
|
|
GpuMat uPyr_[2];
|
|
|
|
GpuMat vPyr_[2];
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
class CV_EXPORTS FarnebackOpticalFlow
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
FarnebackOpticalFlow()
|
|
|
|
{
|
|
|
|
numLevels = 5;
|
|
|
|
pyrScale = 0.5;
|
|
|
|
fastPyramids = false;
|
|
|
|
winSize = 13;
|
|
|
|
numIters = 10;
|
|
|
|
polyN = 5;
|
|
|
|
polySigma = 1.1;
|
|
|
|
flags = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int numLevels;
|
|
|
|
double pyrScale;
|
|
|
|
bool fastPyramids;
|
|
|
|
int winSize;
|
|
|
|
int numIters;
|
|
|
|
int polyN;
|
|
|
|
double polySigma;
|
|
|
|
int flags;
|
|
|
|
|
|
|
|
void operator ()(const GpuMat &frame0, const GpuMat &frame1, GpuMat &flowx, GpuMat &flowy, Stream &s = Stream::Null());
|
|
|
|
|
|
|
|
void releaseMemory()
|
|
|
|
{
|
|
|
|
frames_[0].release();
|
|
|
|
frames_[1].release();
|
|
|
|
pyrLevel_[0].release();
|
|
|
|
pyrLevel_[1].release();
|
|
|
|
M_.release();
|
|
|
|
bufM_.release();
|
|
|
|
R_[0].release();
|
|
|
|
R_[1].release();
|
|
|
|
blurredFrame_[0].release();
|
|
|
|
blurredFrame_[1].release();
|
|
|
|
pyramid0_.clear();
|
|
|
|
pyramid1_.clear();
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
void prepareGaussian(
|
|
|
|
int n, double sigma, float *g, float *xg, float *xxg,
|
|
|
|
double &ig11, double &ig03, double &ig33, double &ig55);
|
|
|
|
|
|
|
|
void setPolynomialExpansionConsts(int n, double sigma);
|
|
|
|
|
|
|
|
void updateFlow_boxFilter(
|
|
|
|
const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat &flowy,
|
|
|
|
GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[]);
|
|
|
|
|
|
|
|
void updateFlow_gaussianBlur(
|
|
|
|
const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat& flowy,
|
|
|
|
GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[]);
|
|
|
|
|
|
|
|
GpuMat frames_[2];
|
|
|
|
GpuMat pyrLevel_[2], M_, bufM_, R_[2], blurredFrame_[2];
|
|
|
|
std::vector<GpuMat> pyramid0_, pyramid1_;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
2012-10-25 13:27:14 +04:00
|
|
|
// Implementation of the Zach, Pock and Bischof Dual TV-L1 Optical Flow method
|
|
|
|
//
|
|
|
|
// see reference:
|
|
|
|
// [1] C. Zach, T. Pock and H. Bischof, "A Duality Based Approach for Realtime TV-L1 Optical Flow".
|
|
|
|
// [2] Javier Sanchez, Enric Meinhardt-Llopis and Gabriele Facciolo. "TV-L1 Optical Flow Estimation".
|
|
|
|
class CV_EXPORTS OpticalFlowDual_TVL1_GPU
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
OpticalFlowDual_TVL1_GPU();
|
|
|
|
|
|
|
|
void operator ()(const GpuMat& I0, const GpuMat& I1, GpuMat& flowx, GpuMat& flowy);
|
|
|
|
|
|
|
|
void collectGarbage();
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Time step of the numerical scheme.
|
|
|
|
*/
|
|
|
|
double tau;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Weight parameter for the data term, attachment parameter.
|
|
|
|
* This is the most relevant parameter, which determines the smoothness of the output.
|
|
|
|
* The smaller this parameter is, the smoother the solutions we obtain.
|
|
|
|
* It depends on the range of motions of the images, so its value should be adapted to each image sequence.
|
|
|
|
*/
|
|
|
|
double lambda;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Weight parameter for (u - v)^2, tightness parameter.
|
|
|
|
* It serves as a link between the attachment and the regularization terms.
|
|
|
|
* In theory, it should have a small value in order to maintain both parts in correspondence.
|
|
|
|
* The method is stable for a large range of values of this parameter.
|
|
|
|
*/
|
|
|
|
double theta;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Number of scales used to create the pyramid of images.
|
|
|
|
*/
|
|
|
|
int nscales;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Number of warpings per scale.
|
|
|
|
* Represents the number of times that I1(x+u0) and grad( I1(x+u0) ) are computed per scale.
|
|
|
|
* This is a parameter that assures the stability of the method.
|
|
|
|
* It also affects the running time, so it is a compromise between speed and accuracy.
|
|
|
|
*/
|
|
|
|
int warps;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Stopping criterion threshold used in the numerical scheme, which is a trade-off between precision and running time.
|
|
|
|
* A small value will yield more accurate solutions at the expense of a slower convergence.
|
|
|
|
*/
|
|
|
|
double epsilon;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Stopping criterion iterations number used in the numerical scheme.
|
|
|
|
*/
|
|
|
|
int iterations;
|
|
|
|
|
2013-03-29 11:36:36 +04:00
|
|
|
double scaleStep;
|
|
|
|
|
2012-10-25 13:27:14 +04:00
|
|
|
bool useInitialFlow;
|
|
|
|
|
|
|
|
private:
|
|
|
|
void procOneScale(const GpuMat& I0, const GpuMat& I1, GpuMat& u1, GpuMat& u2);
|
|
|
|
|
|
|
|
std::vector<GpuMat> I0s;
|
|
|
|
std::vector<GpuMat> I1s;
|
|
|
|
std::vector<GpuMat> u1s;
|
|
|
|
std::vector<GpuMat> u2s;
|
|
|
|
|
|
|
|
GpuMat I1x_buf;
|
|
|
|
GpuMat I1y_buf;
|
|
|
|
|
|
|
|
GpuMat I1w_buf;
|
|
|
|
GpuMat I1wx_buf;
|
|
|
|
GpuMat I1wy_buf;
|
|
|
|
|
|
|
|
GpuMat grad_buf;
|
|
|
|
GpuMat rho_c_buf;
|
|
|
|
|
|
|
|
GpuMat p11_buf;
|
|
|
|
GpuMat p12_buf;
|
|
|
|
GpuMat p21_buf;
|
|
|
|
GpuMat p22_buf;
|
|
|
|
|
|
|
|
GpuMat diff_buf;
|
|
|
|
GpuMat norm_buf;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
2012-12-06 15:11:13 +04:00
|
|
|
//! Calculates optical flow for 2 images using block matching algorithm */
|
|
|
|
CV_EXPORTS void calcOpticalFlowBM(const GpuMat& prev, const GpuMat& curr,
|
|
|
|
Size block_size, Size shift_size, Size max_range, bool use_previous,
|
|
|
|
GpuMat& velx, GpuMat& vely, GpuMat& buf,
|
|
|
|
Stream& stream = Stream::Null());
|
|
|
|
|
2012-12-17 10:39:19 +04:00
|
|
|
class CV_EXPORTS FastOpticalFlowBM
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
void operator ()(const GpuMat& I0, const GpuMat& I1, GpuMat& flowx, GpuMat& flowy, int search_window = 21, int block_window = 7, Stream& s = Stream::Null());
|
|
|
|
|
|
|
|
private:
|
|
|
|
GpuMat buffer;
|
|
|
|
GpuMat extended_I0;
|
|
|
|
GpuMat extended_I1;
|
|
|
|
};
|
|
|
|
|
2012-12-06 15:11:13 +04:00
|
|
|
|
2012-10-17 11:12:04 +04:00
|
|
|
//! Interpolate frames (images) using provided optical flow (displacement field).
|
|
|
|
//! frame0 - frame 0 (32-bit floating point images, single channel)
|
|
|
|
//! frame1 - frame 1 (the same type and size)
|
|
|
|
//! fu - forward horizontal displacement
|
|
|
|
//! fv - forward vertical displacement
|
|
|
|
//! bu - backward horizontal displacement
|
|
|
|
//! bv - backward vertical displacement
|
|
|
|
//! pos - new frame position
|
|
|
|
//! newFrame - new frame
|
|
|
|
//! buf - temporary buffer, will have width x 6*height size, CV_32FC1 type and contain 6 GpuMat;
|
|
|
|
//! occlusion masks 0, occlusion masks 1,
|
|
|
|
//! interpolated forward flow 0, interpolated forward flow 1,
|
|
|
|
//! interpolated backward flow 0, interpolated backward flow 1
|
|
|
|
//!
|
|
|
|
CV_EXPORTS void interpolateFrames(const GpuMat& frame0, const GpuMat& frame1,
|
|
|
|
const GpuMat& fu, const GpuMat& fv,
|
|
|
|
const GpuMat& bu, const GpuMat& bv,
|
|
|
|
float pos, GpuMat& newFrame, GpuMat& buf,
|
|
|
|
Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
CV_EXPORTS void createOpticalFlowNeedleMap(const GpuMat& u, const GpuMat& v, GpuMat& vertex, GpuMat& colors);
|
|
|
|
|
|
|
|
|
|
|
|
//////////////////////// Background/foreground segmentation ////////////////////////
|
|
|
|
|
|
|
|
// Foreground Object Detection from Videos Containing Complex Background.
|
|
|
|
// Liyuan Li, Weimin Huang, Irene Y.H. Gu, and Qi Tian.
|
|
|
|
// ACM MM2003 9p
|
|
|
|
class CV_EXPORTS FGDStatModel
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
struct CV_EXPORTS Params
|
|
|
|
{
|
|
|
|
int Lc; // Quantized levels per 'color' component. Power of two, typically 32, 64 or 128.
|
|
|
|
int N1c; // Number of color vectors used to model normal background color variation at a given pixel.
|
|
|
|
int N2c; // Number of color vectors retained at given pixel. Must be > N1c, typically ~ 5/3 of N1c.
|
|
|
|
// Used to allow the first N1c vectors to adapt over time to changing background.
|
|
|
|
|
|
|
|
int Lcc; // Quantized levels per 'color co-occurrence' component. Power of two, typically 16, 32 or 64.
|
|
|
|
int N1cc; // Number of color co-occurrence vectors used to model normal background color variation at a given pixel.
|
|
|
|
int N2cc; // Number of color co-occurrence vectors retained at given pixel. Must be > N1cc, typically ~ 5/3 of N1cc.
|
|
|
|
// Used to allow the first N1cc vectors to adapt over time to changing background.
|
|
|
|
|
|
|
|
bool is_obj_without_holes; // If TRUE we ignore holes within foreground blobs. Defaults to TRUE.
|
|
|
|
int perform_morphing; // Number of erode-dilate-erode foreground-blob cleanup iterations.
|
|
|
|
// These erase one-pixel junk blobs and merge almost-touching blobs. Default value is 1.
|
|
|
|
|
|
|
|
float alpha1; // How quickly we forget old background pixel values seen. Typically set to 0.1.
|
|
|
|
float alpha2; // "Controls speed of feature learning". Depends on T. Typical value circa 0.005.
|
|
|
|
float alpha3; // Alternate to alpha2, used (e.g.) for quicker initial convergence. Typical value 0.1.
|
|
|
|
|
|
|
|
float delta; // Affects color and color co-occurrence quantization, typically set to 2.
|
|
|
|
float T; // A percentage value which determines when new features can be recognized as new background. (Typically 0.9).
|
|
|
|
float minArea; // Discard foreground blobs whose bounding box is smaller than this threshold.
|
|
|
|
|
|
|
|
// default Params
|
|
|
|
Params();
|
|
|
|
};
|
|
|
|
|
|
|
|
// out_cn - channels count in output result (can be 3 or 4)
|
|
|
|
// 4-channels require more memory, but a bit faster
|
|
|
|
explicit FGDStatModel(int out_cn = 3);
|
|
|
|
explicit FGDStatModel(const cv::gpu::GpuMat& firstFrame, const Params& params = Params(), int out_cn = 3);
|
|
|
|
|
|
|
|
~FGDStatModel();
|
|
|
|
|
|
|
|
void create(const cv::gpu::GpuMat& firstFrame, const Params& params = Params());
|
|
|
|
void release();
|
|
|
|
|
|
|
|
int update(const cv::gpu::GpuMat& curFrame);
|
|
|
|
|
|
|
|
//8UC3 or 8UC4 reference background image
|
|
|
|
cv::gpu::GpuMat background;
|
|
|
|
|
|
|
|
//8UC1 foreground image
|
|
|
|
cv::gpu::GpuMat foreground;
|
|
|
|
|
|
|
|
std::vector< std::vector<cv::Point> > foreground_regions;
|
|
|
|
|
|
|
|
private:
|
|
|
|
FGDStatModel(const FGDStatModel&);
|
|
|
|
FGDStatModel& operator=(const FGDStatModel&);
|
|
|
|
|
|
|
|
class Impl;
|
|
|
|
std::auto_ptr<Impl> impl_;
|
|
|
|
};
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Gaussian Mixture-based Backbround/Foreground Segmentation Algorithm
|
|
|
|
|
|
|
|
The class implements the following algorithm:
|
|
|
|
"An improved adaptive background mixture model for real-time tracking with shadow detection"
|
|
|
|
P. KadewTraKuPong and R. Bowden,
|
|
|
|
Proc. 2nd European Workshp on Advanced Video-Based Surveillance Systems, 2001."
|
|
|
|
http://personal.ee.surrey.ac.uk/Personal/R.Bowden/publications/avbs01/avbs01.pdf
|
|
|
|
*/
|
|
|
|
class CV_EXPORTS MOG_GPU
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
//! the default constructor
|
|
|
|
MOG_GPU(int nmixtures = -1);
|
|
|
|
|
|
|
|
//! re-initiaization method
|
|
|
|
void initialize(Size frameSize, int frameType);
|
|
|
|
|
|
|
|
//! the update operator
|
|
|
|
void operator()(const GpuMat& frame, GpuMat& fgmask, float learningRate = 0.0f, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! computes a background image which are the mean of all background gaussians
|
|
|
|
void getBackgroundImage(GpuMat& backgroundImage, Stream& stream = Stream::Null()) const;
|
|
|
|
|
|
|
|
//! releases all inner buffers
|
|
|
|
void release();
|
|
|
|
|
|
|
|
int history;
|
|
|
|
float varThreshold;
|
|
|
|
float backgroundRatio;
|
|
|
|
float noiseSigma;
|
|
|
|
|
|
|
|
private:
|
|
|
|
int nmixtures_;
|
|
|
|
|
|
|
|
Size frameSize_;
|
|
|
|
int frameType_;
|
|
|
|
int nframes_;
|
|
|
|
|
|
|
|
GpuMat weight_;
|
|
|
|
GpuMat sortKey_;
|
|
|
|
GpuMat mean_;
|
|
|
|
GpuMat var_;
|
|
|
|
};
|
|
|
|
|
|
|
|
/*!
|
|
|
|
The class implements the following algorithm:
|
|
|
|
"Improved adaptive Gausian mixture model for background subtraction"
|
|
|
|
Z.Zivkovic
|
|
|
|
International Conference Pattern Recognition, UK, August, 2004.
|
|
|
|
http://www.zoranz.net/Publications/zivkovic2004ICPR.pdf
|
|
|
|
*/
|
|
|
|
class CV_EXPORTS MOG2_GPU
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
//! the default constructor
|
|
|
|
MOG2_GPU(int nmixtures = -1);
|
|
|
|
|
|
|
|
//! re-initiaization method
|
|
|
|
void initialize(Size frameSize, int frameType);
|
|
|
|
|
|
|
|
//! the update operator
|
|
|
|
void operator()(const GpuMat& frame, GpuMat& fgmask, float learningRate = -1.0f, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! computes a background image which are the mean of all background gaussians
|
|
|
|
void getBackgroundImage(GpuMat& backgroundImage, Stream& stream = Stream::Null()) const;
|
|
|
|
|
|
|
|
//! releases all inner buffers
|
|
|
|
void release();
|
|
|
|
|
|
|
|
// parameters
|
|
|
|
// you should call initialize after parameters changes
|
|
|
|
|
|
|
|
int history;
|
|
|
|
|
|
|
|
//! here it is the maximum allowed number of mixture components.
|
|
|
|
//! Actual number is determined dynamically per pixel
|
|
|
|
float varThreshold;
|
|
|
|
// threshold on the squared Mahalanobis distance to decide if it is well described
|
|
|
|
// by the background model or not. Related to Cthr from the paper.
|
|
|
|
// This does not influence the update of the background. A typical value could be 4 sigma
|
|
|
|
// and that is varThreshold=4*4=16; Corresponds to Tb in the paper.
|
|
|
|
|
|
|
|
/////////////////////////
|
|
|
|
// less important parameters - things you might change but be carefull
|
|
|
|
////////////////////////
|
|
|
|
|
|
|
|
float backgroundRatio;
|
|
|
|
// corresponds to fTB=1-cf from the paper
|
|
|
|
// TB - threshold when the component becomes significant enough to be included into
|
|
|
|
// the background model. It is the TB=1-cf from the paper. So I use cf=0.1 => TB=0.
|
|
|
|
// For alpha=0.001 it means that the mode should exist for approximately 105 frames before
|
|
|
|
// it is considered foreground
|
|
|
|
// float noiseSigma;
|
|
|
|
float varThresholdGen;
|
|
|
|
|
|
|
|
//correspondts to Tg - threshold on the squared Mahalan. dist. to decide
|
|
|
|
//when a sample is close to the existing components. If it is not close
|
|
|
|
//to any a new component will be generated. I use 3 sigma => Tg=3*3=9.
|
|
|
|
//Smaller Tg leads to more generated components and higher Tg might make
|
|
|
|
//lead to small number of components but they can grow too large
|
|
|
|
float fVarInit;
|
|
|
|
float fVarMin;
|
|
|
|
float fVarMax;
|
|
|
|
|
|
|
|
//initial variance for the newly generated components.
|
|
|
|
//It will will influence the speed of adaptation. A good guess should be made.
|
|
|
|
//A simple way is to estimate the typical standard deviation from the images.
|
|
|
|
//I used here 10 as a reasonable value
|
|
|
|
// min and max can be used to further control the variance
|
|
|
|
float fCT; //CT - complexity reduction prior
|
|
|
|
//this is related to the number of samples needed to accept that a component
|
|
|
|
//actually exists. We use CT=0.05 of all the samples. By setting CT=0 you get
|
|
|
|
//the standard Stauffer&Grimson algorithm (maybe not exact but very similar)
|
|
|
|
|
|
|
|
//shadow detection parameters
|
|
|
|
bool bShadowDetection; //default 1 - do shadow detection
|
|
|
|
unsigned char nShadowDetection; //do shadow detection - insert this value as the detection result - 127 default value
|
|
|
|
float fTau;
|
|
|
|
// Tau - shadow threshold. The shadow is detected if the pixel is darker
|
|
|
|
//version of the background. Tau is a threshold on how much darker the shadow can be.
|
|
|
|
//Tau= 0.5 means that if pixel is more than 2 times darker then it is not shadow
|
|
|
|
//See: Prati,Mikic,Trivedi,Cucchiarra,"Detecting Moving Shadows...",IEEE PAMI,2003.
|
|
|
|
|
|
|
|
private:
|
|
|
|
int nmixtures_;
|
|
|
|
|
|
|
|
Size frameSize_;
|
|
|
|
int frameType_;
|
|
|
|
int nframes_;
|
|
|
|
|
|
|
|
GpuMat weight_;
|
|
|
|
GpuMat variance_;
|
|
|
|
GpuMat mean_;
|
|
|
|
|
|
|
|
GpuMat bgmodelUsedModes_; //keep track of number of modes per pixel
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Background Subtractor module. Takes a series of images and returns a sequence of mask (8UC1)
|
|
|
|
* images of the same size, where 255 indicates Foreground and 0 represents Background.
|
|
|
|
* This class implements an algorithm described in "Visual Tracking of Human Visitors under
|
|
|
|
* Variable-Lighting Conditions for a Responsive Audio Art Installation," A. Godbehere,
|
|
|
|
* A. Matsukawa, K. Goldberg, American Control Conference, Montreal, June 2012.
|
|
|
|
*/
|
|
|
|
class CV_EXPORTS GMG_GPU
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
GMG_GPU();
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Validate parameters and set up data structures for appropriate frame size.
|
|
|
|
* @param frameSize Input frame size
|
|
|
|
* @param min Minimum value taken on by pixels in image sequence. Usually 0
|
|
|
|
* @param max Maximum value taken on by pixels in image sequence. e.g. 1.0 or 255
|
|
|
|
*/
|
|
|
|
void initialize(Size frameSize, float min = 0.0f, float max = 255.0f);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Performs single-frame background subtraction and builds up a statistical background image
|
|
|
|
* model.
|
|
|
|
* @param frame Input frame
|
|
|
|
* @param fgmask Output mask image representing foreground and background pixels
|
|
|
|
* @param stream Stream for the asynchronous version
|
|
|
|
*/
|
|
|
|
void operator ()(const GpuMat& frame, GpuMat& fgmask, float learningRate = -1.0f, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
//! Releases all inner buffers
|
|
|
|
void release();
|
|
|
|
|
|
|
|
//! Total number of distinct colors to maintain in histogram.
|
|
|
|
int maxFeatures;
|
|
|
|
|
|
|
|
//! Set between 0.0 and 1.0, determines how quickly features are "forgotten" from histograms.
|
|
|
|
float learningRate;
|
|
|
|
|
|
|
|
//! Number of frames of video to use to initialize histograms.
|
|
|
|
int numInitializationFrames;
|
|
|
|
|
|
|
|
//! Number of discrete levels in each channel to be used in histograms.
|
|
|
|
int quantizationLevels;
|
|
|
|
|
|
|
|
//! Prior probability that any given pixel is a background pixel. A sensitivity parameter.
|
|
|
|
float backgroundPrior;
|
|
|
|
|
|
|
|
//! Value above which pixel is determined to be FG.
|
|
|
|
float decisionThreshold;
|
|
|
|
|
|
|
|
//! Smoothing radius, in pixels, for cleaning up FG image.
|
|
|
|
int smoothingRadius;
|
|
|
|
|
|
|
|
//! Perform background model update.
|
|
|
|
bool updateBackgroundModel;
|
|
|
|
|
|
|
|
private:
|
|
|
|
float maxVal_, minVal_;
|
|
|
|
|
|
|
|
Size frameSize_;
|
|
|
|
|
|
|
|
int frameNum_;
|
|
|
|
|
|
|
|
GpuMat nfeatures_;
|
|
|
|
GpuMat colors_;
|
|
|
|
GpuMat weights_;
|
|
|
|
|
|
|
|
Ptr<FilterEngine_GPU> boxFilter_;
|
|
|
|
GpuMat buf_;
|
|
|
|
};
|
|
|
|
|
|
|
|
//! removes points (CV_32FC2, single row matrix) with zero mask value
|
|
|
|
CV_EXPORTS void compactPoints(GpuMat &points0, GpuMat &points1, const GpuMat &mask);
|
|
|
|
|
|
|
|
CV_EXPORTS void calcWobbleSuppressionMaps(
|
|
|
|
int left, int idx, int right, Size size, const Mat &ml, const Mat &mr,
|
|
|
|
GpuMat &mapx, GpuMat &mapy);
|
|
|
|
|
|
|
|
} // namespace gpu
|
|
|
|
|
|
|
|
} // namespace cv
|
|
|
|
|
|
|
|
#endif /* __OPENCV_GPU_HPP__ */
|